【教學(xué)目標(biāo)】1、知識目標(biāo):結(jié)合具體情境,使學(xué)生認(rèn)識東、南、西、北四個方向,能夠用給定的一個方向辨認(rèn)其余的三個方向,并能用這些詞語描述物體所在的方位。2、能力目標(biāo):培養(yǎng)學(xué)生良好的觀察能力和空間想象能力。3、情感目標(biāo):體驗數(shù)學(xué)與現(xiàn)實生活的密切關(guān)系,增強學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識?!窘虒W(xué)重難點】使學(xué)生認(rèn)識東、南、西、北四個方向,并能根據(jù)學(xué)生自身的方位辨認(rèn)東、南、西、北這四個方向?!窘虒W(xué)準(zhǔn)備】1、掛圖、指南針2、學(xué)具準(zhǔn)備:準(zhǔn)備主題圖中相關(guān)的學(xué)具卡片或?qū)嵨??!窘虒W(xué)過程】一、創(chuàng)設(shè)情境,引入新知:同學(xué)們,你們想去北京嗎?今天我們?nèi)⒂^參觀吧?二、愉快體驗,探究新知1、認(rèn)識方向:出示主題圖:我們來到了北京的天安門廣場,你們看見了哪些建筑物?愿意當(dāng)小導(dǎo)游為大家介紹一個嗎?(先同桌之間互相練習(xí)解說,師出示教學(xué)掛圖,介紹天安門的地理位置)引出例1)
1.讓學(xué)生拿出長方體摸一摸,問:你有什么感覺?摸的的面是什么形狀?師:誰來摸一摸,老師手上長方體的長方形在哪?(學(xué)生找出長方形)2.讓學(xué)生在自己的學(xué)具(長方體、正方體、圓柱體)上找圖形,并和小組里的同學(xué)說一說。3、指名說,教師把學(xué)生找到的圖形從立體圖形上分離出來,貼于黑板上,師:這些圖形是物體上的一個面,這就是我們今天要認(rèn)識的圖形。(板書課題——認(rèn)識平面圖形)4.讓學(xué)生說說:從什么物體上找到了什么圖形?5.師:你能想辦法把這些形狀畫到一張紙上嗎?請學(xué)生演示各自不同的方法,然后教師在黑板上沿長方體的一個面畫出長方形。師:你會畫嗎?請小朋友們用自己喜歡的辦法畫出并剪出長方形、正方形、圓和三角形各2個。
解析:(1)已知拋物線解析式y(tǒng)=ax2+bx+0.9,選定拋物線上兩點E(1,1.4),B(6,0.9),把坐標(biāo)代入解析式即可得出a、b的值,繼而得出拋物線解析式;(2)求出y=1.575時,對應(yīng)的x的兩個值,從而可確定t的取值范圍.解:(1)由題意得點E的坐標(biāo)為(1,1.4),點B的坐標(biāo)為(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的拋物線的解析式為y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,當(dāng)y=1.575時,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,則t的取值范圍為32<t<92.方法總結(jié):解答本題的關(guān)鍵是注意審題,將實際問題轉(zhuǎn)化為求函數(shù)問題,培養(yǎng)自己利用數(shù)學(xué)知識解答實際問題的能力.三、板書設(shè)計二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)1.二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)2.二次函數(shù)y=ax2+bx+c的應(yīng)用
(3)設(shè)點A的坐標(biāo)為(m,0),則點B的坐標(biāo)為(12-m,0),點C的坐標(biāo)為(12-m,-16m2+2m),點D的坐標(biāo)為(m,-16m2+2m).∴“支撐架”總長AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函數(shù)的圖象開口向下,∴當(dāng)m=3米時,“支撐架”的總長有最大值為15米.方法總結(jié):解決本題的關(guān)鍵是根據(jù)圖形特點選取一個合適的參數(shù)表示它們,得出關(guān)系式后運用函數(shù)性質(zhì)來解.三、板書設(shè)計二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)1.二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)2.二次函數(shù)y=a(x-h(huán))2+k的圖象與y=ax2的圖象的關(guān)系3.二次函數(shù)y=a(x-h(huán))2+k的應(yīng)用要使課堂真正成為學(xué)生展示自我的舞臺,還學(xué)生課堂學(xué)習(xí)的主體地位,教師要把激發(fā)學(xué)生學(xué)習(xí)熱情和提高學(xué)生學(xué)習(xí)能力放在教學(xué)首位,為學(xué)生提供展示自己聰明才智的機會,使課堂真正成為學(xué)生展示自我的舞臺.充分利用合作交流的形式,能使教師發(fā)現(xiàn)學(xué)生分析問題、解決問題的獨到見解以及思維的誤區(qū),以便指導(dǎo)今后的教學(xué).
雨后天空的彩虹、河上架起的拱橋等都會形成一條曲線.問題1:這些曲線能否用函數(shù)關(guān)系式表示?問題2:如何畫出這樣的函數(shù)圖象?二、合作探究探究點:二次函數(shù)y=x2和y=-x2的圖象與性質(zhì)【類型一】 二次函數(shù)y=x2和y=-x2的圖象的畫法及特點在同一平面直角坐標(biāo)系中,畫出下列函數(shù)的圖象:(1)y=x2;(2)y=-x2.根據(jù)圖象分別說出拋物線(1)(2)的對稱軸、頂點坐標(biāo)、開口方向及最高(低)點坐標(biāo).解析:利用列表、描點、連線的方法作出兩個函數(shù)的圖象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描點、連線可得圖象如下:(1)拋物線y=x2的對稱軸為y軸,頂點坐標(biāo)為(0,0),開口方向向上,最低點坐標(biāo)為(0,0);(2)拋物線y=-x2的對稱軸為y軸,頂點坐標(biāo)為(0,0),開口方向向下,最高點坐標(biāo)為(0,0).方法總結(jié):畫拋物線y=x2和y=-x2的圖象時,還可以根據(jù)它的對稱性,先用描點法描出拋物線的一側(cè),再利用對稱性畫另一側(cè).
變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第5題【類型二】 在同一坐標(biāo)系中判斷二次函數(shù)和一次函數(shù)的圖象在同一直角坐標(biāo)系中,一次函數(shù)y=ax+c和二次函數(shù)y=ax2+c的圖象大致為()解析:∵一次函數(shù)和二次函數(shù)都經(jīng)過y軸上的點(0,c),∴兩個函數(shù)圖象交于y軸上的同一點,故B選項錯誤;當(dāng)a>0時,二次函數(shù)的圖象開口向上,一次函數(shù)的圖象從左向右上升,故C選項錯誤;當(dāng)a<0時,二次函數(shù)的圖象開口向下,一次函數(shù)的圖象從左向右下降,故A選項錯誤,D選項正確.故選D.方法總結(jié):熟記一次函數(shù)y=kx+b在不同情況下所在的象限,以及熟練掌握二次函數(shù)的有關(guān)性質(zhì)(開口方向、對稱軸、頂點坐標(biāo)等)是解決問題的關(guān)鍵.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后鞏固提升” 第4題【類型三】 二次函數(shù)y=ax2+c的圖象與三角形的綜合
1.小明調(diào)查了班級里20位同學(xué)本學(xué)期計劃購買課外書的花費情況,并將結(jié)果繪制成了下面的統(tǒng)計圖.(1)在這20位同學(xué)中,本學(xué)期計劃購買課外書的花費的眾數(shù)是多少?(2)計算這20位同學(xué)計劃購買課外書的平均花費是多少?你是怎么計算的?反思?交流*(3)在上面的問題,如果不知道調(diào)查的總?cè)藬?shù),你還能求平均數(shù)嗎?2.某題(滿分為5分)的得分情況如右圖,計算此題得分的眾數(shù)、中位數(shù)和平均數(shù)?;顒?:自主反饋1.下圖反映了初三(1)班、(2)班的體育成績。(1)不用計算,根據(jù)條形統(tǒng)計圖,你能判斷哪個班學(xué)生的體育成績好一些嗎?(2)你能從圖中觀察出各班學(xué)生體育成績等級的“眾數(shù)”嗎?(3)如果依次將不及格、及格、中、良好、優(yōu)秀記為55、65、75、85、95分,分別估算一下,兩個班學(xué)生體育成績的平均值大致是多少?算一算,看看你估計的結(jié)果怎么樣?*(4)初三(1)班學(xué)生體育成績的平均數(shù)、中位數(shù)和眾數(shù)有什么關(guān)系?你能說說其中的理由嗎?
【教學(xué)目標(biāo)】(一)教學(xué)知識點能夠利用描點法作出函數(shù) 的圖象,并根據(jù)圖象認(rèn)識和理解二次函數(shù) 的性質(zhì);比較兩者的異同.(二)能力訓(xùn)練要求:經(jīng)歷探索二次函數(shù) 圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗.(三)情感態(tài)度與價值觀:通過學(xué)生自己的探索活動,達(dá)到對拋物線自身特點的認(rèn)識和對二次函數(shù)性質(zhì)的理解. 【重、難點】重點 :會畫y=ax2的圖象,理解其性質(zhì)。難點:描點法畫y=ax2的圖象,體會數(shù)與形的相互聯(lián)系。 【導(dǎo)學(xué)流程】 一、自主預(yù)習(xí)(用時15分鐘)1.創(chuàng)設(shè)教學(xué)情境我們在教學(xué)了正比例函數(shù)、一次函數(shù)、反比例函數(shù)的定義后,都借助圖像研究了它們的性質(zhì).而上節(jié)課我們所學(xué)的二次函數(shù)的圖象是什么呢?本節(jié)課我們將從最簡單的二次函數(shù)y=x2入手去研究
1.使學(xué)生掌握用描點法畫出函數(shù)y=ax2+bx+c的圖象。2.使學(xué)生掌握用圖象或通過配方確定拋物線的開口方向、對稱軸和頂點坐標(biāo)。讓學(xué)生經(jīng)歷探索二次函數(shù)y=ax2+bx+c的圖象的開口方向、對稱軸和頂點坐標(biāo)以及性質(zhì)的過程,理解二次函數(shù)y=ax2+bx+c的性質(zhì)。用描點法畫出二次函數(shù)y=ax2+bx+c的圖象和通過配方確定拋物線的對稱軸、頂點坐標(biāo)理解二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)以及它的對稱軸(頂點坐標(biāo)分別是x=-b2a、(-b2a,4ac-b24a)一、提出問題1.你能說出函數(shù)y=-4(x-2)2+1圖象的開口方向、對稱軸和頂點坐標(biāo)嗎?(函數(shù)y=-4(x-2)2+1圖象的開口向下,對稱軸為直線x=2,頂點坐標(biāo)是(2,1)。2.函數(shù)y=-4(x-2)2+1圖象與函數(shù)y=-4x2的圖象有什么關(guān)系?(函數(shù)y=-4(x-2)2+1的圖象可以看成是將函數(shù)y=-4x2的圖象向右平移2個單位再向上平移1個單位得到的)
3、認(rèn)識正畫、上面、右面。為了培養(yǎng)學(xué)生的自主學(xué)習(xí)能力,在這一活動中,首先我與學(xué)生交談:“同學(xué)們,你們知道嗎,剛才我們看到的物體的三個面都有自己的名字。”然后大膽放手,指導(dǎo)學(xué)生閱讀教材,尋找答案;接著通過指認(rèn)長方體紙箱、講桌及班級中可能有的長方體物品的三個面加以理解,最后變換某一物品的擺放方向,請學(xué)生再次指認(rèn)各面,使學(xué)生明白所謂的“正面、右面、上面”是會發(fā)生變化的。三、鞏固練習(xí),深化認(rèn)識重視生活應(yīng)用,讓學(xué)生實踐數(shù)學(xué),學(xué)以致用是數(shù)學(xué)教學(xué)的一個重要原則。針對這一原則,在這個環(huán)節(jié)中,我安排了一組梯度式練習(xí)題:鞏固深化題。教材26頁的“連一連”、27頁“練一練”中的1、3題;實際應(yīng)用題??磮D猜物、小小攝影師;課外延伸題。鼓勵學(xué)生回家后與家長一起觀察生活中的一件物體,試著把看到的形狀畫下來,結(jié)合著畫為家長講一講本節(jié)課學(xué)到的知識。
然后能通過圖象找出變量的對應(yīng)關(guān)系在圖象上的體現(xiàn)。3、做一做:課本P154第1小題,學(xué)生在課本上填表,讓學(xué)生通過填表,體會變量之間的相依關(guān)系。4、師生小結(jié):和學(xué)生一起對剛才的三個例子進(jìn)行總結(jié),啟發(fā)學(xué)生思考三個例子的相同點和不同點,如表現(xiàn)形式不同,有圖象、表格、代數(shù)表達(dá)式。相同的有它們都是兩個變量,確定其中一個變量后就能相應(yīng)確定另一個變量的值。從而使學(xué)生的認(rèn)識上升一個高度,并掌握函數(shù)的概念5、課堂練習(xí):完成課本P155隨堂練習(xí)。通過本練習(xí)的完成鞏固概念并會用概念去判斷兩個變量間的關(guān)系是否可看做函數(shù)。6、新課鞏固:以填空形式對本堂課進(jìn)行小結(jié),使學(xué)生對函數(shù)的概念及應(yīng)用有一定記憶。并通過對最后問題的思考使學(xué)生意識到數(shù)學(xué)來自生活,并能應(yīng)用于生活。
接下來學(xué)生類比有理數(shù)中相關(guān)概念,體會到了實數(shù)范圍內(nèi)的相反數(shù)、倒數(shù)、絕對值的意義,并進(jìn)一步掌握了實數(shù)的相反數(shù)、倒數(shù)、絕對值等知識。學(xué)生類比有理數(shù)中相關(guān)運算,體會到了實數(shù)范圍內(nèi)的運算及運算律。并探討用數(shù)軸上的點來表示實數(shù),將數(shù)和圖形聯(lián)系在一起,讓學(xué)生進(jìn)一步領(lǐng)會數(shù)形結(jié)合的思想,利用數(shù)軸也可以直觀地比較兩個實數(shù)的大小。然后通過相關(guān)練習(xí),檢測學(xué)生對實數(shù)相關(guān)知識的掌握情況。最后學(xué)生交流,互相補充,完成本節(jié)知識的梳理。布置作業(yè):所布置作業(yè)都是緊緊圍繞著“實數(shù)”的概念及運用。設(shè)計選作題是為了給學(xué)有余力的學(xué)生留出自由發(fā)展的空間。五、關(guān)于板書設(shè)計我將板書設(shè)計為“提綱式”。這樣設(shè)計主要是力求重點突出,能加深學(xué)生對重點知識的理解和掌握,便于記憶。
1、教材的地位《觀察物體》這節(jié)課是人教版《義務(wù)教育教科書?數(shù)學(xué)(二年級上冊)》第五單元的第一課時。教材是從學(xué)生已有生活經(jīng)驗出發(fā)以及已學(xué)習(xí)了位置知識的基礎(chǔ)上,借助于生活中的實物和學(xué)生的操作活動進(jìn)行教學(xué)的。主要幫助學(xué)生建立初步的空間觀念,發(fā)展他們的形象思維,通過一些活動,使學(xué)生認(rèn)識到,從不同的角度觀察同一個物體,看到的物體的形狀可能是不同的,并讓學(xué)生初步體會局部與整體的關(guān)系,通過這部分內(nèi)容的教學(xué),不但可以使學(xué)生學(xué)會從不同的角度觀察物體,而且又為以后學(xué)習(xí)有關(guān)幾何圖形的知識打下堅實的基礎(chǔ)。 2、教學(xué)目標(biāo)依照《新課程標(biāo)準(zhǔn)》的要求,結(jié)合教材和學(xué)生的特點,從知識與技能、過程與方法和情感態(tài)度價值觀三方面制定以下教學(xué)目標(biāo):(1)能辨認(rèn)并能想象從不同位置看到的簡單物體的形狀。 (2)在探究中,學(xué)生掌握全面、正確的觀察物體的基本方法,并感受到局部與整體的關(guān)系。 (3)通過活動,感受數(shù)學(xué)與生活的聯(lián)系,培養(yǎng)學(xué)生觀察物體的興趣和熱情。3、教學(xué)重點、難點由于小學(xué)二年級的學(xué)生方位感不強,他們往往前后不分,左右搞錯,觀察周圍的事物也是比較單純、直觀地看表面。
三、說教法和學(xué)法:1、說教法:本節(jié)課采用幾何畫板與電子白板相結(jié)合的教學(xué)手段,使操作過程形象、直觀呈現(xiàn),以便學(xué)生更好的理解。在教學(xué)過程中,引導(dǎo)學(xué)生去探索,使學(xué)生感受到添加輔助線的數(shù)學(xué)思想,更好地掌握三角形內(nèi)角和定理的證明及簡單的應(yīng)用,2、說學(xué)法:根據(jù)本節(jié)課特點和學(xué)生的實際,在教學(xué)過程中給學(xué)生足夠的時間認(rèn)真、仔細(xì)地動手書寫證明過程,使學(xué)生的學(xué)習(xí)落到實處。同時,培養(yǎng)學(xué)生科學(xué)的學(xué)習(xí)方法和自信心。四、說教學(xué)過程設(shè)計教學(xué)過程的設(shè)計有:1、問題引入新課:七年級已經(jīng)學(xué)習(xí)三角形內(nèi)角和定理內(nèi)容。這樣從已經(jīng)學(xué)過的知識引入,符合學(xué)生的認(rèn)知規(guī)律。在拼圖活動中發(fā)展思維的靈活性、創(chuàng)造性,為下一環(huán)節(jié)“說理”證明作好準(zhǔn)備,使學(xué)生體會到數(shù)學(xué)來源于實踐,同時對新知識的學(xué)習(xí)有了期待。
二、教學(xué)要求:1、教幼兒能夠?qū)Υ笮^(qū)別較明顯的4-6個物體,按從小到大或從大到小的順序進(jìn)行排序。2、復(fù)習(xí)5以內(nèi)的數(shù)數(shù)。三、教學(xué)準(zhǔn)備1、實物套娃1套2、大小不同顏色不同的圓形塑料片一組5張,每人一組。
一.學(xué)生情況分析對于三角形的內(nèi)角和定理,學(xué)生在小學(xué)階段已通過量、折、拼的方法進(jìn)行了合情推理并得出了相關(guān)的推論。在小學(xué)認(rèn)識三角形,通過觀察、操作,得到了三角形內(nèi)角和是180°。但在學(xué)生升入初中階段學(xué)習(xí)過推理證明后,必須明確推理要有依據(jù),定理必須通過邏輯證明?,F(xiàn)在的學(xué)生喜歡動手實驗,操作能力較強,但對知識的歸納、概括能力以及知識的遷移能力不強。部分優(yōu)秀學(xué)生已具備良好的學(xué)習(xí)習(xí)慣,有一定分析、歸納能力。
本環(huán)節(jié)運用了一個階梯式的問答方法,幫助突破本節(jié)課的難點。同時,從具體的實際問題入手,由特殊問題到一般規(guī)律的揭示,不僅解決了難點問題,而且從另外一個角度講也滲透給了學(xué)生的數(shù)形結(jié)合思想,還有利于學(xué)生主動探索意識的培養(yǎng)。4、自主評價本環(huán)節(jié)主要是應(yīng)用本節(jié)課所學(xué)的知識以及所積累形成的學(xué)習(xí)經(jīng)驗和體驗解決問題的過程,即課堂鞏固訓(xùn)練。在練習(xí)題的選擇上,由簡單到復(fù)雜。先是結(jié)合圖象獲取信息進(jìn)行簡單的填空和選擇,此題屬于A組題型,檢驗學(xué)生的掌握情況;然后進(jìn)行了一道B組題,關(guān)于“一次函數(shù)與一元一次方程的關(guān)系”知識點的靈活運用,進(jìn)一步通過練習(xí)體會它們的關(guān)系。5、自主發(fā)展:最后一道則是特殊的區(qū)別于之前所學(xué)習(xí)的分段函數(shù)練習(xí),發(fā)散學(xué)生思維問題的訓(xùn)練。讓學(xué)生體會分段函數(shù)的特點,并掌握求分段函數(shù)解析式的方法。
[互動2]師:請大家從上面的解題經(jīng)歷中,總結(jié)一下如果已知函數(shù)的圖象,怎樣求函數(shù)的表達(dá)式?小組討論之后再發(fā)表意見。生:第一步根據(jù)圖象,確定這個函數(shù)是正比例函數(shù)或是一次函數(shù);第二步設(shè)函數(shù)表達(dá)式;第三步:根據(jù)表達(dá)式列等式,若是正比例函數(shù),只要找圖象上一個點的坐標(biāo)就可以了;若是一次函數(shù),則需要找到圖象上兩個點的坐標(biāo),然后把點的坐標(biāo)分別代入所設(shè)的解析式中,組成關(guān)于R、b的一個或兩個方程。第四步:求出R、b的值第五步:把R、b的值代回到表達(dá)式中就可以了。師:分析得太好了。那么,大家說一說,確定正比例函數(shù)的表達(dá)式需要幾個條件?確定一次函數(shù)的表達(dá)式呢?要說明理由。生:確定正比例函數(shù)需要一個條件,而確定一次函數(shù)需要兩個條件。原因是正比例函數(shù)的表達(dá)式:y=Rx(R≠0)中,只有一個系數(shù)R,而一次函數(shù)的表達(dá)式y(tǒng)=Rx+b(R≠0)中,有兩個系數(shù)(待定)R和b。
(二)師生互動,認(rèn)識長方形、正方形、三角形和圓。1、學(xué)生拿出準(zhǔn)備好的學(xué)具(長方形、正方形、等)親自動手實踐,摸一摸、看一看,并在紙上描畫這些物體的面,比一比哪個小組的同學(xué)畫得最好。2、分組討論,教師巡視3、全班交流,展示作品,根據(jù)學(xué)生的交流,師生共同得出結(jié)論,長方體畫出的是長方形,正方體畫出的是正方形,三角錐畫出的是三角形,圓柱畫出的是圓。4、聯(lián)系生活說一說,清學(xué)生說一說生活中見到哪些物體的面是長方形、正方形、三角形和圓。(三)鞏固練習(xí)用準(zhǔn)備好的學(xué)具(若干個)拼出自己喜歡的圖案,看哪個小組在規(guī)定的時間內(nèi)拼得圖案最多最美。1、小組活動。2、各個小組展示自己的作品。3、小組評價,選出優(yōu)勝品。師選出幾個有代表性的作品,讓學(xué)生分析它是由什么圖形組成。
讓學(xué)生先獨立解決⑴題,再小組交流⑵題的答案,找到解題的方法.2、例2,例3是對平方根概念的鞏固與拓展,在例2中由于學(xué)生還不熟于平方根的表示方法,所以應(yīng)在平方根的概念和±號上加以明確,而例3則要把握平方根概念的本質(zhì),根據(jù)該數(shù)的正負(fù)或0來確定其平方根,這部分內(nèi)容可用板演或展臺展示結(jié)果的方式進(jìn)行,讓學(xué)生獨立完成,應(yīng)給予恰當(dāng)?shù)脑u價.3、最后,我又設(shè)計了一道辨析題:在做一道求4的平方根的題目時,小明說:“4的平方根是2”,小紅說:“4的平方根是-2”,小強說:“2是4的平方根”小芳說:“-2是4的平方根”,請問他們的說法正確嗎?通過這道題目,使學(xué)生在熟悉平方根概念的基礎(chǔ)上更加深理解,同時對以往五種運算中從未出現(xiàn)過的一題兩解的現(xiàn)象作出了解釋,使學(xué)生明白了一種整體與局部的關(guān)系,再一次突出了重點.