三、典型例題,應(yīng)用新知例2、一個(gè)盒子中有兩個(gè)紅球,兩個(gè)白球和一個(gè)藍(lán)球,這些球除顏色外其它都相同,從中隨機(jī)摸出一球,記下顏色后放回,再?gòu)闹须S機(jī)摸出一球。求兩次摸到的球的顏色能配成紫色的概率. 分析:把兩個(gè)紅球記為紅1、紅2;兩個(gè)白球記為白1、白2.則列表格如下:總共有25種可能的結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,能配成紫色的共4種(紅1,藍(lán))(紅2,藍(lán))(藍(lán),紅1)(藍(lán),紅2),所以P(能配成紫色)= 四、分層提高,完善新知1.用如圖所示的兩個(gè)轉(zhuǎn)盤(pán)做“配紫色”游戲,每個(gè)轉(zhuǎn)盤(pán)都被分成三個(gè)面積相等的三個(gè)扇形.請(qǐng)求出配成紫色的概率是多少?2.設(shè)計(jì)兩個(gè)轉(zhuǎn)盤(pán)做“配紫色”游戲,使游戲者獲勝的概率為 五、課堂小結(jié),回顧新知1. 利用樹(shù)狀圖和列表法求概率時(shí)應(yīng)注意什么?2. 你還有哪些收獲和疑惑?
同理,圖③中,三角形的三邊長(zhǎng)分別為2,5,3;同理,圖④中,三角形的三邊長(zhǎng)分別為2,5,13.∵21=22=105=2,∴圖②中的三角形與△ABC相似.方法總結(jié):(1)各個(gè)圖形中的三角形均為格點(diǎn)三角形,可以根據(jù)勾股定理求出各邊的長(zhǎng),然后根據(jù)三角形三邊的長(zhǎng)度是否成比例來(lái)判斷兩個(gè)三角形是否相似;(2)判斷三邊是否成比例,可以將三角形的三邊長(zhǎng)按大小順序排列,然后分別計(jì)算他們對(duì)應(yīng)邊的比,最后由比值是否相等來(lái)確定兩個(gè)三角形是否相似.三、板書(shū)設(shè)計(jì)相似三角形的判定定理3:三邊成比例的兩個(gè)三角形相似.從學(xué)生已學(xué)的知識(shí)入手,通過(guò)設(shè)置問(wèn)題,引導(dǎo)學(xué)生進(jìn)行計(jì)算、推理和歸納,提高分析問(wèn)題和解決問(wèn)題的能力.感受兩個(gè)三角形相似的判定定理3與全等三角形判定定理(SSS)的區(qū)別與聯(lián)系,體會(huì)事物間一般到特殊、特殊到一般的關(guān)系.讓學(xué)生經(jīng)歷從實(shí)驗(yàn)探究到歸納證明的過(guò)程,發(fā)展學(xué)生的合情推理能力,培養(yǎng)學(xué)生與他人交流、合作的意識(shí)和品質(zhì).
在交流的過(guò)程中,教師要站在“導(dǎo)”的位置上,放手讓學(xué)生說(shuō),最后總結(jié)出,解決這個(gè)問(wèn)題,重點(diǎn)要理解問(wèn)題的實(shí)質(zhì)含義:究竟是誰(shuí)和誰(shuí)比,誰(shuí)是單位“1”。本環(huán)節(jié)的設(shè)計(jì)既拓寬了解題思路,又鍛煉了表達(dá)能力,同時(shí)也提高了抽象概括能力。(五)鞏固拓展:實(shí)戰(zhàn)演練,我最棒!在練習(xí)的設(shè)計(jì)上,我兼顧了習(xí)題的層次性和開(kāi)放性,使不同層次的學(xué)生都參與練習(xí),以求訓(xùn)練思維、培養(yǎng)能力、形成技能。(六)課堂總結(jié)通過(guò)學(xué)生說(shuō)一說(shuō)本節(jié)課自己的收獲,達(dá)到對(duì)本節(jié)課知識(shí)點(diǎn)的梳理與整理,進(jìn)一步鞏固對(duì)知識(shí)點(diǎn)的掌握。總之,本節(jié)課教學(xué)活動(dòng)我力求充分體現(xiàn)以下特點(diǎn):以學(xué)生為主體,充分關(guān)注學(xué)生的自主探究與合作交流。教師是學(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者,對(duì)一個(gè)問(wèn)題的解決不是要教師將現(xiàn)成的方法傳授給學(xué)生,而是引導(dǎo)學(xué)生尋找解決問(wèn)題的策略,給學(xué)生一把在知識(shí)的海洋中行舟的槳,讓學(xué)生在積極思考,大膽嘗試,主動(dòng)探索中,獲取成功并體驗(yàn)成功的喜悅。
一、說(shuō)教材1、教材內(nèi)容:本節(jié)是新北師大版教材六年級(jí)數(shù)學(xué)上冊(cè)第二單元第二課的內(nèi)容。2、教材分析:本課是一節(jié)計(jì)算與解決問(wèn)題相結(jié)合的課,是在學(xué)生學(xué)會(huì)分?jǐn)?shù)混合運(yùn)算的運(yùn)算順序基礎(chǔ)上學(xué)習(xí)的,是對(duì)整數(shù)乘法運(yùn)算定律的推廣,也是在學(xué)生學(xué)會(huì)簡(jiǎn)單的“求一個(gè)數(shù)的幾分之幾是多少?”的分?jǐn)?shù)乘法問(wèn)題以及簡(jiǎn)單兩步計(jì)算問(wèn)題基礎(chǔ)上,進(jìn)一步學(xué)習(xí)的較復(fù)雜“求比一個(gè)數(shù)多(或少)幾分之幾的數(shù)是多少?”的分?jǐn)?shù)乘法問(wèn)題,是后續(xù)學(xué)習(xí)整、小、分?jǐn)?shù)混合運(yùn)算及其簡(jiǎn)便運(yùn)算,學(xué)習(xí)復(fù)雜分?jǐn)?shù)應(yīng)用問(wèn)題的基礎(chǔ)。3、學(xué)情分析:本課是在學(xué)習(xí)完分?jǐn)?shù)混合運(yùn)算(一)之后學(xué)習(xí),學(xué)生已經(jīng)有一定的基礎(chǔ)。4、學(xué)習(xí)目標(biāo):(1)、通過(guò)解決“成交量”的問(wèn)題,呈現(xiàn)不同解題策略,理解“求比一個(gè)數(shù)多幾分之一的數(shù)是多少?”這類(lèi)問(wèn)題的數(shù)量關(guān)系,并學(xué)會(huì)解決方法。(2)、通過(guò)畫(huà)圖正確理解題意,分析數(shù)量關(guān)系,尤其是幫助理解“1+1/5”的含義。進(jìn)一步體會(huì)畫(huà)圖是一種分析問(wèn)題、解決問(wèn)題的重要策略。
二、教法根據(jù)教材呈現(xiàn)的內(nèi)容,我在開(kāi)展教學(xué)活動(dòng)時(shí)是從以下幾個(gè)方面思考。1、出示情境圖,鼓勵(lì)學(xué)生分析情境中的數(shù)學(xué)信息和數(shù)量關(guān)系,明確所要解決的問(wèn)題,然后了解要解決這個(gè)問(wèn)題需要什么樣的條件,進(jìn)而列出算式。2、討論具體的計(jì)算方法。教材中呈現(xiàn)了兩種計(jì)算方法。在這個(gè)過(guò)程中,教師可以先讓學(xué)生自主進(jìn)行計(jì)算,再組織討論和交流算法之間的聯(lián)系,明白分?jǐn)?shù)混合運(yùn)算的順序。3、對(duì)問(wèn)題的解決加以解釋?zhuān)春侥P〗M有3人。三、學(xué)法通過(guò)本節(jié)教學(xué),學(xué)生學(xué)會(huì)運(yùn)用直觀的教學(xué)手段理解掌握新知識(shí),學(xué)會(huì)有順序的觀察題、認(rèn)真審題、正確計(jì)算、概括總結(jié)、檢查的學(xué)習(xí)習(xí)慣。四、教學(xué)程序(一)談話設(shè)計(jì)意圖:激發(fā)學(xué)生興趣,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性。(二)復(fù)習(xí)舊知1、復(fù)習(xí)整數(shù)混合運(yùn)算的順序。
3、概括百分?jǐn)?shù)的意義師:通過(guò)剛才同學(xué)們的互相合作交流你感受到,百分?jǐn)?shù)表示什么意思嗎?請(qǐng)你先自己想一想,然后同桌合作交流一下。(在充分的表述對(duì)百分?jǐn)?shù)的意義認(rèn)識(shí)基礎(chǔ)上,由生活信息概括提煉出的百分?jǐn)?shù)的含義)4、教學(xué)百分?jǐn)?shù)的讀寫(xiě)法百分?jǐn)?shù)的讀對(duì)于學(xué)生來(lái)說(shuō)比較簡(jiǎn)單,重點(diǎn)介紹%的寫(xiě)法。教師出示帶有情境的一組百分?jǐn)?shù)數(shù)據(jù)信息,先讓學(xué)生自讀,再提問(wèn):讀了這些數(shù)據(jù)發(fā)現(xiàn)了什么?使學(xué)生了解到百分號(hào)前面的數(shù)可以是整數(shù)、小數(shù),可以比100大可以比100小,完善對(duì)百分?jǐn)?shù)的認(rèn)識(shí),同時(shí)也滲透德育教育,讓學(xué)生通過(guò)數(shù)據(jù)說(shuō)說(shuō)自己的體會(huì),得到熱愛(ài)祖國(guó)、熱愛(ài)家鄉(xiāng)、愛(ài)護(hù)環(huán)境的教育。5、百分?jǐn)?shù)與分?jǐn)?shù)的聯(lián)系區(qū)別這是教學(xué)中的難點(diǎn),純語(yǔ)言的表達(dá)過(guò)于抽象,也不利于理解。因此它們之間的區(qū)別與聯(lián)系是通過(guò)練習(xí)的形式解決。
三、鞏固應(yīng)用在這一環(huán)節(jié),我設(shè)計(jì)了三個(gè)層次的習(xí)題,內(nèi)容由淺入深,逐步提高,讓學(xué)生體驗(yàn)到用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的成功感,并給學(xué)生提供自主探索的時(shí)間和空間,從而產(chǎn)生積極的數(shù)學(xué)情感。第一個(gè)層次(基礎(chǔ)練習(xí)):課件出示教材第28頁(yè)中“試一試”的第一題,讓學(xué)生根據(jù)情境中的信息,比較兩題之間的異同,獨(dú)立解答,然后交流解答方法,加深對(duì)百分?jǐn)?shù)問(wèn)題的理解。第二個(gè)層次(綜合練習(xí)):課件出示教材第29頁(yè)中“練一練”的第1、2、4題,鼓勵(lì)學(xué)生獨(dú)立分析題意,尋找等量關(guān)系,然后列方程解答。引導(dǎo)學(xué)生將題中的“二成”轉(zhuǎn)化為百分?jǐn)?shù)。第三個(gè)層次(提高練習(xí)):課件出示教材第29頁(yè)中“練一練”的第5題,鼓勵(lì)學(xué)生提出兩個(gè)不同的問(wèn)題并解答,培養(yǎng)學(xué)生根據(jù)統(tǒng)計(jì)圖提供的信息提出問(wèn)題的能力,使學(xué)有余力的學(xué)生有所提高。四、總結(jié)評(píng)價(jià)1、學(xué)生歸納總結(jié)在本節(jié)課你學(xué)到了什么,有哪些地方要提醒同學(xué)們注意。2、師作適當(dāng)?shù)难a(bǔ)充和評(píng)價(jià)。此環(huán)節(jié)通過(guò)師生互動(dòng),生生互動(dòng),經(jīng)歷一次再學(xué)習(xí),再鞏固的過(guò)程。
1.注重創(chuàng)設(shè)情境,讓學(xué)生從現(xiàn)實(shí)生活中學(xué)習(xí)數(shù)學(xué)?!傲己玫拈_(kāi)端是成功的一半?!本实拈_(kāi)篇不僅很快集中了學(xué)生的注意力,而且調(diào)動(dòng)了學(xué)生主動(dòng)參與學(xué)習(xí)的積極性。所以課的開(kāi)始,我設(shè)計(jì)了王叔叔的例子.我的話語(yǔ)一落下,同學(xué)們就紛紛舉起了手,發(fā)表自己的看法。首選的辦法就是存銀行,并且說(shuō)出儲(chǔ)存銀行的好處。一是可以獲得利息增值;二是可以支援國(guó)家建設(shè)。學(xué)生了解了儲(chǔ)蓄的意義,從而引出課題,使他們感到要學(xué)習(xí)的內(nèi)容與現(xiàn)實(shí)生活的緊密聯(lián)系,有利于提高學(xué)習(xí)的興趣.2、給學(xué)生充足的探索空間,讓學(xué)生成為學(xué)習(xí)的主人。課堂上,讓學(xué)生主動(dòng)地進(jìn)行數(shù)學(xué)學(xué)習(xí),動(dòng)手實(shí)踐、自主探索、合作交流。3、積極引導(dǎo)學(xué)生把知識(shí)應(yīng)用到生活中。數(shù)學(xué)來(lái)源于生活,也服務(wù)于生活,引導(dǎo)學(xué)生學(xué)會(huì)把課本中的所學(xué),應(yīng)用到日常生活中,學(xué)生對(duì)存款中的有關(guān)計(jì)算利息,本金、利率等知識(shí)了解的同時(shí),也能結(jié)合學(xué)習(xí)中的體驗(yàn)開(kāi)展實(shí)踐交流活動(dòng),形成良好的消費(fèi)觀,也能把儲(chǔ)蓄、納稅的知識(shí)應(yīng)用到現(xiàn)實(shí)生活中來(lái)。
教材首先呈現(xiàn)了一個(gè)實(shí)際問(wèn)題,并增加了一個(gè)估算的要求,讓學(xué)生先估一估再計(jì)算。接著教材中通過(guò)線段圖幫助學(xué)生理解題意,引導(dǎo)學(xué)生思考“比八月份節(jié)約了”是什么意思?在線段圖中,隱含著題目中最基本的等量關(guān)系,然后引導(dǎo)學(xué)生根據(jù)等量關(guān)系列方程解答,最后驗(yàn)證估算的結(jié)果。在開(kāi)展教學(xué)時(shí),注意下面幾個(gè)方面。一是估算意識(shí)的培養(yǎng)。結(jié)合具體情境發(fā)展學(xué)生的估算意識(shí)和能力是《新課程標(biāo)準(zhǔn)》中強(qiáng)調(diào)的,分?jǐn)?shù)中的估算要比整數(shù)、小數(shù)的估算難把握一些,教學(xué)時(shí),讓學(xué)生結(jié)合問(wèn)題情境進(jìn)行估算,關(guān)鍵是讓學(xué)生體會(huì)估算要有依據(jù)。二是解決問(wèn)題策略的研究。教學(xué)時(shí),可以讓師生交流畫(huà)圖,試著分析數(shù)量間的關(guān)系。根據(jù)等量關(guān)系列出方程,解決問(wèn)題。接著進(jìn)行變式練習(xí),把題目中的“比八月份節(jié)約了”改寫(xiě)成“比八月份增加了”,目的是讓學(xué)生進(jìn)一步利用知識(shí)解決相關(guān)數(shù)學(xué)問(wèn)題,讓學(xué)生再次利用圖找出等量關(guān)系。三是注重對(duì)估算結(jié)果進(jìn)行驗(yàn)證。
四、教學(xué)過(guò)程1、情景引入首先,利用精美課件“購(gòu)物情景”引入:上衣每件65元,褲子每條35元。問(wèn)題:①買(mǎi)5件上衣和5條褲子,一共要付多少元?問(wèn)題:②買(mǎi)5套這樣的衣服,一共要付多少元?這樣引入目的在于創(chuàng)設(shè)一個(gè)充滿趣味的問(wèn)題情境,使學(xué)生認(rèn)識(shí)到現(xiàn)實(shí)生活中蘊(yùn)含著大量的數(shù)學(xué)信息,并主動(dòng)積極的帶著自己的知識(shí)背景、活動(dòng)經(jīng)驗(yàn)和理解走進(jìn)課堂。2、解決問(wèn)題,感知規(guī)律(1)讓學(xué)生合作完成,男同學(xué)解答問(wèn)題①得到65×5+35×5=500(元)。女同學(xué)解答問(wèn)題②得到(65+35)×5=500(元)(2)通過(guò)分析,兩個(gè)問(wèn)題實(shí)際上是一樣的,兩個(gè)算式應(yīng)該相等。即:65×5+35×5=(65+35)×5。(3)新課標(biāo)強(qiáng)調(diào)要讓學(xué)生經(jīng)歷、體驗(yàn)知識(shí)獲得的過(guò)程,主動(dòng)參與探索,從而發(fā)現(xiàn)規(guī)律。在學(xué)生獨(dú)立解答的過(guò)程中,我會(huì)重點(diǎn)引導(dǎo)學(xué)生感悟問(wèn)題①和問(wèn)題②的共同特征:買(mǎi)了同樣的衣服,體會(huì)規(guī)律形成的過(guò)程。3、檢驗(yàn)規(guī)律,建立模型
最富趣味的是荷蘭藝術(shù)家埃舍爾,他到西班牙旅行參觀時(shí),對(duì)一種名為阿罕拉的建筑物有很深的印象,這是一種十三世紀(jì)皇宮建筑物,其墻身、地板和天花板由摩爾人建造,而且鋪了種類(lèi)繁多、美侖美奐的馬賽克圖案。Escher用數(shù)日的時(shí)間復(fù)制了這些圖案,并得到了啟發(fā),創(chuàng)造了各種并不局限于幾何圖案的密鋪圖案,這些圖案包括人、青蛙、魚(yú)、鳥(niǎo)、蜥蜴,甚至是他憑空想象的物體。他創(chuàng)作的藝術(shù)作品,結(jié)合數(shù)學(xué)與藝術(shù),給人留下深刻的印象,更讓人對(duì)數(shù)學(xué)產(chǎn)生了另一種看法。欣賞埃舍爾的藝術(shù)世界:2、動(dòng)手創(chuàng)作。(小小設(shè)計(jì)師)看了大藝術(shù)家的作品,你現(xiàn)在是不是也有了創(chuàng)作的沖動(dòng)?下面,請(qǐng)你選一種或幾種完全一樣的圖形進(jìn)行密鋪,可以自己設(shè)計(jì)顏色,比一比,誰(shuí)的設(shè)計(jì)更美觀、更新穎。(交流,展示)四、總結(jié):談收獲體會(huì)我們今天只是研究了一些規(guī)則圖形的簡(jiǎn)單的密鋪。生活中還有各種各樣的密鋪現(xiàn)象。同學(xué)們可以到生活中去觀察,也可以上網(wǎng)瀏覽。
密鋪的歷史背景1619年——數(shù)學(xué)家奇柏(J.Kepler)第一個(gè)利用正多邊形鋪嵌平面。1891年——蘇聯(lián)物理學(xué)家弗德洛夫(E.S.Fedorov)發(fā)現(xiàn)了十七種不同的鋪砌平面的對(duì)稱(chēng)圖案。 1924年——數(shù)學(xué)家波利亞(Polya)和尼格利(Nigeli)重新發(fā)現(xiàn)這個(gè)事實(shí)。最富趣味的是荷蘭藝術(shù)家埃舍爾(M.C. Escher)與密鋪。M.C. Escher于1898年生于荷蘭。他到西班牙旅行參觀時(shí),對(duì)一種名為阿罕伯拉宮(Alhambra)的建筑有很深刻的印象,這是一種十三世紀(jì)皇宮建筑物,其墻身、地板和天花板由摩爾人建造,而且鋪上了種類(lèi)繁多、美輪美奐的馬賽克圖案。Escher 用數(shù)日復(fù)制了這些圖案,并得到啟發(fā),創(chuàng)造了各種并不局限于幾何圖形的密鋪圖案,這些圖案包括魚(yú)、青蛙、狗、人、蜥蜴,甚至是他憑空想像的物體。他創(chuàng)造的藝術(shù)作品,結(jié)合了數(shù)學(xué)與藝術(shù),給人留下深刻印象,更讓人對(duì)數(shù)學(xué)產(chǎn)生另一種看法。
分式1x2-3x與2x2-9的最簡(jiǎn)公分母是________.解析:∵x2-3x=x(x-3),x2-9=(x+3)(x-3),∴最簡(jiǎn)公分母為x(x+3)(x-3).方法總結(jié):最簡(jiǎn)公分母的確定:最簡(jiǎn)公分母的系數(shù),取各個(gè)分母的系數(shù)的最小公倍數(shù);字母及式子取各分母中所有字母和式子的最高次冪.“所有字母和式子的最高次冪”是指“凡出現(xiàn)的字母(或含字母的式子)為底數(shù)的冪的因式選取指數(shù)最大的”;當(dāng)分母是多項(xiàng)式時(shí),一般應(yīng)先因式分解.【類(lèi)型二】 分母是單項(xiàng)式分式的通分通分.(1)cbd,ac2b2;(2)b2a2c,2a3bc2;(3)45y2z,310xy2,5-2xz2.解析:先確定最簡(jiǎn)公分母,找到各個(gè)分母應(yīng)當(dāng)乘的單項(xiàng)式,分子也相應(yīng)地乘以這個(gè)單項(xiàng)式.解:(1)最簡(jiǎn)公分母是2b2d,cbd=2bc2b2d,ac2b2=acd2b2d;(2)最簡(jiǎn)公分母是6a2bc2,b2a2c=3b2c6a2bc2,2a3bc2=4a36a2bc2;(3)最簡(jiǎn)公分母是10xy2z2,45y2z=8xz10xy2z2,310xy2=3z210xy2z2,5-2xz2=--25y210xy2z2.
探究點(diǎn)二:列分式方程某工廠生產(chǎn)一種零件,計(jì)劃在20天內(nèi)完成,若每天多生產(chǎn)4個(gè),則15天完成且還多生產(chǎn)10個(gè).設(shè)原計(jì)劃每天生產(chǎn)x個(gè),根據(jù)題意可列分式方程為()A.20x+10x+4=15 B.20x-10x+4=15C.20x+10x-4=15 D.20x-10x-4=15解析:設(shè)原計(jì)劃每天生產(chǎn)x個(gè),則實(shí)際每天生產(chǎn)(x+4)個(gè),根據(jù)題意可得等量關(guān)系:(原計(jì)劃20天生產(chǎn)的零件個(gè)數(shù)+10個(gè))÷實(shí)際每天生產(chǎn)的零件個(gè)數(shù)=15天,根據(jù)等量關(guān)系列出方程即可.設(shè)原計(jì)劃每天生產(chǎn)x個(gè),則實(shí)際每天生產(chǎn)(x+4)個(gè),根據(jù)題意得20x+10x+4=15.故選A.方法總結(jié):此題主要考查了由實(shí)際問(wèn)題抽象出分式方程,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系,列出方程.三、板書(shū)設(shè)計(jì)1.分式方程的概念2.列分式方程本課時(shí)的教學(xué)以學(xué)生自主探究為主,通過(guò)參與學(xué)習(xí)的過(guò)程,讓學(xué)生感受知識(shí)的形成與應(yīng)用的價(jià)值,增強(qiáng)學(xué)習(xí)的自覺(jué)性,體驗(yàn)類(lèi)比學(xué)習(xí)思想的重要性,然后結(jié)合生活實(shí)際,發(fā)現(xiàn)數(shù)學(xué)知識(shí)在生活中的廣泛應(yīng)用,感受數(shù)學(xué)之美.
解析:(1)先把第二個(gè)分式的分母y-x化為-(x-y),再把分子相加減,分母不變;(2)先把第二個(gè)分式的分母a-b化為-(b-a),再把分子相加減,分母不變.解:(1)原式=2x2-3y2x-y-x2-2y2x-y=2x2-3y2-(x2-2y2)x-y=x2-y2x-y=(x+y)(x-y)x-y=x+y;(2)原式=2a+3bb-a-2bb-a-3bb-a=2a+3b-2b-3bb-a=2a-2bb-a=-2(b-a)b-a=-2.方法總結(jié):分式的分母互為相反數(shù)時(shí),可以把其中一個(gè)分母放到帶有負(fù)號(hào)的括號(hào)內(nèi),把分母化為完全相同.再根據(jù)同分母分式相加減的法則進(jìn)行運(yùn)算.三、板書(shū)設(shè)計(jì)1.同分母分式加減法法則:fg±hg=f±hg.2.分式的符號(hào)法則:fg=-f-g,-fg=f-g=-fg.本節(jié)課通過(guò)同分母分?jǐn)?shù)的加減法類(lèi)比得出同分母分式的加減法.易錯(cuò)點(diǎn)一是符號(hào),二是結(jié)果的化簡(jiǎn).在教學(xué)中,讓學(xué)生參與課堂探究,進(jìn)行自主歸納,并對(duì)易錯(cuò)點(diǎn)加強(qiáng)練習(xí).從而讓學(xué)生對(duì)知識(shí)的理解從感性認(rèn)識(shí)上升到理性認(rèn)識(shí).
解:(1)設(shè)第一次購(gòu)買(mǎi)的單價(jià)為x元,則第二次的單價(jià)為1.1x元,根據(jù)題意得14521.1x-1200x=20,解得x=6.經(jīng)檢驗(yàn),x=6是原方程的解.(2)第一次購(gòu)買(mǎi)水果1200÷6=200(千克).第二次購(gòu)買(mǎi)水果200+20=220(千克).第一次賺錢(qián)為200×(8-6)=400(元),第二次賺錢(qián)為100×(9-6.6)+120×(9×0.5-6.6)=-12(元).所以?xún)纱喂操嶅X(qián)400-12=388(元).答:第一次水果的進(jìn)價(jià)為每千克6元;該老板兩次賣(mài)水果總體上是賺錢(qián)了,共賺了388元.方法總結(jié):本題具有一定的綜合性,應(yīng)該把問(wèn)題分解成購(gòu)買(mǎi)水果和賣(mài)水果兩部分分別考慮,掌握這次活動(dòng)的流程.三、板書(shū)設(shè)計(jì)列分式方程解應(yīng)用題的一般步驟是:第一步,審清題意;第二步,根據(jù)題意設(shè)未知數(shù);第三步,根據(jù)題目中的數(shù)量關(guān)系列出式子,并找準(zhǔn)等量關(guān)系,列出方程;第四步,解方程,并驗(yàn)根,還要看方程的解是否符合題意;最后作答.
解析:由分式有意義的條件得3x-1≠0,解得x≠13.則分式無(wú)意義的條件是x=13,故選C.方法總結(jié):分式無(wú)意義的條件是分母等于0.【類(lèi)型三】 分式值為0的條件若使分式x2-1x+1的值為零,則x的值為()A.-1 B.1或-1C.1 D.1和-1解析:由題意得x2-1=0且x+1≠0,解得x=1,故選C.方法總結(jié):分式的值為零的條件:(1)分子為0;(2)分母不為0.這兩個(gè)條件缺一不可.三、板書(shū)設(shè)計(jì)1.分式的概念:一般地,如果A、B表示兩個(gè)整式,并且B中含有字母,那么式子AB叫做分式.2.分式AB有無(wú)意義的條件:當(dāng)B≠0時(shí),分式有意義;當(dāng)B=0時(shí),分式無(wú)意義.3.分式AB值為0的條件:當(dāng)A=0,B≠0時(shí),分式的值為0.本節(jié)采取的教學(xué)方法是引導(dǎo)學(xué)生獨(dú)立思考、小組合作,完成對(duì)分式概念及意義的自主探索.提出問(wèn)題讓學(xué)生解決,問(wèn)題由易到難,層層深入,既復(fù)習(xí)了舊知識(shí)又在類(lèi)比過(guò)程中獲得了解決新知識(shí)的途徑.在這一環(huán)節(jié)提問(wèn)應(yīng)注意循序性,先易后難、由簡(jiǎn)到繁、層層遞進(jìn),臺(tái)階式的提問(wèn)使問(wèn)題解決水到渠成.
解析:(1)首先提取公因式13,進(jìn)而求出即可;(2)首先提取公因式20.15,進(jìn)而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.方法總結(jié):在計(jì)算求值時(shí),若式子各項(xiàng)都含有公因式,用提取公因式的方法可使運(yùn)算簡(jiǎn)便.三、板書(shū)設(shè)計(jì)1.公因式多項(xiàng)式各項(xiàng)都含有的相同因式叫這個(gè)多項(xiàng)式各項(xiàng)的公因式.2.提公因式法如果一個(gè)多項(xiàng)式的各項(xiàng)有公因式,可以把這個(gè)公因式提到括號(hào)外面,這種因式分解的方法叫做提公因式法.本節(jié)中要給學(xué)生留出自主學(xué)習(xí)的空間,然后引入稍有層次的例題,讓學(xué)生進(jìn)一步感受因式分解與整式的乘法是逆過(guò)程,從而可用整式的乘法檢查錯(cuò)誤.本節(jié)課在對(duì)例題的探究上,提倡引導(dǎo)學(xué)生合作交流,使學(xué)生發(fā)揮群體的力量,以此提高教學(xué)效果.
∵∠DAE=∠DAF,∠AED=∠AFD,AD=AD,∴△ADE≌△ADF,∴AE=AF,DE=DF,∴直線AD垂直平分線段EF.方法總結(jié):當(dāng)一條直線上有兩點(diǎn)都在同一線段的垂直平分線上時(shí),這條直線就是該線段的垂直平分線,解題時(shí)常需利用此性質(zhì)進(jìn)行線段相等關(guān)系的轉(zhuǎn)化.三、板書(shū)設(shè)計(jì)1.線段的垂直平分線的性質(zhì)定理線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等.2.線段的垂直平分線的判定定理到一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上.本節(jié)課由于采用了直觀操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生的感性認(rèn)識(shí),提高了學(xué)生對(duì)新知識(shí)的理解與感悟,因此本節(jié)課的教學(xué)效果較好,學(xué)生對(duì)所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對(duì)線段垂直平分線性質(zhì)定理的逆定理理解不透徹,還需在今后的教學(xué)和作業(yè)中進(jìn)一步進(jìn)行鞏固和提高.
解析:根據(jù)AB∥CD,∠ACD=120°,得出∠CAB=60°.再根據(jù)尺規(guī)作圖得出AM是∠CAB的平分線,即可得出∠MAB的度數(shù).解:∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=120°,∴∠CAB=60°.由尺規(guī)作圖知AM是∠CAB的平分線,∴∠MAB=12∠CAB=30°.方法總結(jié):通過(guò)本題要掌握角平分線的作圖步驟,根據(jù)作圖明確AM是∠BAC的角平分線是解題的關(guān)鍵.三、板書(shū)設(shè)計(jì)1.角平分線的性質(zhì):角平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等.2.角平分線的作法本節(jié)課由于采用了動(dòng)手操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生對(duì)角以及角平分線的性質(zhì)的感性認(rèn)識(shí),提高了學(xué)生對(duì)新知識(shí)的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對(duì)所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生在性質(zhì)的運(yùn)用上還存在問(wèn)題,需要在今后的教學(xué)與作業(yè)中進(jìn)一步的加強(qiáng)鞏固和訓(xùn)練