【類型四】 含整數(shù)指數(shù)冪、零指數(shù)冪與絕對值的混合運算計算:-22+(-12)-2+(2015-π)0-|2-π2|.解析:分別根據(jù)有理數(shù)的乘方、零指數(shù)冪、負(fù)整數(shù)指數(shù)冪及絕對值的性質(zhì)計算出各數(shù),再根據(jù)實數(shù)的運算法則進行計算.解:-22+(-12)-2+(2015-π)0-|2-π2|=-4+4+1-2+π2=π2-1.方法總結(jié):熟練掌握有理數(shù)的乘方、零指數(shù)冪、負(fù)整數(shù)指數(shù)冪及絕對值的性質(zhì)是解答此題的關(guān)鍵.三、板書設(shè)計1.同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.2.零次冪:任何一個不等于零的數(shù)的零次冪都等于1.即a0=1(a≠0).3.負(fù)整數(shù)次冪:任何一個不等于零的數(shù)的-p(p是正整數(shù))次冪,等于這個數(shù)p次冪的倒數(shù).即a-p=1ap(a≠0,p是正整數(shù)).從計算具體問題中的同底數(shù)冪的除法,逐步歸納出同底數(shù)冪除法的一般性質(zhì).教學(xué)時要多舉幾個例子,讓學(xué)生從中總結(jié)出規(guī)律,體驗自主探究的樂趣和數(shù)學(xué)學(xué)習(xí)的魅力,為以后的學(xué)習(xí)奠定基礎(chǔ)
教學(xué)目標(biāo)(一)教學(xué)知識點1.經(jīng)歷探索船是否有觸礁危險的過程,進一步體會三角函數(shù)在解決問題過程中的應(yīng)用.2.能夠把實際問題轉(zhuǎn)化為數(shù)學(xué)問題,能夠借助于計算器進行有關(guān)三角函數(shù)的計算,并能對結(jié)果的意義進行說明.(二)能力訓(xùn)練要求發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用意識和解決問題的能力.(三)情感與價值觀要求1.在經(jīng)歷弄清實際問題題意的過程中,畫出示意圖,培養(yǎng)獨立思考問題的習(xí)慣和克服困難的勇氣. 2.選擇生活中學(xué)生感興趣的題材,使學(xué)生能積極參與數(shù)學(xué)活動,提高學(xué)習(xí)數(shù)學(xué)、學(xué)好數(shù)學(xué)的欲望.教具重點1.經(jīng)歷探索船是否有觸礁危險的過程,進一步體會三角函數(shù)在解決問題過程中的作用.2.發(fā)展學(xué)生數(shù)學(xué)應(yīng)用意識和解決問題的能力.教學(xué)難點根據(jù)題意,了解有關(guān)術(shù)語,準(zhǔn)確地畫出示意圖.教學(xué)方法探索——發(fā)現(xiàn)法教具準(zhǔn)備多媒體演示
教學(xué)說明:問題(1)是借助“邊邊邊”條件判定三角形全等的知識來解釋的。因為三邊長度確定后三角形的形狀就被固定了,因此三角形具有穩(wěn)定性。問題(2)可用多媒體展示三角形穩(wěn)定性在實際生活中應(yīng)用的例子。要解決問題(3),只需要在四邊形中構(gòu)建出三角形結(jié)構(gòu),這樣就可以幫助其穩(wěn)定。設(shè)計意圖:通過學(xué)生動手操作,探究三角形穩(wěn)定性及生活中的應(yīng)用,讓學(xué)生體驗數(shù)學(xué)來源于生活,服務(wù)于生活的辯證思想,感受數(shù)學(xué)美。 (五)總結(jié)反思,情意發(fā)展問題:通過這節(jié)課的學(xué)習(xí)你有什么收獲?多媒體演示:(1)知識方面:①三邊對應(yīng)相等的兩個三角形全等,簡寫為“邊邊邊”或“SSS”。②三角形具有穩(wěn)定性。(2)技能方面:說明三角形全等時要注意公共邊的應(yīng)用。
經(jīng)過探究發(fā)現(xiàn)只有10與11出現(xiàn)的概率最大且相等(在探究的過程中提醒學(xué)生按求等可能性事件的概率步驟來做,在判斷是否等可能和求某個事件的基本數(shù)上多啟發(fā)和引導(dǎo),幫助學(xué)生順利突破難點。)及時表揚答對的學(xué)生,因為這個問題整整過了三個世紀(jì),才被意大利著名的天文學(xué)家伽利略解決。后來法國數(shù)學(xué)家拉普拉斯在他的著作《分析概率論》中,把伽利略的這個解答作為概率的一個基本原理來引用。(適當(dāng)?shù)臐B透一些數(shù)學(xué)史,學(xué)生對學(xué)習(xí)的興趣更濃厚,可以激發(fā)學(xué)生課后去進一步的探究前輩們是如何從不考慮順序到想到考慮順序的)8、課堂小結(jié):通過這節(jié)課的學(xué)習(xí),同學(xué)們回想一下有什么收獲?1、基本事件和等可能性事件的定義。2、等可能性事件的特征:(1)、一次試驗中有可能出現(xiàn)的結(jié)果是有限的。(2)、每一結(jié)果出現(xiàn)的可能性相等。3、求等可能性事件概率的步驟:(1)審清題意,判斷本試驗是否為等可能性事件。
(3)例題1的設(shè)計,一方面是幫助學(xué)生從生實際問題背景中逐步建立古典概型的解題模式;另一方面也可進一步理解古典概型的概念與特征,重點突破“等可能性”這個理解的難點。 采用學(xué)生分組討論的方式完。在整個活動中學(xué)生作為活動設(shè)計者、參與者.主持者;老師起到組織和指導(dǎo)的作用。為了讓學(xué)生進一步認(rèn)識和理解隨機思想,認(rèn)識和理解概率的含義—概率是一種度量,是對隨機事件發(fā)生可能性大小的一種度量.讓學(xué)生觀察圖表,得出對稱的規(guī)律。預(yù)計學(xué)生在構(gòu)建等可能性事件模型時要花一些時間。(4)例題1的拓展設(shè)計:看學(xué)生能否能在例1的基礎(chǔ)上利用類比的思想來建構(gòu)數(shù)學(xué)模型,并得出求事件 A包含的基本事件數(shù)常用的方法有樹狀圖法,枚舉法,圖表法,排列組合法等方法。適當(dāng)?shù)臐B透一些數(shù)學(xué)史,學(xué)生對學(xué)習(xí)的興趣更濃厚,可以激發(fā)學(xué)生課后去進一步的探究前輩們是如何從不考慮順序到想到考慮順序的
(1)上午9時的溫度是多少?12時呢?(2)這一天的最高溫度是多少?是在幾時達到的?最低溫度呢?(3)這一天的溫差是多少?從最高溫度到最低溫度經(jīng)過了多長時間?(4)在什么時間范圍內(nèi)溫度在上升?在什么時間范圍內(nèi)溫度在下降?(5)圖中的A點表示的是什么?B點呢?(6)你能預(yù)測次日凌晨1時的溫度嗎?說說你的理由.2、議一議:駱駝被稱為“沙漠之舟”,你知道關(guān)于駱駝的一些趣事嗎?例:它的體溫隨時間的變化而發(fā)生較大的變化:白天,隨沙漠溫度的驟升,駱駝的體溫也升高,當(dāng)體溫達到40℃時,駱駝開始出汗,體溫也開始下降.夜間,沙漠的溫度急劇降低,駱駝的體溫也繼續(xù)降低,大約在凌晨4時,駱駝的體溫達到最低點.3、如下圖,是駱駝的體溫隨時間變化而變化的的關(guān)系圖,據(jù)圖回答下列問題:
一、教材分析1.教材的地位與作用本節(jié)課是在學(xué)生學(xué)習(xí)了三角形的基本概念后,引入圖形的全等。這節(jié)課探究對象是生活中的常見全等圖形,主要是探究全等圖形的概念和特征,通過系列學(xué)習(xí)活動,引導(dǎo)學(xué)生體驗數(shù)學(xué)與生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)良好的學(xué)習(xí)品質(zhì)。同時這節(jié)課的內(nèi)容也是下一節(jié)學(xué)習(xí)全等三角以及三角形全等的判定的奠基石,它對知識的聯(lián)系起到承上啟下的作用。2.教學(xué)目標(biāo)依據(jù)《課程標(biāo)準(zhǔn)》要求本階段的學(xué)生應(yīng)初步會運用數(shù)學(xué)的思維方式去觀察、分析現(xiàn)實生活中出現(xiàn)的實際問題,體會數(shù)學(xué)與生活的密切聯(lián)系,增進對數(shù)學(xué)的理解和學(xué)好數(shù)學(xué)的信心。因此我確立本節(jié)課的教學(xué)目標(biāo)如下:知識技能目標(biāo):通過實例,使學(xué)生理解圖形全等的概念,掌握全等圖形的特征,能在不同的圖形中識別出全等的圖形過程與方法:通過觀察,動手實驗,培養(yǎng)學(xué)生動手操作能力、觀察能力以及合作與交流的能力
一.情境引入:師:我們生活在一個變化的世界中,很多東西都在悄悄地發(fā)生變化你能從生活中舉出一些發(fā)生變化的例子嗎?生1:從春季到夏季氣溫在逐漸增加.生2:小樹每年都在長高長粗.生3:我杯子里的水喝一口少一口.(說著就拿起杯子喝水,引起同學(xué)哈哈大笑)師: 你這個變化中有幾個量在變化?生3:兩個,一個是喝的口數(shù),一個是水的多少?師: 它們的變化有什么聯(lián)系嗎?生3:有,隨著喝的口數(shù)的增加,瓶中的水越來越少.生4:那我的這張紙越撕越?。ù藭r該同學(xué)順便從自己本子上撕下一張紙并將這張紙一次一次的撕下去,其他同學(xué)們點頭稱是)師: 你這個變化中又有幾個量?它們又是怎么變化的?生4:兩個,一個是撕的次數(shù),另一個是紙的大小.師:那么哪個量隨哪個量的變化而變化的呢?
教學(xué)不應(yīng)僅僅傳授課本上的知識內(nèi)容,而應(yīng)該在傳授知識內(nèi)容的同時,注意對學(xué)生綜合能力的培養(yǎng).在本節(jié)課中,教師并沒有直接將運算法則告訴學(xué)生,而是由學(xué)生利用已有知識探究得到.在探究過程中,學(xué)生的數(shù)學(xué)思想得到了進一步的拓展,學(xué)生的綜合能力得到了進一步的提高.當(dāng)然一節(jié)課的提高并不顯著,但只要堅持這種方式方法,最終會有一個美好的結(jié)果.2.充分挖掘知識內(nèi)涵,使學(xué)生體會數(shù)學(xué)知識間的密切聯(lián)系在教學(xué)中,有意識、有計劃的設(shè)計教學(xué)活動,引導(dǎo)學(xué)生體會單項式乘法與單項式除法之間的聯(lián)系與區(qū)別,感受數(shù)學(xué)的整體性,不斷豐富學(xué)生的解題策略,提高解決問題的能力.3.課堂上應(yīng)當(dāng)把更多的時間留給學(xué)生在課堂教學(xué)中應(yīng)當(dāng)把更多時間交給學(xué)生.本節(jié)課中計算法則的探究,例題的講解,習(xí)題的完成,知識的總結(jié)盡可能的全部由學(xué)生完成,教師所起的作用是點撥,評價和指導(dǎo).這樣做,可以更好的體現(xiàn)以學(xué)生為中心的教學(xué)思想,能更好的提高學(xué)生的綜合能力.
說明:8.2.1在表示范表演的點畫空心圓圈,表不包括這一點,表示大時就往右拐;圖8.2.2在表示-2的點畫黑點表示包括這一點,表示小時往左拐。3,講解補充例題,例1:判斷:①x=2是不等式4x<9的一個解.()②x=2是不等式4x<9的解集.()例2、將下列不等式的解集在數(shù)軸上表示出來:(1)x<2(2)x≥-2(設(shè)計意圖:例1是讓學(xué)生理解不等式的解與不等式的解集。聯(lián)系與區(qū)別,例2揭示不等式的解集與數(shù)軸上表示數(shù)的范圍的一種對應(yīng)關(guān)系,從而進一步加深學(xué)生對不等式解集的理解,以使學(xué)生進一步領(lǐng)會到數(shù)形結(jié)合的方法具有形象,直觀,易于說明問題的優(yōu)點)4.鞏固練習(xí):課本44頁練習(xí)2,3題5.歸納總結(jié),結(jié)合板書,引導(dǎo)學(xué)生自我總結(jié),重點知識和學(xué)習(xí)方法,達到掌握重點,順理成章的目的。6.作業(yè):課本49頁習(xí)題1,2題
通過以上例題幫助學(xué)生總結(jié)出分式乘除法的運算步驟(當(dāng)分式的分子與分母都是單項式時和當(dāng)分式的分子、分母中有多項式兩種情況)4、隨堂練習(xí)。(約5分鐘)76頁第一題,共3個小題。教學(xué)效果:在總結(jié)出分式乘除法的運算步驟后,大部分學(xué)生能很好的掌握,但是還有些學(xué)生忘記運算結(jié)果要化成最簡形式,老師要及時提醒學(xué)生。 分解因式的知識沒掌握好,將會影響到分式的運算,所以有的學(xué)生有必要復(fù)習(xí)和鞏固一下分解因式的知識。5、數(shù)學(xué)理解(約5分鐘)教材77頁的數(shù)學(xué)理解,學(xué)生很容易出現(xiàn)像小明那樣的錯誤。但是也很容易找出錯誤的原因。補充例3 計算(xy-x2)÷ ? 教學(xué)效果:鞏固分式乘除法法則,掌握分式乘除法混合運算的方法。提醒學(xué)生,負(fù)號要提到分式前面去。6、課堂小結(jié)(約3分鐘)先學(xué)生分組小結(jié),在全班交流,最后老師總結(jié)。
一、說教材《分式的加減法》是本冊教材第三章《分式》重要內(nèi)容,是進一步學(xué)習(xí)分式方程、反比例函數(shù)以及其它數(shù)學(xué)知識的基礎(chǔ),同時也是學(xué)習(xí)物理、化學(xué)等學(xué)科不可缺少的工具。與其它數(shù)學(xué)知識一樣,它在實際生活中有著廣泛的應(yīng)用。學(xué)習(xí)分式的加減法并熟練地進行運算是學(xué)好分式運算的關(guān)鍵,為學(xué)生綜合運用多種運算法則拓寬了空間,有利于學(xué)生對雙基的掌握,在綜合運用多種運算法則的過程中,逐漸形成運算能力。同時本節(jié)課的教學(xué)難度有所增加,學(xué)生通過觀察、類比、猜想、嘗試等一系列思維活動中,發(fā)現(xiàn)規(guī)則、理解規(guī)則、應(yīng)用規(guī)則??紤]到以上這些因素,確定本節(jié)課的目標(biāo)和重點、難點如下:(一)說教學(xué)目標(biāo):1.知識與技能目標(biāo):理解并掌握異分母分式加減法的法則;經(jīng)歷異分母分式的加減運算和通分的過程,訓(xùn)練學(xué)生的分式運算能力,培養(yǎng)學(xué)生在學(xué)習(xí)中轉(zhuǎn)化未知問題為已知問題的能力;進一步通過實例發(fā)展學(xué)生的符號感。
(設(shè)計意圖:因為圓中有關(guān)的點、線、角及其他圖形位置關(guān)系的復(fù)雜,學(xué)生往往因?qū)σ阎獥l件的分析不夠全面,忽視某個條件,某種特殊情況,導(dǎo)致漏解。采用小組討論交流的方式進行要及時進行小組評價。)(3) 議一議( 如圖,OA、OB、OC都是圓O的半徑∠AOB=2∠BOC, 求證:∠ACB=2∠BAC。)(設(shè)計意圖:通過練習(xí),使學(xué)生能靈活運用圓周角定理進行幾何題的證明,規(guī)范步驟,提高利用定理解決問題的能力。)(三)說小結(jié)首先,通過學(xué)生小組交流,談一談你有什么收獲。(提示學(xué)生從三方面入手:1、學(xué)到了知識;2、掌握了哪些數(shù)學(xué)方法;3、體會到了哪些數(shù)學(xué)思想。)然后,教師引導(dǎo)小組間評價。使學(xué)生對本節(jié)內(nèi)容有一個更系統(tǒng)、深刻的認(rèn)識,實現(xiàn)從感性認(rèn)識到理性認(rèn)識的飛躍。(四)、板書設(shè)計為了集中濃縮和概括本課的教學(xué)內(nèi)容,使教學(xué)重點醒目、突出、合理有序,以便學(xué)生對本課知識點有了完整清晰的印象。我只選擇了本節(jié)課的兩個知識點作為板書。
本節(jié)課的設(shè)計是以教學(xué)大綱和教材為依據(jù),遵循因材施教的原則,堅持以學(xué)生為主體,充分發(fā)揮學(xué)生的主觀能動性。教學(xué)過程中,注重學(xué)生探究能力的培養(yǎng)。還課堂給學(xué)生,讓學(xué)生去親身體驗知識的產(chǎn)生過程,拓展學(xué)生的創(chuàng)造性思維。同時,注意加強對學(xué)生的啟發(fā)和引導(dǎo),鼓勵培養(yǎng)學(xué)生們大膽猜想,小心求證的科學(xué)研究的思想。本節(jié)課采用教具輔助教學(xué),旨在呈現(xiàn)更直觀的形象,提高學(xué)生的積極性和主動性,并提高課堂效率。2、學(xué)法研究“贈人以魚,不如授人以漁”,最有價值的知識是關(guān)于方法的知識,首先教師應(yīng)創(chuàng)造一種環(huán)境,引導(dǎo)學(xué)生從已知的、熟悉的知識入手,讓學(xué)生自己在某一種環(huán)境下不知不覺中運用舊知識的鑰匙去打開新知識的大門,進入新知識的領(lǐng)域,從不同角度去分析、解決新問題,通過基礎(chǔ)練習(xí)、提高練習(xí)和拓展練習(xí)發(fā)掘不同層次學(xué)生的不同能力,從而達到發(fā)展學(xué)生思維能力和自學(xué)能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。
練習(xí)3、先化簡,再求值:2a(a-b)-b(2a-b)+2ab,其中a=2,b=-3.(通過例題和聯(lián)系將所學(xué)知識升華,提升)練習(xí)4、動動腦。(讓學(xué)生進一步感知生活中處處有數(shù)學(xué))(四)、暢談收獲、拓展升華1、本節(jié)課你學(xué)到了什么?依據(jù)是什么?整式的乘法存在什么沒有解決的問題?(同桌互講,師生共同小結(jié))2、布置作業(yè):習(xí)題1.9知識技能1四、說課小結(jié)本堂課我主要采用引導(dǎo)探索法教學(xué),倡導(dǎo)學(xué)生自主學(xué)習(xí)、嘗試學(xué)習(xí)、探究學(xué)習(xí)、合作交流學(xué)習(xí),鼓勵學(xué)生用所學(xué)的知識解決身邊的問題,注重教學(xué)效果的有效性。學(xué)生在合作學(xué)習(xí)中,可以活躍課堂氣氛,消除心理壓力,在愉快的環(huán)境中學(xué)習(xí)知識,有效地拓展學(xué)生思維,成功地培養(yǎng)學(xué)生的觀察能力、思維能力、合作探究能力、交流能力和數(shù)學(xué)學(xué)習(xí)能力。但由于本人對新課標(biāo)和新教材的理解不一定十分到位,所以在教材本身內(nèi)在規(guī)律的把握上,會存在一定的偏差;另外,由于對學(xué)生的認(rèn)知規(guī)律認(rèn)識不夠,所以教學(xué)活動的設(shè)計不一定十分有效。所有這些都有待教學(xué)實踐的檢驗。
注意強調(diào)概念理解不到位的方面:① tanA是一個完整的符號,它表示∠A的正切,記號里習(xí)慣省去角的符號“∠”,若用三個字母表示角則“∠”不能省略,如“∠ABC的正切表示為tan∠ABC”;② tanA沒有單位,它表示一個比值,即直角三角形中∠A的對邊與鄰邊的比;③ tanA不表示“tan”乘以“A”。通過給出直角三角形的任兩邊的長,讓學(xué)生求∠A,∠B的正切及時強化學(xué)生對概念的3、正切函數(shù)的應(yīng)用理解通過實際問題的解答進一步了解梯子的傾斜程度、坡度與正切函數(shù)的關(guān)系;對學(xué)生進行正切的變式訓(xùn)練,讓學(xué)生理解不管角的位置如何改變,只要角的大小不變則其正切值是不變的。練習(xí)的安插注意梯度,讓不同的學(xué)生有不同的發(fā)展。4、最后小結(jié)本節(jié)課的知識要點及注意點五、達標(biāo)測試具體思路:把幾個問題分為四個等級,方便對學(xué)生的了解;通過評價讓學(xué)生對自己的學(xué)習(xí)也做到心中有數(shù)。
方法總結(jié):在等腰三角形有關(guān)計算或證明中,會遇到一些添加輔助線的問題,其頂角平分線、底邊上的高、底邊上的中線是常見的輔助線.三、板書設(shè)計1.等腰三角形的性質(zhì):等腰三角形是軸對稱圖形;等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(也稱“三線合一”),它們所在的直線都是等腰三角形的對稱軸;等腰三角形的兩個底角相等.2.運用等腰三角性質(zhì)解題的一般思想方法:方程思想、整體思想和轉(zhuǎn)化思想.本節(jié)課由于采用了直觀操作以及討論交流等教學(xué)方法,從而有效地增強了學(xué)生的感性認(rèn)識,提高了學(xué)生對新知識的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對所學(xué)的新知識掌握較好,達到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對等腰三角形的“三線合一”性質(zhì)理解不透徹,還需要在今后的教學(xué)和作業(yè)中進一步鞏固和提高
方法總結(jié):觀察表中的數(shù)據(jù),發(fā)現(xiàn)其中的變化規(guī)律,然后根據(jù)其增減趨勢寫出自變量與因變量之間的關(guān)系式.三、板書設(shè)計1.用關(guān)系式表示變量間關(guān)系2.表格和關(guān)系式的區(qū)別與聯(lián)系:表格能直接得到某些具體的對應(yīng)值,但不能直接反映變量的整體變化情況;用關(guān)系式表示變量之間的關(guān)系簡單明了,便于計算分析,能方便求出自變量為任意一個值時,相對應(yīng)的因變量的值,但是需計算.本節(jié)課的教學(xué)內(nèi)容是變量間關(guān)系的另一種表示方法,這種表示方法學(xué)生才接觸到,學(xué)生感覺有點難.這節(jié)課的重點是讓學(xué)生掌握用關(guān)系式與表格表示變量間的關(guān)系,難點是理解這兩種表示方法的優(yōu)缺點.就此問題,通過讓學(xué)生對幾個例子比較、討論、總結(jié)、歸納兩種方法的優(yōu)點來解決,這樣學(xué)生就能很好地區(qū)分這兩種表示方法,并能對不同的問題選擇恰當(dāng)?shù)姆椒?/p>
方法總結(jié):絕對值的化簡首先要判斷絕對值符號里面的式子的正負(fù),然后根據(jù)絕對值的性質(zhì)將絕對值的符號去掉,最后進行化簡.此類問題就是根據(jù)三角形的三邊關(guān)系,判斷絕對值符號里面式子的正負(fù),然后進行化簡.三、板書設(shè)計1.三角形按邊分類:有兩邊相等的三角形叫做等腰三角形,三邊都相等的三角形是等邊三角形,三邊互不相等的三角形是不等邊三角形.2.三角形中三邊之間的關(guān)系:三角形任意兩邊之和大于第三邊,三角形任意兩邊之差小于第三邊.本節(jié)課讓學(xué)生經(jīng)歷一個探究解決問題的過程,抓住“任意的三條線段能不能圍成一個三角形”引發(fā)學(xué)生探究的欲望,圍繞這個問題讓學(xué)生自己動手操作,發(fā)現(xiàn)有的能圍成,有的不能圍成,由學(xué)生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關(guān)系,重點研究“能圍成三角形的三條邊之間到底有什么關(guān)系”.通過觀察、驗證、再操作,最終發(fā)現(xiàn)三角形任意兩邊之和大于第三邊這一結(jié)論.這樣教學(xué)符合學(xué)生的認(rèn)知特點,既增加了學(xué)習(xí)興趣,又增強了學(xué)生的動手能力
【類型三】 分式方程無解,求字母的值若關(guān)于x的分式方程2x-2+mxx2-4=3x+2無解,求m的值.解析:先把分式方程化為整式方程,再分兩種情況討論求解:一元一次方程無解與分式方程有增根.解:方程兩邊都乘以(x+2)(x-2),得2(x+2)+mx=3(x-2),即(m-1)x=-10.①當(dāng)m-1=0時,此方程無解,此時m=1;②方程有增根,則x=2或x=-2,當(dāng)x=2時,代入(m-1)x=-10得(m-1)×2=-10,m=-4;當(dāng)x=-2時,代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.方法總結(jié):分式方程無解與分式方程有增根所表達的意義是不一樣的.分式方程有增根僅僅針對使最簡公分母為0的數(shù),分式方程無解不但包括使最簡公分母為0的數(shù),而且還包括分式方程化為整式方程后,使整式方程無解的數(shù).三、板書設(shè)計1.分式方程的解法方程兩邊同乘以最簡公分母,化為整式方程求解,再檢驗.2.分式方程的增根(1)解分式方程為什么會產(chǎn)生增根;(2)分式方程檢驗的方法.