提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

九年級上冊道德與法治文明與家園9作業(yè)設計

  • 人教版高中數(shù)學選擇性必修二等差數(shù)列的概念(2)教學設計

    人教版高中數(shù)學選擇性必修二等差數(shù)列的概念(2)教學設計

    二、典例解析例3.某公司購置了一臺價值為220萬元的設備,隨著設備在使用過程中老化,其價值會逐年減少.經(jīng)驗表明,每經(jīng)過一年其價值會減少d(d為正常數(shù))萬元.已知這臺設備的使用年限為10年,超過10年 ,它的價值將低于購進價值的5%,設備將報廢.請確定d的范圍.分析:該設備使用n年后的價值構成數(shù)列{an},由題意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}為公差為-d的等差數(shù)列.10年之內(nèi)(含10年),該設備的價值不小于(220×5%=)11萬元;10年后,該設備的價值需小于11萬元.利用{an}的通項公式列不等式求解.解:設使用n年后,這臺設備的價值為an萬元,則可得數(shù)列{an}.由已知條件,得an=an-1-d(n≥2).所以數(shù)列{an}是一個公差為-d的等差數(shù)列.因為a1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由題意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范圍為19<d≤20.9

  • 人教版高中數(shù)學選擇性必修二等比數(shù)列的前n項和公式   (2) 教學設計

    人教版高中數(shù)學選擇性必修二等比數(shù)列的前n項和公式 (2) 教學設計

    二、典例解析例10. 如圖,正方形ABCD 的邊長為5cm ,取正方形ABCD 各邊的中點E,F,G,H, 作第2個正方形 EFGH,然后再取正方形EFGH各邊的中點I,J,K,L,作第3個正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個正方形的面積之和;(2) 如果這個作圖過程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個等比數(shù)列。解:設正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個正方形的頂點分別是第k個正方形各邊的中點,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25為首項,1/2為公比的等比數(shù)列.設{a_n}的前項和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個正方形的面積之和為25575/512cm^2.(2)當無限增大時,無限趨近于所有正方形的面積和

  • 人教版高中數(shù)學選擇性必修二數(shù)列的概念(1)教學設計

    人教版高中數(shù)學選擇性必修二數(shù)列的概念(1)教學設計

    情景導學古語云:“勤學如春起之苗,不見其增,日有所長”如果對“春起之苗”每日用精密儀器度量,則每日的高度值按日期排在一起,可組成一個數(shù)列. 那么什么叫數(shù)列呢?二、問題探究1. 王芳從一歲到17歲,每年生日那天測量身高,將這些身高數(shù)據(jù)(單位:厘米)依次排成一列數(shù):75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①記王芳第i歲的身高為 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我們發(fā)現(xiàn)h_i中的i反映了身高按歲數(shù)從1到17的順序排列時的確定位置,即h_1=75 是排在第1位的數(shù),h_2=87是排在第2位的數(shù)〖"…" ,h〗_17 =168是排在第17位的數(shù),它們之間不能交換位置,所以①具有確定順序的一列數(shù)。2. 在兩河流域發(fā)掘的一塊泥板(編號K90,約生產(chǎn)于公元前7世紀)上,有一列依次表示一個月中從第1天到第15天,每天月亮可見部分的數(shù):5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②

  • 人教版高中數(shù)學選修3離散型隨機變量及其分布列(1)教學設計

    人教版高中數(shù)學選修3離散型隨機變量及其分布列(1)教學設計

    4.寫出下列隨機變量可能取的值,并說明隨機變量所取的值表示的隨機試驗的結果.(1)一個袋中裝有8個紅球,3個白球,從中任取5個球,其中所含白球的個數(shù)為X.(2)一個袋中有5個同樣大小的黑球,編號為1,2,3,4,5,從中任取3個球,取出的球的最大號碼記為X.(3). 在本例(1)條件下,規(guī)定取出一個紅球贏2元,而每取出一個白球輸1元,以ξ表示贏得的錢數(shù),結果如何?[解] (1)X可取0,1,2,3.X=0表示取5個球全是紅球;X=1表示取1個白球,4個紅球;X=2表示取2個白球,3個紅球;X=3表示取3個白球,2個紅球.(2)X可取3,4,5.X=3表示取出的球編號為1,2,3;X=4表示取出的球編號為1,2,4;1,3,4或2,3,4.X=5表示取出的球編號為1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.(3) ξ=10表示取5個球全是紅球;ξ=7表示取1個白球,4個紅球;ξ=4表示取2個白球,3個紅球;ξ=1表示取3個白球,2個紅球.

  • 人教版高中數(shù)學選修3離散型隨機變量的方差教學設計

    人教版高中數(shù)學選修3離散型隨機變量的方差教學設計

    3.下結論.依據(jù)均值和方差做出結論.跟蹤訓練2. A、B兩個投資項目的利潤率分別為隨機變量X1和X2,根據(jù)市場分析, X1和X2的分布列分別為X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B兩個項目上各投資100萬元, Y1和Y2分別表示投資項目A和B所獲得的利潤,求方差D(Y1)和D(Y2);(2)根據(jù)得到的結論,對于投資者有什么建議? 解:(1)題目可知,投資項目A和B所獲得的利潤Y1和Y2的分布列為:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,說明投資A項目比投資B項目期望收益要高;同時 ,說明投資A項目比投資B項目的實際收益相對于期望收益的平均波動要更大.因此,對于追求穩(wěn)定的投資者,投資B項目更合適;而對于更看重利潤并且愿意為了高利潤承擔風險的投資者,投資A項目更合適.

  • 人教版高中數(shù)學選修3離散型隨機變量的均值教學設計

    人教版高中數(shù)學選修3離散型隨機變量的均值教學設計

    對于離散型隨機變量,可以由它的概率分布列確定與該隨機變量相關事件的概率。但在實際問題中,有時我們更感興趣的是隨機變量的某些數(shù)字特征。例如,要了解某班同學在一次數(shù)學測驗中的總體水平,很重要的是看平均分;要了解某班同學數(shù)學成績是否“兩極分化”則需要考察這個班數(shù)學成績的方差。我們還常常希望直接通過數(shù)字來反映隨機變量的某個方面的特征,最常用的有期望與方差.二、 探究新知探究1.甲乙兩名射箭運動員射中目標靶的環(huán)數(shù)的分布列如下表所示:如何比較他們射箭水平的高低呢?環(huán)數(shù)X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2類似兩組數(shù)據(jù)的比較,首先比較擊中的平均環(huán)數(shù),如果平均環(huán)數(shù)相等,再看穩(wěn)定性.假設甲射箭n次,射中7環(huán)、8環(huán)、9環(huán)和10環(huán)的頻率分別為:甲n次射箭射中的平均環(huán)數(shù)當n足夠大時,頻率穩(wěn)定于概率,所以x穩(wěn)定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均環(huán)數(shù)的穩(wěn)定值(理論平均值)為9,這個平均值的大小可以反映甲運動員的射箭水平.同理,乙射中環(huán)數(shù)的平均值為7×0.15+8×0.25+9×0.4+10×0.2=8.65.

  • 人教版高中數(shù)學選擇性必修二等差數(shù)列的前n項和公式(2)教學設計

    人教版高中數(shù)學選擇性必修二等差數(shù)列的前n項和公式(2)教學設計

    課前小測1.思考辨析(1)若Sn為等差數(shù)列{an}的前n項和,則數(shù)列Snn也是等差數(shù)列.( )(2)若a1>0,d<0,則等差數(shù)列中所有正項之和最大.( )(3)在等差數(shù)列中,Sn是其前n項和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項數(shù)為2n+1的等差數(shù)列中,所有奇數(shù)項的和為165,所有偶數(shù)項的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項.]3.等差數(shù)列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數(shù)列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數(shù)列{an}的通項公式是an=2n-48,則Sn取得最小值時,n為________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負項的和最小,即n=23或24.]二、典例解析例8.某校新建一個報告廳,要求容納800個座位,報告廳共有20排座位,從第2排起后一排都比前一排多兩個座位. 問第1排應安排多少個座位?分析:將第1排到第20排的座位數(shù)依次排成一列,構成數(shù)列{an} ,設數(shù)列{an} 的前n項和為S_n。

  • 人教版高中數(shù)學選擇性必修二函數(shù)的單調性(1)  教學設計

    人教版高中數(shù)學選擇性必修二函數(shù)的單調性(1) 教學設計

    1.判斷正誤(正確的打“√”,錯誤的打“×”)(1)函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數(shù)f (x)在這個區(qū)間上單調遞減. ( )(2)函數(shù)在某一點的導數(shù)越大,函數(shù)在該點處的切線越“陡峭”. ( )(3)函數(shù)在某個區(qū)間上變化越快,函數(shù)在這個區(qū)間上導數(shù)的絕對值越大.( )(4)判斷函數(shù)單調性時,在區(qū)間內(nèi)的個別點f ′(x)=0,不影響函數(shù)在此區(qū)間的單調性.( )[解析] (1)√ 函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數(shù)f (x)在這個區(qū)間上單調遞減,故正確.(2)× 切線的“陡峭”程度與|f ′(x)|的大小有關,故錯誤.(3)√ 函數(shù)在某個區(qū)間上變化的快慢,和函數(shù)導數(shù)的絕對值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數(shù)f (x)在區(qū)間內(nèi)單調遞增(減),故f ′(x)=0不影響函數(shù)單調性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導數(shù)判斷下列函數(shù)的單調性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因為f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數(shù)在R上單調遞增,如圖(1)所示

  • 人教版高中數(shù)學選修3離散型隨機變量及其分布列(2)教學設計

    人教版高中數(shù)學選修3離散型隨機變量及其分布列(2)教學設計

    溫故知新 1.離散型隨機變量的定義可能取值為有限個或可以一一列舉的隨機變量,我們稱為離散型隨機變量.通常用大寫英文字母表示隨機變量,例如X,Y,Z;用小寫英文字母表示隨機變量的取值,例如x,y,z.隨機變量的特點: 試驗之前可以判斷其可能出現(xiàn)的所有值,在試驗之前不可能確定取何值;可以用數(shù)字表示2、隨機變量的分類①離散型隨機變量:X的取值可一、一列出;②連續(xù)型隨機變量:X可以取某個區(qū)間內(nèi)的一切值隨機變量將隨機事件的結果數(shù)量化.3、古典概型:①試驗中所有可能出現(xiàn)的基本事件只有有限個;②每個基本事件出現(xiàn)的可能性相等。二、探究新知探究1.拋擲一枚骰子,所得的點數(shù)X有哪些值?取每個值的概率是多少? 因為X取值范圍是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示

  • 人教版高中數(shù)學選修3二項式系數(shù)的性質教學設計

    人教版高中數(shù)學選修3二項式系數(shù)的性質教學設計

    1.對稱性與首末兩端“等距離”的兩個二項式系數(shù)相等,即C_n^m=C_n^(n"-" m).2.增減性與最大值 當k(n+1)/2時,C_n^k隨k的增加而減小.當n是偶數(shù)時,中間的一項C_n^(n/2)取得最大值;當n是奇數(shù)時,中間的兩項C_n^((n"-" 1)/2) 與C_n^((n+1)/2)相等,且同時取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二項式系數(shù)的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展開式的各二項式系數(shù)之和為2^n1. 在(a+b)8的展開式中,二項式系數(shù)最大的項為 ,在(a+b)9的展開式中,二項式系數(shù)最大的項為 . 解析:因為(a+b)8的展開式中有9項,所以中間一項的二項式系數(shù)最大,該項為C_8^4a4b4=70a4b4.因為(a+b)9的展開式中有10項,所以中間兩項的二項式系數(shù)最大,這兩項分別為C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4與126a4b5 2. A=C_n^0+C_n^2+C_n^4+…與B=C_n^1+C_n^3+C_n^5+…的大小關系是( )A.A>B B.A=B C.A<B D.不確定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B

  • 人教版高中數(shù)學選修3一元線性回歸模型及其應用教學設計

    人教版高中數(shù)學選修3一元線性回歸模型及其應用教學設計

    1.確定研究對象,明確哪個是解釋變量,哪個是響應變量;2.由經(jīng)驗確定非線性經(jīng)驗回歸方程的模型;3.通過變換,將非線性經(jīng)驗回歸模型轉化為線性經(jīng)驗回歸模型;4.按照公式計算經(jīng)驗回歸方程中的參數(shù),得到經(jīng)驗回歸方程;5.消去新元,得到非線性經(jīng)驗回歸方程;6.得出結果后分析殘差圖是否有異常 .跟蹤訓練1.一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關,現(xiàn)收集了6組觀測數(shù)據(jù)列于表中: 經(jīng)計算得: 線性回歸殘差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分別為觀測數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1,2,3,4,5,6.(1)若用線性回歸模型擬合,求y關于x的回歸方程 (精確到0.1);(2)若用非線性回歸模型擬合,求得y關于x回歸方程為 且相關指數(shù)R2=0.9522. ①試與(1)中的線性回歸模型相比較,用R2說明哪種模型的擬合效果更好 ?②用擬合效果好的模型預測溫度為35℃時該種藥用昆蟲的產(chǎn)卵數(shù).(結果取整數(shù)).

  • 人教部編版語文八年級上冊名著導讀《紅星照耀中國》紀實作品的閱讀教案

    人教部編版語文八年級上冊名著導讀《紅星照耀中國》紀實作品的閱讀教案

    (2)長征精神的內(nèi)涵。生:長征是宣言書,長征是宣傳隊,長征是播種機。大家好!我來和大家分享我們組關于長征精神的探索。課件出示:長征精神的內(nèi)涵,實際上就是紅軍在長征途中表現(xiàn)出的對革命事業(yè)無比的忠誠、堅定;不怕犧牲、敢于拼搏的無產(chǎn)階級樂觀主義精神;顧全大局、嚴守紀律、緊密團結的精神。這些構成了偉大的長征精神:不怕犧牲、前仆后繼、勇往直前、堅韌不拔、眾志成城、團結互助、百折不撓、克服困難、忠誠愛國。生:對于當代青少年如何傳承長征精神這一問題,我們認為:課件出示:長征精神是革命先輩留給我們的寶貴財富,作為當代中學生,我們要樹立崇高的理想和信念,保持和發(fā)揚艱苦奮斗的作風、弘揚集體主義精神,腳踏實地為實現(xiàn)革命理想和爭做社會主義事業(yè)的可靠接班人而努力。

  • 【高教版】中職數(shù)學基礎模塊上冊:2.1《不等式的基本性質》教案設計

    【高教版】中職數(shù)學基礎模塊上冊:2.1《不等式的基本性質》教案設計

    教師姓名 課程名稱數(shù)學班 級 授課日期 授課順序 章節(jié)名稱§2.1 不等式的基本性質教 學 目 標知識目標:1、理解不等式的概念 2、掌握不等式的基本性質 技能目標:1、會比較兩個數(shù)的大小 2、會用做差法比較兩個整式的大小 情感目標:體會不等式在日常生活中的應用,感受數(shù)學的有用性教學 重點 和 難點 重點: 不等式的概念和基本性質 難點: 1、會比較兩個整式的大小 2、能根據(jù)應用題的表述,列出相應的表達式教 學 資 源《數(shù)學》(第一冊) 多媒體課件評 估 反 饋課堂提問 課堂練習作 業(yè)習題2.1課后記

  • 【高教版】中職數(shù)學基礎模塊上冊:2.3《一元二次不等式》教案設計

    【高教版】中職數(shù)學基礎模塊上冊:2.3《一元二次不等式》教案設計

    教師姓名 課程名稱數(shù)學班 級 授課日期 授課順序 章節(jié)名稱§2.3 一元二次不等式教 學 目 標知識目標:1、理解一元二次不等式和一元二次方程以及二次函數(shù)之間的關系 2、理解一元二次不等式的解集的含義 3、一元二次不等式的解集與二次函數(shù)圖像的對應 技能目標:1、會解一元二次方程 2、會畫二次函數(shù)的圖像 3、能結合圖像寫出一元二次不等式的解集 情感目標:體會知識之間的相互關聯(lián)性,體會數(shù)形結合思想的重要性教學 重點 和 難點重點: 1、一元二次不等式的解集的含義 2、一元二次不等式與二次函數(shù)的關系 難點: 1、將一元二次不等式和一元二次方程以及二次函數(shù)聯(lián)系起來 2、在函數(shù)圖像上正確的找到解集對應的部分教 學 資 源《數(shù)學》(第一冊) 多媒體課件評 估 反 饋課堂提問 課堂練習作 業(yè)習題2.3課后記本節(jié)課內(nèi)容是比較重要的,是一元二次方程、一元二次函數(shù)、一元二次不等式的結合,相關知識點融會貫通,數(shù)形結合的思想方法在這有很好的運用。三種情況只要講清楚一種,另外兩種可由學生自行推出結論。

  • 【高教版】中職數(shù)學基礎模塊上冊:2.4《含絕對值的不等式》教案設計

    【高教版】中職數(shù)學基礎模塊上冊:2.4《含絕對值的不等式》教案設計

    教師姓名 課程名稱數(shù)學班 級 授課日期 授課順序 章節(jié)名稱§2.4 含絕對值的不等式教 學 目 標知識目標:1、理解絕對值的幾何意義 2、掌握簡單的含絕對值不等式的解法 3、掌握含絕對值不等式的等價形式 技能目標:1、會解形如|ax+b|>c或|ax+b|<c的絕對值不等式 情感目標:通過學習,體會數(shù)形結合、整體代換及等價轉換的數(shù)學思想方法教學 重點 和 難點重點: 1、絕對值的幾何意義 2、基本絕對值不等式|x|>a或|x|<a的解 難點: 1、去絕對值符號后不等式與原不等式保持等價性教 學 資 源《數(shù)學》(第一冊) 多媒體課件評 估 反 饋課堂提問 課堂練習作 業(yè)習題2.4課后記不等式的基本性質是初中就學習過的內(nèi)容,分式不等式的解法是哦本節(jié)課的一個重點和難點,尤其是不等號另一邊不為0的情況,需要移項,這一點在強調前學生考慮不到,因此解題錯誤多。區(qū)間是個新內(nèi)容,學生往往將連續(xù)的正數(shù)寫作一個區(qū)間,這是常見的錯誤,要進行提醒。另外,在均值不等式這里稍微補充了一些內(nèi)容,引起學生的興趣。

  • 《立在地球邊上放號》《紅燭》說課稿 2021-2022學年統(tǒng)編版高中語文必修上冊

    《立在地球邊上放號》《紅燭》說課稿 2021-2022學年統(tǒng)編版高中語文必修上冊

    四、 學法指導1、查閱資料,了解詩人寫這首詩的處境,通過知人論世,理解詩歌。2、反復誦讀,聯(lián)系具體語境,品味詩歌的內(nèi)涵,感受詩歌的意蘊。3、欣賞詩人相關的其他作品及名言,在理解、感受詩歌的基礎上,領會詩人在詩歌中傳達出來的精神,樹立自我意識。五、教學過程環(huán)節(jié)一 常識補充1、文學革命:開始于1917年。它是晚清文學改良運動在新的歷史條件下的發(fā)展,是適應以思想革命為主要內(nèi)容的新文化運動而發(fā)生的。是新文化運動的一個組成部分,對封建思想的批判必然地轉向對封建主義文學的攻擊,反對文言,提倡白話,反對舊文學,是提倡新文學的一場文學革命運動。在中國文學史上豎起一個鮮明的界碑,標示著古典文學的結束,現(xiàn)代文學的起始。主要從詩歌、小說、戲劇、散文四個文學領域開展。2、① 現(xiàn)代詩歌:指“五四運動”至中華人民共和國成立以來的詩歌。中國近現(xiàn)代詩歌的主體新詩,誕生于“五四”新文化運動。

  • 《百年孤獨(節(jié)選)》說課稿 2022-2023學年統(tǒng)編版高中語文選擇性必修上冊

    《百年孤獨(節(jié)選)》說課稿 2022-2023學年統(tǒng)編版高中語文選擇性必修上冊

    各位評委好,我說課的題目是 文學經(jīng)典 精神家園。(轉身板書題目)文學經(jīng)典能啟迪智慧,陶冶心靈,構建人格。一部小說,記錄了一個家族百年的興衰,也折射出一塊大陸的歷史風云;一種手法,引起了一場文學風暴,也帶來一次文學地震;她就是1982年10月21日獲得諾貝爾文學獎的《百年孤獨》,今年恰逢其獲獎40周年,我校言泉文學雜志社,將開展“重溫文學經(jīng)典,走進《百年孤獨》”的作品插圖展活動。本次活動主要有,設計宣傳海報,招聘插圖講解員,舉行《百年孤獨》的思想內(nèi)容和藝術成就研討會。任務活動一 設計宣傳海報文案,意圖完成作家作品簡介。提示學生海報的內(nèi)容要點,時間,地點 宣傳主題的意義和價值,引導學生各用一句話,介紹馬爾克斯和《百年孤獨》。現(xiàn)場設計,當堂展示,擇優(yōu)錄取。任務活動二 設計人物插圖講解文稿,意圖引導學生梳理情節(jié),概括人物形象特點。

  • 小學數(shù)學人教版四年級上冊《億以上數(shù)的認識》說課稿

    小學數(shù)學人教版四年級上冊《億以上數(shù)的認識》說課稿

    一、說教材 1、教學內(nèi)容 九年義務教育小學數(shù)學四年級上冊第一單元“大數(shù)的認識”的第九課時。 2、教材分析教材在億以內(nèi)數(shù)的認識的基礎上教學億以上數(shù)的認識。通過地球不堪人口之重負的擬人素材生動地引入世界人口的總數(shù)讓學生在感受大數(shù)、學習億以上數(shù)的讀法的同時了解到地球上人口太多了如不控制將要威脅到人類的生存環(huán)境滲透有關人口知識和環(huán)境保護教育。 3、教學重點、難點 教學億以上數(shù)的讀法與寫法。 億以上中間和末尾有0的數(shù)的讀法及寫法。 4、教學目標 根據(jù)本節(jié)課的重、難點和內(nèi)容的特點我制定了以下三條教學目標 (1)理解多位數(shù)的讀、寫法在具體情境中能夠根據(jù)數(shù)級正確地讀寫出多位數(shù)體會并能闡述多位數(shù)讀數(shù)的規(guī)律。 (2)結合現(xiàn)實素材使學生感受億以上數(shù)的意義培養(yǎng)學生的數(shù)感。 (3)讓學生在活動中體會數(shù)學與現(xiàn)實生活的聯(lián)系培養(yǎng)學生用數(shù)學的眼光觀察生活和應用數(shù)學的意識培養(yǎng)學生自主探索自我評價和善于合作的能力。

  • 人教版新課標小學數(shù)學四年級上冊億以上數(shù)的認識說課稿

    人教版新課標小學數(shù)學四年級上冊億以上數(shù)的認識說課稿

    我說課的內(nèi)容是人教版小學數(shù)學四年級上冊第一單元第21頁的內(nèi)容——《億以上數(shù)的認識》。下面我將從說教材、說目標、說教法和學法、說教學程序、課堂回眸五個方面進行闡述。一、說教材《億以上數(shù)的認識》,是在學生認識和掌握萬以內(nèi)數(shù)的讀法和寫法基礎上學習的。也是為進一步學習億以上數(shù)的寫法打基礎。生活中大數(shù)廣泛存在,億以上數(shù)的認識既是萬以內(nèi)數(shù)的認識的鞏固和拓展,也是學生必須掌握的最基本的數(shù)學基礎之一。通過地球不堪人口之重負的擬人素材,生動地引入世界人口總數(shù),讓學生感受大數(shù)、學習億以上數(shù)的讀法的同時了解到地球上人口太多了,如不控制將要威脅到人類的生存環(huán)境,滲透有關人口知識和環(huán)境保護教育。二、說目標(基于對教材以上的認識及課程標準的要求,結合學生的年齡特征,將本節(jié)課的教學目標為:)

  • 部編人教版三年級上冊《古詩三首 飲湖上初晴后雨》說課稿

    部編人教版三年級上冊《古詩三首 飲湖上初晴后雨》說課稿

    二、說教學目標1.能有感情朗讀詩文,背誦詩文。2.能借助圖片,發(fā)揮想象,走進詩境,從而體會詩人熱愛祖國河山的感情。三、說教學重難點1.朗讀古詩,讀出感情,讀出韻味。(重點)2.欣賞古詩意境,體會詩人的感情,培養(yǎng)熱愛祖國河山的思想感情。(難點)四、說教法學法科學合理的教學方法能使教學效果事半功倍,達到教與學的和諧完美統(tǒng)一?;诖?,我準備采用的教法是情境教學法并以多媒體手段輔助教學,力求達到以讀代講、讀中促思、讀中悟情的效果。? 三年級的學生對于韻文的學習有一定難度,但他們有了一定的學詩經(jīng)驗,會對本詩的學習、理解起到極大的推動作用。本節(jié)課將以讀代講引導學生用朗讀感悟法,想象感悟法,穿插自主合作學習法,力求在讀中受到情感熏陶,在品味語言中積累語言,在內(nèi)容學習中掌握方法。

上一頁123...828384858687888990919293下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!