本節(jié)課采取了開門見山的切入方法,旨在激發(fā)學(xué)生的求知欲望,在學(xué)生已有的認(rèn)識(shí)基礎(chǔ)上,讓學(xué)生經(jīng)歷了“觀察、思考、探究、實(shí)踐”的過程。在總結(jié)出同類項(xiàng)定義后,沒有按通常的做法,即直接分析定義中的兩個(gè)條件,強(qiáng)調(diào)兩個(gè)條件缺一不可,而是通過一組練習(xí),讓學(xué)生在具體問題中體會(huì)定義中的兩個(gè)條件缺一不可,使他們先有較強(qiáng)烈的感性認(rèn)識(shí),而后,分析定義中的兩個(gè)條件,這樣會(huì)給學(xué)生留下更深刻、更牢固的印象.這樣的設(shè)計(jì)既符合學(xué)生的年齡特征,也符合“從感性到理性、從具體到抽象”的認(rèn)知規(guī)律。數(shù)學(xué)不應(yīng)只強(qiáng)調(diào)抽象、嚴(yán)謹(jǐn),這樣不但會(huì)更顯數(shù)學(xué)教學(xué)的枯燥,而且會(huì)使學(xué)生在學(xué)習(xí)中出現(xiàn)畏難情緒,甚至喪失學(xué)習(xí)數(shù)學(xué)的興趣。通過本節(jié)課的教學(xué),我認(rèn)為還存在一些不足,一部分學(xué)生的學(xué)習(xí)能力還有待于進(jìn)一步培養(yǎng)。如:學(xué)習(xí)同類項(xiàng)的概念時(shí),當(dāng)把字母順序進(jìn)行改變后,部分學(xué)生就認(rèn)為不是同類項(xiàng)。
1.會(huì)用度量法和疊合法比較兩個(gè)角的大小.2.理解角的平分線的定義,并能借助角的平分線的定義解決問題.3.理解兩個(gè)角的和、差、倍、分的意義,會(huì)進(jìn)行角的運(yùn)算.一、情境導(dǎo)入同學(xué)們,如圖是我們生活中常用的剪刀模型,現(xiàn)在考考大家,剪刀張開的兩個(gè)角哪個(gè)大呢?二、合作探究探究點(diǎn)一:角的比較在某工廠生產(chǎn)流水線上生產(chǎn)如圖所示的工件,其中∠α稱為工件的中心角,生產(chǎn)要求∠α的標(biāo)準(zhǔn)角度為30°±1°,一名質(zhì)檢員在檢驗(yàn)時(shí),手拿一量角器逐一測(cè)量∠α的度數(shù).請(qǐng)你運(yùn)用所學(xué)的知識(shí)分析一下,該名質(zhì)檢員采用的是哪種比較方法?你還能給該質(zhì)檢員設(shè)計(jì)更好的質(zhì)檢方法嗎?請(qǐng)說說你的方法.解析:角的比較方法有測(cè)量法和疊合法,其中測(cè)量法更具體,疊合更直觀.在質(zhì)檢中,采用疊合法比較快捷.
方法總結(jié):由絕對(duì)值的定義可知,一個(gè)數(shù)的絕對(duì)值越小,離原點(diǎn)越近.將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,即為與標(biāo)準(zhǔn)質(zhì)量的差的絕對(duì)值越小,越接近標(biāo)準(zhǔn)質(zhì)量.【類型四】 絕對(duì)值的非負(fù)性已知|x-3|+|y-2|=0,求x+y的值.解析:一個(gè)數(shù)的絕對(duì)值總是大于或等于0,即為非負(fù)數(shù),若兩個(gè)非負(fù)數(shù)的和為0,則這兩個(gè)數(shù)同為0.解:由題意得x-3=0,y-2=0,所以x=3,y=2.所以x+y=3+2=5.方法總結(jié):幾個(gè)非負(fù)數(shù)的和為0,則這幾個(gè)數(shù)都為0.三、板書設(shè)計(jì)絕對(duì)值相反數(shù)絕對(duì)值性質(zhì)→|a|=a(a>0)0(a=0)-a(a<0)互為相反數(shù)的兩個(gè)數(shù)的絕對(duì)值相等兩個(gè)負(fù)數(shù)比較大?。航^對(duì)值大的反而小絕對(duì)值這個(gè)名詞既陌生,又是一個(gè)不易理解的數(shù)學(xué)術(shù)語,是本章的重點(diǎn)內(nèi)容,同時(shí)也是一個(gè)難點(diǎn)內(nèi)容.教材從幾何的角度給出絕對(duì)值的概念,也就是從數(shù)軸上表示數(shù)的點(diǎn)的位置出發(fā),得出定義的.
光年是表示較大距離的一個(gè)單位, 而納米(nanometer)則是表示微小距離的單位。1納米= 米,即1米= 納米。我們通常使用的尺上的一小格是一毫米(mm),1毫米= 米??梢?,1毫米= 納米,容易算出,1納米相當(dāng)于1毫米的一百萬分之一??上攵?納米是多么的小。超微粒子的大小一般在1~100 納米范圍內(nèi),故又稱納米粒子。納米粒子的尺寸小,表面積大,具有高度的活性。因此,利用納米粒子可制備活性極高的催化劑,在火箭固體燃料中摻入鋁的納米微粒,可提高燃燒效率若干倍。利用鐵磁納米材料具有很高矯頑力的特點(diǎn),可制成磁性信用卡、磁性鑰匙,以及高性能錄像帶等 。利用納米材料等離子共振頻率的可調(diào)性可制成隱形飛機(jī)的涂料。納米材料的表面積大,對(duì)外界環(huán)境(物理的和化學(xué)的)十分敏感,在制造傳感器方面是有前途的材料,目前已開發(fā)出測(cè)量溫度、熱輻射和檢測(cè)各種特定氣體的傳感器。在生物和醫(yī)學(xué)中也有重要應(yīng)用。納米材料科學(xué)是20世紀(jì)80年代末誕生并正在崛起的科技新領(lǐng)域,它將成為跨世紀(jì)的科技熱點(diǎn)之一。
方法總結(jié):本題考查了利用數(shù)軸,比較數(shù)的大小關(guān)系,對(duì)于含有絕對(duì)值的式子的化簡,要根據(jù)絕對(duì)值內(nèi)的式子的正負(fù),去掉絕對(duì)值符號(hào).探究點(diǎn)四:含括號(hào)的整式的化簡應(yīng)用某商店有一種商品每件成本a元,原來按成本增加b元定出售價(jià),售出40件后,由于庫存積壓,調(diào)整為按售價(jià)的80%出售,又銷售了60件.(1)銷售100件這種商品的總售價(jià)為多少元?(2)銷售100件這種商品共盈利多少元?解析:(1)求出前40件的售價(jià)與后60件的售價(jià)即可確定出總售價(jià);(2)由“利潤=售價(jià)-成本”列出關(guān)系式即可得到結(jié)果.解:(1)根據(jù)題意得:40(a+b)+60(a+b)×80%=88a+88b(元),則銷售100件這種商品的總售價(jià)為(88a+88b)元;(2)根據(jù)題意得:88a+88b-100a=-12a+88b(元),則銷售100件這種商品共盈利(-12a+88b)元.方法總結(jié):解決此類題目的關(guān)鍵是熟記去括號(hào)法則和熟練運(yùn)用合并同類項(xiàng)的法則.
1. 小明的腳長23.6厘米,鞋號(hào)應(yīng)是 號(hào)。2.小亮的腳長25.1厘米,鞋號(hào)應(yīng)是 號(hào)。3.小王選了25號(hào)鞋,那么他的腳長約是大于等于 厘米且小于 厘米。小結(jié):剛才同學(xué)們都體會(huì)到了分組編碼使原來繁多,無敘的數(shù)據(jù)簡化、有序。因此分組、編碼是整理數(shù)據(jù)的一種重要的方法,在工商業(yè)、科研等活動(dòng)中有廣泛的應(yīng)用(四)反饋練習(xí)課內(nèi)練習(xí)以下是某校七年級(jí)南,女生各10名右眼裸視的檢測(cè)結(jié)果:0.2,0.5,0.7(女),1.0,0.3(女),1.2(女),1.5,1.2,1.5(女),0.4(女),1.5,1.1,1.2(女),0.8(女),1.5(女),0.6(女),1.0(女),0.8,1.5,1.2(1)這組數(shù)據(jù)是用什么方法獲得的?(2)學(xué)生右眼視力跟性別有關(guān)嗎?為了回答這個(gè)問題,你將怎樣處理這組數(shù)據(jù)?你的結(jié)論是什么?(五). 歸納小結(jié),體味數(shù)學(xué)快樂通過本節(jié)課的學(xué)習(xí),你有那些收獲?(課堂小結(jié)交給學(xué)生)數(shù)據(jù)收集的方法:直接觀察、測(cè)量、調(diào)查、實(shí)驗(yàn)、查閱文獻(xiàn)資料、使用互連網(wǎng)等。整理數(shù)據(jù)的方法:分類、排序、分組編碼等。(學(xué)生可能還會(huì)指出鞋碼和腳長之間的關(guān)系等)
將有理數(shù)-2,+1,0,-212,314在數(shù)軸上表示出來,并用“<”號(hào)連接各數(shù).解析:利用數(shù)軸上的點(diǎn)來表示相應(yīng)的數(shù),再利用它們對(duì)應(yīng)點(diǎn)的位置來判斷各數(shù)的大?。猓喝鐖D:由數(shù)軸可知-212<-2<0<+1<314.方法總結(jié):一般地,數(shù)軸上多個(gè)數(shù)的大小比較,可利用“數(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大”這一性質(zhì)進(jìn)行比較.探究點(diǎn)四:點(diǎn)在數(shù)軸上的移動(dòng)問題點(diǎn)A為數(shù)軸上表示-2的動(dòng)點(diǎn),當(dāng)點(diǎn)A沿?cái)?shù)軸移動(dòng)4個(gè)單位長度到點(diǎn)B時(shí),點(diǎn)B所表示的有理數(shù)為()A.2 B.-6C.2或-6 D.以上答案都不對(duì)解析:∵點(diǎn)A為數(shù)軸上表示-2的動(dòng)點(diǎn),①當(dāng)點(diǎn)A沿?cái)?shù)軸向左移動(dòng)4個(gè)單位長度時(shí),點(diǎn)B所表示的有理數(shù)為-6;②當(dāng)點(diǎn)A沿?cái)?shù)軸向右移動(dòng)4個(gè)單位長度時(shí),點(diǎn)B所表示的有理數(shù)為2.故選C.方法總結(jié):點(diǎn)A在數(shù)軸上移動(dòng)要注意分兩種情況:一個(gè)向左,一個(gè)向右,不要漏掉其中的一種情況.
一個(gè)不透明的袋子中裝有5個(gè)黑球和3個(gè)白球,這些球的大小、質(zhì)地完全相同,隨機(jī)從袋子中摸出4個(gè)球,則下列事件是必然事件的是( )A.摸出的4個(gè)球中至少有一個(gè)是白球B.摸出的4個(gè)球中至少有一個(gè)是黑球C.摸出的4個(gè)球中至少有兩個(gè)是黑球D.摸出的4個(gè)球中至少有兩個(gè)是白球解析:∵袋子中只有3個(gè)白球,而有5個(gè)黑球,∴摸出的4個(gè)球可能都是黑球,因此選項(xiàng)A是不確定事件;摸出的4個(gè)球可能都是黑球,也可以3黑1白、2黑2白、1黑3白,不管哪種情況,至少有一個(gè)球是黑球,∴選項(xiàng)B是必然事件;摸出的4個(gè)球可能為1黑3白,∴選項(xiàng)C是不確定事件;摸出的4個(gè)球可能都是黑球或1白3黑,∴選項(xiàng)D是不確定事件.故選B.方法總結(jié):事件類型的判斷首先要判斷該事件發(fā)生與否是不是確定的.若是確定的,再判斷其是必然發(fā)生的(必然事件),還是必然不發(fā)生的(不可能事件).若是不確定的,則該事件是不確定事件.
解析:①以O(shè)為圓心,任意長為半徑作弧交OA于D,交OB于C;②以O(shè)′為圓心,以同樣長(OC長)為半徑作弧,交O′B′于C′;③以C′為圓心,CD長為半徑作弧交前弧于D′;④過D′作射線O′A′,∠A′O′B′為所求.解:如下圖所示.【類型三】 利用尺規(guī)作角的和或差已知∠AOB,用尺規(guī)作圖法作∠A′O′B′,使∠A′O′B′=2∠AOB.解析:先作一個(gè)角等于∠AOB,再以這個(gè)角的一邊為邊在其外部作一個(gè)角等于∠AOB,那么圖中最大的角就是所求的角.解:作法:①作∠DO′B′=∠AOB;②在∠DO′B′的外部作∠A′O′D=∠AOB,∠A′O′B′就是所求的角(如下圖).三、板書設(shè)計(jì)1.尺規(guī)作圖2.用尺規(guī)作角本節(jié)課學(xué)習(xí)了有關(guān)尺規(guī)作圖的相關(guān)知識(shí),課堂教學(xué)內(nèi)容以學(xué)生動(dòng)手操作為主,在學(xué)生動(dòng)手操作的過程中要鼓勵(lì)學(xué)生大膽動(dòng)手,培養(yǎng)學(xué)生的動(dòng)手能力和書面語言表達(dá)能力
已知xm-n+1y與-2xn-1y3m-2n-5是同類項(xiàng),求m和n的值.解析:根據(jù)同類項(xiàng)的概念,可列出含字母m和n的方程組,從而求出m和n.解:因?yàn)閤m-n+1y與-2xn-1y3m-2n-5是同類項(xiàng),所以m-n+1=n-1,①3m-2n-5=1.②整理,得m-2n+2=0,③3m-2n-6=0.④④-③,得2m=8,所以m=4.把m=4代入③,得2n=6,所以n=3.所以當(dāng)m=4,n=3時(shí),xm-n+1y與-2xn-1y3m-2n-5是同類項(xiàng).方法總結(jié):解這類題,就是根據(jù)同類項(xiàng)的定義,利用相同字母的指數(shù)分別相等,列方程組求字母的值.三、板書設(shè)計(jì)用加減法解二元一次方程組的步驟:①變形,使某個(gè)未知數(shù)的系數(shù)絕對(duì)值相等;②加減消元;③解一元一次方程;④求另一個(gè)未知數(shù)的值,得方程組的解.進(jìn)一步理解二元一次方程組的“消元”思想,初步體會(huì)數(shù)學(xué)研究中“化未知為已知”的化歸思想.選擇恰當(dāng)?shù)姆椒ń舛淮畏匠探M,培養(yǎng)學(xué)生的觀察、分析問題的能力.
1.知識(shí)目標(biāo):在回顧與思考中建立本章的知識(shí)框架圖,復(fù)習(xí)有關(guān)定理的探索與證明,證明的思路和方法,尺規(guī)作圖等.2.能力目標(biāo):進(jìn)一步體會(huì)證明的必要性,發(fā)展學(xué)生的初步的演繹推理能力;進(jìn)一步掌握綜合法的證明方法,結(jié)合實(shí)例體會(huì)反證法的含義;提高學(xué)生用規(guī)范的數(shù)學(xué)語言表達(dá)論證過程的能力.3.情感價(jià)值觀要求通過積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng),對(duì)數(shù)學(xué)的證明產(chǎn)生好奇心和求知欲,培養(yǎng)學(xué)生合作交流的能力,以及獨(dú)立思考的良好學(xué)習(xí)習(xí)慣.重點(diǎn):通過例題的講解和課堂練習(xí)對(duì)所學(xué)知識(shí)進(jìn)行復(fù)習(xí)鞏固難點(diǎn):本章知識(shí)的綜合性應(yīng)用?!練w納總結(jié)】(1) 定義: 三條邊都相等 的三角形是等邊三角形。(2)性質(zhì):①三個(gè)內(nèi)角都等于60度,三條邊都相等②具有等腰三角形的一切性質(zhì)。
答:所有陰影部分的面積和是5050cm2.方法總結(jié):首先應(yīng)找出圖形中哪些部分發(fā)生了變化,是按照什么規(guī)律變化的,通過分析找到各部分的變化規(guī)律后直接利用規(guī)律求解.探尋規(guī)律要認(rèn)真觀察、仔細(xì)思考,善用聯(lián)想來解決這類問題.三、板書設(shè)計(jì)1.平方差公式:a2-b2=(a+b)(a-b);2.平方差公式的特點(diǎn):能夠運(yùn)用平方差公式分解因式的多項(xiàng)式必須是二項(xiàng)式,兩項(xiàng)都能寫成平方的形式,且符號(hào)相反.運(yùn)用平方差公式因式分解,首先應(yīng)注意每個(gè)公式的特征.分析多項(xiàng)式的次數(shù)和項(xiàng)數(shù),然后再確定公式.如果多項(xiàng)式是二項(xiàng)式,通??紤]應(yīng)用平方差公式;如果多項(xiàng)式中有公因式可提,應(yīng)先提取公因式,而且還要“提”得徹底,最后應(yīng)注意兩點(diǎn):一是每個(gè)因式要化簡,二是分解因式時(shí),每個(gè)因式都要分解徹底.
解:設(shè)另一個(gè)因式為2x2-mx-k3,∴(x-3)(2x2-mx-k3)=2x3-5x2-6x+k,2x3-mx2-k3x-6x2+3mx+k=2x3-5x2-6x+k,2x3-(m+6)x2-(k3-3m)x+k=2x3-5x2-6x+k,∴m+6=5,k3-3m=6,解得m=-1,k=9,∴k=9,∴另一個(gè)因式為2x2+x-3.方法總結(jié):因?yàn)檎降某朔ê头纸庖蚴交槟孢\(yùn)算,所以分解因式后的兩個(gè)因式的乘積一定等于原來的多項(xiàng)式.三、板書設(shè)計(jì)1.因式分解的概念把一個(gè)多項(xiàng)式轉(zhuǎn)化成幾個(gè)整式的積的形式,這種變形叫做因式分解.2.因式分解與整式乘法的關(guān)系因式分解是整式乘法的逆運(yùn)算.本課是通過對(duì)比整式乘法的學(xué)習(xí),引導(dǎo)學(xué)生探究因式分解和整式乘法的聯(lián)系,通過對(duì)比學(xué)習(xí)加深對(duì)新知識(shí)的理解.教學(xué)時(shí)采用新課探究的形式,鼓勵(lì)學(xué)生參與到課堂教學(xué)中,以興趣帶動(dòng)學(xué)習(xí),提高課堂學(xué)習(xí)效率.
若a,b,c都是不等于零的數(shù),且a+bc=b+ca=c+ab=k,求k的值.解:當(dāng)a+b+c≠0時(shí),由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,則k=2(a+b+c)a+b+c=2;當(dāng)a+b+c=0時(shí),則有a+b=-c.此時(shí)k=a+bc=-cc=-1.綜上所述,k的值是2或-1.易錯(cuò)提醒:運(yùn)用等比性質(zhì)的條件是分母之和不等于0,往往忽視這一隱含條件而出錯(cuò).本題題目中并沒有交代a+b+c≠0,所以應(yīng)分兩種情況討論,容易出現(xiàn)的錯(cuò)誤是忽略討論a+b+c=0這種情況.三、板書設(shè)計(jì)比例的性質(zhì)基本性質(zhì):如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性質(zhì):如果ab=cd=…=mn(b+d+…+n≠0), 那么a+c+…+mb+d+…+n=ab經(jīng)歷比例的性質(zhì)的探索過程,體會(huì)類比的思想,提高學(xué)生探究、歸納的能力.通過問題情境的創(chuàng)設(shè)和解決過程進(jìn)一步體會(huì)數(shù)學(xué)與生活的緊密聯(lián)系,體會(huì)數(shù)學(xué)的思維方式,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣.
方法總結(jié):作平移圖形時(shí),找關(guān)鍵點(diǎn)的對(duì)應(yīng)點(diǎn)是關(guān)鍵的一步.平移作圖的一般步驟為:①確定平移的方向和距離,先確定一組對(duì)應(yīng)點(diǎn);②確定圖形中的關(guān)鍵點(diǎn);③利用第一組對(duì)應(yīng)點(diǎn)和平移的性質(zhì)確定圖中所有關(guān)鍵點(diǎn)的對(duì)應(yīng)點(diǎn);④按原圖形順序依次連接對(duì)應(yīng)點(diǎn),所得到的圖形即為平移后的圖形.三、板書設(shè)計(jì)1.平移的定義在平面內(nèi),將一個(gè)圖形沿某個(gè)方向移動(dòng)一定的距離,這樣的圖形運(yùn)動(dòng)稱為平移.2.平移的性質(zhì)一個(gè)圖形和它經(jīng)過平移所得的圖形中,對(duì)應(yīng)點(diǎn)所連的線段平行(或在一條直線上)且相等,對(duì)應(yīng)線段平行(或在一條直線上)且相等,對(duì)應(yīng)角相等.3.簡單的平移作圖教學(xué)過程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,學(xué)生經(jīng)歷將實(shí)際問題抽象成圖形問題,培養(yǎng)學(xué)生的邏輯思維能力和空間想象能力,使得學(xué)生能將所學(xué)知識(shí)靈活運(yùn)用到生活中.
(2)相似多邊形的對(duì)應(yīng)邊的比稱為相似比;(3)當(dāng)相似比為1時(shí),兩個(gè)多邊形全等.二、運(yùn)用相似多邊形的性質(zhì).活動(dòng)3 例:如圖27.1-6,四邊形ABCD和EFGH相似,求角 的大小和EH的長度 .27.1-6教師活動(dòng):教師出示例題,提出問題;學(xué)生活動(dòng):學(xué)生通過例題運(yùn)用相似多邊形的性質(zhì),正確解答出角 的大小和EH的長度 .(2人板演)活動(dòng)41.在比例尺為1﹕10 000 000的地圖上,量得甲、乙兩地的距離是30 cm,求兩地的實(shí)際距離.2.如圖所示的兩個(gè)直角三角形相似嗎?為什么?3.如圖所示的兩個(gè)五邊形相似,求未知邊 、 、 、 的長度.教師活動(dòng):在活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注:(1)學(xué)生參與活動(dòng)的熱情及語言歸納數(shù)學(xué)結(jié)論的能力;(2)學(xué)生對(duì)于相似多邊形的性質(zhì)的掌握情況.三、回顧與反思.(1)談?wù)劚竟?jié)課你有哪些收獲.(2)布置課外作業(yè):教材P88頁習(xí)題4.4
解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點(diǎn)P在⊙O′的外部;QO′=1<2,則點(diǎn)Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點(diǎn)R在圓上.方法總結(jié):注意運(yùn)用平面內(nèi)兩點(diǎn)之間的距離公式,設(shè)平面內(nèi)任意兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點(diǎn)與圓的位置關(guān)系的實(shí)際應(yīng)用如圖,城市A的正北方向50千米的B處,有一無線電信號(hào)發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號(hào)的有效半徑為100千米,AC是一條直達(dá)C城的公路,從A城發(fā)往C城的客車車速為60千米/時(shí).(1)當(dāng)客車從A城出發(fā)開往C城時(shí),某人立即打開無線電收音機(jī),客車行駛了0.5小時(shí)的時(shí)候,接收信號(hào)最強(qiáng).此時(shí),客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號(hào)越強(qiáng))?(2)客車從A城到C城共行駛2小時(shí),請(qǐng)你判斷到C城后還能接收到信號(hào)嗎?請(qǐng)說明理由.
教學(xué)目標(biāo):1、理解并掌握正切的含義,會(huì)在直角三角形中求出某個(gè)銳角的正切值。2、了解計(jì)算一個(gè)銳角的正切值的方法。教學(xué)重點(diǎn):理解并掌握正切的含義,會(huì)在直角三角形中求出某個(gè)銳角的正切值。教學(xué)難點(diǎn):計(jì)算一個(gè)銳角的正切值的方法。教學(xué)過程:一、觀察回答:如圖某體育館,為了方便不同需求的觀眾設(shè)計(jì)了多種形式的臺(tái)階。下列圖中的兩個(gè)臺(tái)階哪個(gè)更陡?你是怎么判斷的?圖(1) 圖(2)[點(diǎn)撥]可將這兩個(gè)臺(tái)階抽象地看成兩個(gè)三角形答:圖 的臺(tái)階更陡,理由 二、探索活動(dòng)1、思考與探索一:除了用臺(tái)階的傾斜角度大小外,還可以如何描述臺(tái)階的傾斜程度呢?① 可通過測(cè)量BC與AC的長度,② 再算出它們的比,來說明臺(tái)階的傾斜程度。(思考:BC與AC長度的比與臺(tái)階的傾斜程度有何關(guān)系?)答:_________________.③ 討論:你還可以用其它什么方法?能說出你的理由嗎?答:________________________.2、思考與探索二:
解析:根據(jù)銳角三角函數(shù)的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結(jié):當(dāng)角度在0°cosA>0.當(dāng)角度在45°<∠A<90°間變化時(shí),tanA>1.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第10題【類型四】 與三角函數(shù)有關(guān)的探究性問題在Rt△ABC中,∠C=90°,D為BC邊(除端點(diǎn)外)上的一點(diǎn),設(shè)∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關(guān)系;(2)試證明你的結(jié)論.解析:(1)因?yàn)樵凇鰽BD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數(shù)的定義可求出sinα,sinβ的關(guān)系式即可得出結(jié)論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結(jié):利用三角函數(shù)的定義把兩角的正弦值表示成線段的比,然后進(jìn)行比較是解題的關(guān)鍵.
疫情防控是底線,守住陣地是使命。學(xué)校作為人員密集場(chǎng)所,是疫情防控的重點(diǎn)區(qū)域,涉及面廣、工作量大,面臨的任務(wù)更加艱巨、挑戰(zhàn)更加嚴(yán)峻,做好復(fù)學(xué)準(zhǔn)備工作,特別是復(fù)學(xué)前后的疫情防控工作,是一項(xiàng)復(fù)雜的系統(tǒng)工程。隨著假期即將結(jié)束,社會(huì)關(guān)注點(diǎn)將迅速轉(zhuǎn)向返校、復(fù)學(xué)等教育領(lǐng)域重點(diǎn)工作。防止疫情向?qū)W校擴(kuò)散、守護(hù)師生安康、維護(hù)校園穩(wěn)定,是擺在教育系統(tǒng)面前的一項(xiàng)重大政治任務(wù)。