提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

中班數(shù)學:拼圖形課件教案

  • 北師大初中七年級數(shù)學上冊有理數(shù)的加法法則教案2

    北師大初中七年級數(shù)學上冊有理數(shù)的加法法則教案2

    師生共同歸納法則2、異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。生5:這兩天的庫存量合計增加了2噸。(+3)+(-1)=+2 或(+8)+(-6)=+2師:會不會出現(xiàn)和為零的情況?提示:可以聯(lián)系倉庫進出貨的具體情形。生6:如星期一倉庫進貨5噸,出貨5噸,則庫存量為零。(+5)+(-5)=0師生共同歸納法則3、互為相反數(shù)的兩個數(shù)相加得零。師:你能用加法法則來解釋法則3嗎?生7:可用異號兩數(shù)相加的法則。一般地還有:一個數(shù)同零相加,仍得這個數(shù)。小結:運算關鍵:先分類運算步驟:先確定符號,再計算絕對值做一做:(口答)確定下列各題中和的符號,并說明理由:(1)(+3)+(+7);(2)(-10)+(-3);(3)(+6)+(-5);(4)0+(-5).例 計算下列各式:(1)(-3)+(-4);(2)(-2.5)+5;(3)(-2)+0;(4)(+ )+(- )教法:請四位學生板演,讓學生批改并說明理由。

  • 北師大初中七年級數(shù)學下冊同底數(shù)冪的除法教案

    北師大初中七年級數(shù)學下冊同底數(shù)冪的除法教案

    【類型四】 含整數(shù)指數(shù)冪、零指數(shù)冪與絕對值的混合運算計算:-22+(-12)-2+(2015-π)0-|2-π2|.解析:分別根據(jù)有理數(shù)的乘方、零指數(shù)冪、負整數(shù)指數(shù)冪及絕對值的性質計算出各數(shù),再根據(jù)實數(shù)的運算法則進行計算.解:-22+(-12)-2+(2015-π)0-|2-π2|=-4+4+1-2+π2=π2-1.方法總結:熟練掌握有理數(shù)的乘方、零指數(shù)冪、負整數(shù)指數(shù)冪及絕對值的性質是解答此題的關鍵.三、板書設計1.同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.2.零次冪:任何一個不等于零的數(shù)的零次冪都等于1.即a0=1(a≠0).3.負整數(shù)次冪:任何一個不等于零的數(shù)的-p(p是正整數(shù))次冪,等于這個數(shù)p次冪的倒數(shù).即a-p=1ap(a≠0,p是正整數(shù)).從計算具體問題中的同底數(shù)冪的除法,逐步歸納出同底數(shù)冪除法的一般性質.教學時要多舉幾個例子,讓學生從中總結出規(guī)律,體驗自主探究的樂趣和數(shù)學學習的魅力,為以后的學習奠定基礎

  • 北師大初中七年級數(shù)學下冊同底數(shù)冪的乘法教案

    北師大初中七年級數(shù)學下冊同底數(shù)冪的乘法教案

    問題:2015年9月24日,美國國家航空航天局(下簡稱:NASA)對外宣稱將有重大發(fā)現(xiàn)宣布,可能發(fā)現(xiàn)除地球外適合人類居住的星球,一時間引起了人們的廣泛關注.早在2014年,NASA就發(fā)現(xiàn)一顆行星,這顆行星是第一顆在太陽系外恒星旁發(fā)現(xiàn)的適居帶內、半徑與地球相若的系外行星,這顆行星環(huán)繞紅矮星開普勒186,距離地球492光年.1光年是光經(jīng)過一年所行的距離,光的速度大約是3×105km/s.問:這顆行星距離地球多遠(1年=3.1536×107s)?3×105×3.1536×107×492=3×3.1536×4.92×105×107×102=4.6547136×10×105×107×102.問題:“10×105×107×102”等于多少呢?二、合作探究探究點:同底數(shù)冪的乘法【類型一】 底數(shù)為單項式的同底數(shù)冪的乘法計算:(1)23×24×2;(2)-a3·(-a)2·(-a)3;(3)mn+1·mn·m2·m.解析:(1)根據(jù)同底數(shù)冪的乘法法則進行計算即可;(2)先算乘方,再根據(jù)同底數(shù)冪的乘法法則進行計算即可;(3)根據(jù)同底數(shù)冪的乘法法則進行計算即可.

  • 北師大初中數(shù)學八年級上冊二元一次方程與一次函數(shù)2教案

    北師大初中數(shù)學八年級上冊二元一次方程與一次函數(shù)2教案

    2. 在彈性限度內,彈簧的長度y(厘米)是所掛物體質量x(千克)的一次函數(shù).當所掛物體的質量為1千克時彈簧長15厘米;當所掛物體的質量為3千克時,彈簧長16厘米.寫出y與x之間的函數(shù)關系式,并求當所掛物體的質量為4千克時彈簧的長度.答案: 當x=4是,y= 3. 教材例2的再探索:我邊防局接到情報,近海處有一可疑船只A正向公海方向行駛.邊防局迅速派出快艇B追趕,如圖所示, , 分別表示兩船相對于海岸的距離s(海里)與追趕時間t(分)之間的關系.當時間t等于多少分鐘時,我邊防快艇B能夠追趕上A。答案:直線 的解析式: ,直線 的解析式: 15分鐘第五環(huán)節(jié)課堂小結(2分鐘,教師引導學生總結)內容:一、函數(shù)與方程之間的關系.二、在解決實際問題時從不同角度思考問題,就會得到不一樣的方法,從而拓展自己的思維.三、掌握利用二元一次方程組求一次函數(shù)表達式的一般步驟:1.用含字母的系數(shù)設出一次函數(shù)的表達式: ;2.將已知條件代入上述表達式中得k,b的二元一次方程組;3.解這個二元一次方程組得k,b,進而得到一次函數(shù)的表達式.

  • 北師大初中數(shù)學八年級上冊確定一次函數(shù)的表達式1教案

    北師大初中數(shù)學八年級上冊確定一次函數(shù)的表達式1教案

    解:設正比例函數(shù)的表達式為y1=k1x,一次函數(shù)的表達式為y2=k2x+b.∵點A(4,3)是它們的交點,∴代入上述表達式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函數(shù)的表達式為y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵點B在y軸的負半軸上,∴B點的坐標為(0,-52).又∵點B在一次函數(shù)y2=k2x+b的圖象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函數(shù)的表達式為y2=118x-52.方法總結:根據(jù)圖象確定一次函數(shù)的表達式的方法:從圖象上選取兩個已知點的坐標,然后運用待定系數(shù)法將兩點的橫、縱坐標代入所設表達式中求出待定系數(shù),從而求出函數(shù)的表達式.【類型三】 根據(jù)實際問題確定一次函數(shù)的表達式某商店售貨時,在進價的基礎上加一定利潤,其數(shù)量x與售價y的關系如下表所示,請你根據(jù)表中所提供的信息,列出售價y(元)與數(shù)量x(千克)的函數(shù)關系式,并求出當數(shù)量是2.5千克時的售價.

  • 北師大初中數(shù)學八年級上冊確定一次函數(shù)的表達式2教案

    北師大初中數(shù)學八年級上冊確定一次函數(shù)的表達式2教案

    四個不同類型的問題由淺入深,學生能從不同角度掌握求一次函數(shù)的方法.對于問題4,教師可引導學生分析,并教學生要學會畫圖,利用圖象分析問題,體會數(shù)形結合方法的重要性.學生若出現(xiàn)解題格式不規(guī)范的情況,教師應糾正并給予示范,訓練學生規(guī)范答題的習慣.第五環(huán)節(jié)課時小結內容:總結本課知識與方法1.本節(jié)課主要學習了怎樣確定一次函數(shù)的表達式,在確定一次函數(shù)的表達式時可以用待定系數(shù)法,即先設出解析式,再根據(jù)題目條件(根據(jù)圖象、表格或具體問題)求出 , 的值,從而確定函數(shù)解析式。其步驟如下:(1)設函數(shù)表達式;(2)根據(jù)已知條件列出有關k,b的方程;(3)解方程,求k,b;4.把k,b代回表達式中,寫出表達式.2.本節(jié)課用到的主要的數(shù)學思想方法:數(shù)形結合、方程的思想.目的:引導學生小結本課的知識及數(shù)學方法,使知識系統(tǒng)化.第六環(huán)節(jié)作業(yè)布置習題4.5:1,2,3,4目的:進一步鞏固當天所學知識。教師也可根據(jù)學生情況適當增減,但難度不應過大.

  • 北師大初中數(shù)學八年級上冊數(shù)據(jù)的離散程度1教案

    北師大初中數(shù)學八年級上冊數(shù)據(jù)的離散程度1教案

    (4)從平均分看,兩隊的平均分相同,實力大體相當;從折線的走勢看,甲隊比賽成績呈上升趨勢,而乙隊比賽成績呈下降趨勢;從獲勝場數(shù)看,甲隊勝三場,乙隊勝兩場,甲隊成績較好;從方差看,甲隊比賽成績比乙隊比賽成績波動小,甲隊成績較穩(wěn)定.綜上所述,選派甲隊參賽更能取得好成績.方法總結:本題是反映數(shù)據(jù)集中程度與離散程度的綜合題.從圖形中得到兩隊的成績,然后從平均數(shù)、方差的角度來考慮,在平均數(shù)相同的情況下,方差越小的越穩(wěn)定.三、板書設計數(shù)據(jù)的離散程度極差:一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差方差:各個數(shù)據(jù)與平均數(shù)差的平方的平均數(shù) s2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2]標準差:方差的算術平方根 公式:s=s2經(jīng)歷表示數(shù)據(jù)離散程度的幾個量的探索過程,通過實例體會用樣本估計總體的統(tǒng)計思想,培養(yǎng)學生的數(shù)學應用能力.通過小組合作,培養(yǎng)學生的合作意識;通過解決實際問題,讓學生體會數(shù)學與生活的密切聯(lián)系.

  • 北師大初中數(shù)學九年級上冊反比例函數(shù)的性質1教案

    北師大初中數(shù)學九年級上冊反比例函數(shù)的性質1教案

    如圖,四邊形OABC是邊長為1的正方形,反比例函數(shù)y=kx的圖象經(jīng)過點B(x0,y0),則k的值為.解析:∵四邊形OABC是邊長為1的正方形,∴它的面積為1,且BA⊥y軸.又∵點B(x0,y0)是反比例函數(shù)y=kx圖象上的一點,則有S正方形OABC=|x0y0|=|k|,即1=|k|.∴k=±1.又∵點B在第二象限,∴k=-1.方法總結:利用正方形或矩形或三角形的面積確定|k|的值之后,要注意根據(jù)函數(shù)圖象所在位置或函數(shù)的增減性確定k的符號.三、板書設計反比例函數(shù)的性質性質當k>0時,在每一象限內,y的值隨x的值的增大而減小當k<0時,在每一象限內,y的值隨x的值的增大而增大反比例函數(shù)圖象中比例系數(shù)k的幾何意義通過對反比例函數(shù)圖象的全面觀察和比較,發(fā)現(xiàn)函數(shù)自身的規(guī)律,概括反比例函數(shù)的有關性質,進行語言表述,訓練學生的概括、總結能力,在相互交流中發(fā)展從圖象中獲取信息的能力.讓學生積極參與到數(shù)學學習活動中,增強他們對數(shù)學學習的好奇心與求知欲.

  • 北師大初中數(shù)學九年級上冊反比例函數(shù)的應用2教案

    北師大初中數(shù)學九年級上冊反比例函數(shù)的應用2教案

    補充題:為了預防“非典”,某學校對教室采用藥熏消毒,已知藥物燃燒時,室內每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成為正比例,藥物燃燒后,y與x成反比例(如右圖),現(xiàn)測得藥物8分鐘燃畢,此時室內空氣中每立方米的含藥量6毫克,請根據(jù)題中所提供的信息,解答下列問題:(1)藥物燃燒時,y關于x的函數(shù)關系式為 ,自變量x的取值范圍為 ;藥物燃燒后,y關于x的函數(shù)關系式為 .(2)研究表明,當空氣中每立方米的含藥量低于1.6毫克時學生方可進教室,那么從消毒開始,至少需要經(jīng)過______分鐘后,學生才能回到教室;(3)研究表明,當空氣中每立方米的含藥量不低于3毫克且持續(xù)時間不低于10分鐘時,才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?答案:(1)y= x, 010,即空氣中的含藥量不低于3毫克/m3的持續(xù)時間為12分鐘,大于10分鐘的有效消毒時間.

  • 北師大初中數(shù)學九年級上冊一元二次方程的根與系數(shù)的關系1教案

    北師大初中數(shù)學九年級上冊一元二次方程的根與系數(shù)的關系1教案

    方程有兩個不相等的實數(shù)根.綜上所述,m=3.易錯提醒:本題由根與系數(shù)的關系求出字母m的值,但一定要代入判別式驗算,字母m的取值必須使判別式大于0,這一點很容易被忽略.三、板書設計一元二次方程的根與系數(shù)的關系關系:如果方程ax2+bx+c=0(a≠0) 有兩個實數(shù)根x1,x2,那么x1+x2 =-ba,x1x2=ca應用利用根與系數(shù)的關系求代數(shù)式的值已知方程一根,利用根與系數(shù)的關系求方程的另一根判別式及根與系數(shù)的關系的綜合應用讓學生經(jīng)歷探索,嘗試發(fā)現(xiàn)韋達定理,感受不完全的歸納驗證以及演繹證明.通過觀察、實踐、討論等活動,經(jīng)歷發(fā)現(xiàn)問題、發(fā)現(xiàn)關系的過程,養(yǎng)成獨立思考的習慣,培養(yǎng)學生觀察、分析和綜合判斷的能力,激發(fā)學生發(fā)現(xiàn)規(guī)律的積極性,激勵學生勇于探索的精神.通過交流互動,逐步養(yǎng)成合作的意識及嚴謹?shù)闹螌W精神.

  • 北師大初中數(shù)學九年級上冊一元二次方程的根與系數(shù)的關系2教案

    北師大初中數(shù)學九年級上冊一元二次方程的根與系數(shù)的關系2教案

    3、一般地,對于關于 方程 為已知常數(shù), ,試用求根公式求出它的兩個解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致?!局R應用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個根是2,求它的另一個根及 的值。(3)不解方程,求一 元二次方程 兩個根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個根是 ?!練w納小結】【作業(yè)】1、已知方程 的一個根是1,求它的另一個根及 的值。2、設 是方程 的兩個根,不解方程,求下列各式的值。① ;② 3、求一個一元次方程,使它的兩 個根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;

  • 北師大初中數(shù)學九年級上冊一元二次方程的根與系數(shù)的關系2教案

    北師大初中數(shù)學九年級上冊一元二次方程的根與系數(shù)的關系2教案

    2、猜想 一元二次方程的兩個根 的和與積和原來的方程有什么聯(lián)系?小組交流。3、一般地,對于關于 方程 為已知常數(shù), ,試用求根公式求出它的兩個解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致?!局R應用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個根是2,求它的另一個根及 的值。(3)不解方程,求一 元二次方程 兩個根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個根是 。【歸納小結】【作業(yè)】1、已知方程 的一個根是1,求它的另一個根及 的值。2、設 是方程 的兩個根,不解方程,求下列各式的值。① ;② 3、求一個一元次方程,使它的兩 個根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;

  • 北師大初中九年級數(shù)學下冊三角函數(shù)的應用2教案

    北師大初中九年級數(shù)學下冊三角函數(shù)的應用2教案

    教學目標(一)教學知識點1.經(jīng)歷探索船是否有觸礁危險的過程,進一步體會三角函數(shù)在解決問題過程中的應用.2.能夠把實際問題轉化為數(shù)學問題,能夠借助于計算器進行有關三角函數(shù)的計算,并能對結果的意義進行說明.(二)能力訓練要求發(fā)展學生的數(shù)學應用意識和解決問題的能力.(三)情感與價值觀要求1.在經(jīng)歷弄清實際問題題意的過程中,畫出示意圖,培養(yǎng)獨立思考問題的習慣和克服困難的勇氣. 2.選擇生活中學生感興趣的題材,使學生能積極參與數(shù)學活動,提高學習數(shù)學、學好數(shù)學的欲望.教具重點1.經(jīng)歷探索船是否有觸礁危險的過程,進一步體會三角函數(shù)在解決問題過程中的作用.2.發(fā)展學生數(shù)學應用意識和解決問題的能力.教學難點根據(jù)題意,了解有關術語,準確地畫出示意圖.教學方法探索——發(fā)現(xiàn)法教具準備多媒體演示

  • 北師大初中九年級數(shù)學下冊二次函數(shù)與一元二次方程1教案

    北師大初中九年級數(shù)學下冊二次函數(shù)與一元二次方程1教案

    解:(1)設第一次落地時,拋物線的表達式為y=a(x-6)2+4,由已知:當x=0時,y=1,即1=36a+4,所以a=-112.所以函數(shù)表達式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據(jù)題意:CD=EF(即相當于將拋物線AEMFC向下平移了2個單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結:解決此類問題的關鍵是先進行數(shù)學建模,將實際問題中的條件轉化為數(shù)學問題中的條件.常有兩個步驟:(1)根據(jù)題意得出二次函數(shù)的關系式,將實際問題轉化為純數(shù)學問題;(2)應用有關函數(shù)的性質作答.

  • 北師大初中九年級數(shù)學下冊確定二次函數(shù)的表達式1教案

    北師大初中九年級數(shù)學下冊確定二次函數(shù)的表達式1教案

    解析:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據(jù)對稱軸是x=-3,求出b=6,即可得出答案;(2)根據(jù)CD∥x軸,得出點C與點D關于x=-3對稱,根據(jù)點C在對稱軸左側,且CD=8,求出點C的橫坐標和縱坐標,再根據(jù)點B的坐標為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點C與點D關于x=-3對稱.∵點C在對稱軸左側,且CD=8,∴點C的橫坐標為-7,∴點C的縱坐標為(-7)2+6×(-7)+5=12.∵點B的坐標為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結:此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象和性質,注意掌握數(shù)形結合思想與方程思想的應用.

  • 北師大初中九年級數(shù)學下冊三角函數(shù)的計算1教案

    北師大初中九年級數(shù)學下冊三角函數(shù)的計算1教案

    如圖,課外數(shù)學小組要測量小山坡上塔的高度DE,DE所在直線與水平線AN垂直.他們在A處測得塔尖D的仰角為45°,再沿著射線AN方向前進50米到達B處,此時測得塔尖D的仰角∠DBN=61.4°,小山坡坡頂E的仰角∠EBN=25.6°.現(xiàn)在請你幫助課外活動小組算一算塔高DE大約是多少米(結果精確到個位).解析:根據(jù)銳角三角函數(shù)關系表示出BF的長,進而求出EF的長,得出答案.解:延長DE交AB延長線于點F,則∠DFA=90°.∵∠A=45°,∴AF=DF.設EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,則DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大約是81米.方法總結:解決此類問題要了解角之間的關系,找到與已知和未知相關聯(lián)的直角三角形,當圖形中沒有直角三角形時,要通過作高或垂線構造直角三角形.

  • 北師大初中九年級數(shù)學下冊三角函數(shù)的應用1教案

    北師大初中九年級數(shù)學下冊三角函數(shù)的應用1教案

    然后,她沿著坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分鐘抵達C處,此時,測得A點的俯角是15°.已知小麗的步行速度是18米/分,圖中點A、B、E、D、C在同一平面內,且點D、E、B在同一水平直線上.求出娛樂場地所在山坡AE的長度(參考數(shù)據(jù):2≈1.41,結果精確到0.1米).解析:作輔助線EF⊥AC于點F,根據(jù)速度乘以時間得出CE的長度,通過坡度得到∠ECF=30°,通過平角減去其他角從而得到∠AEF=45°,即可求出AE的長度.解:作EF⊥AC于點F,根據(jù)題意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娛樂場地所在山坡AE的長度約為190.4米.方法總結:解決本題的關鍵是能借助仰角、俯角和坡度構造直角三角形,并結合圖形利用三角函數(shù)解直角三角形.

  • 北師大初中七年級數(shù)學上冊有理數(shù)的乘法法則教案2

    北師大初中七年級數(shù)學上冊有理數(shù)的乘法法則教案2

    討論歸納,總結出多個有理數(shù)相乘的規(guī)律:幾個不等于0的因數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定。當負因數(shù)有奇數(shù)個時,積的符號為負;當負因數(shù)有偶數(shù)個時,積的符號為正。只要有一個因數(shù)為0,積就為0。(2)幾個不等于0的因數(shù)相乘時,積的絕對值是多少?(生:積的絕對值是這幾個因數(shù)的絕對值的乘積.)例2、計算:(1) ;(2) 分析:(1)有多個不為零的有理數(shù)相乘時,可以先確定積的符號,再把絕對值相乘;(2)若其中有一個因數(shù)為0,則積為0。解:(1) = (2) =0練習(1) ,(2) ,(3) 6、探索活動:把-6表示成兩個整數(shù)的積,有多少種可能性?把它們全部寫出來。(三)課堂小結通過本節(jié)課的學習,大家學會了什么?(1)有理數(shù)的乘法法則。(2)多個不等于0的有理數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定。(3)幾個數(shù)相乘時,如果有一個因數(shù)是0,則積就為0。(4)乘積是1的兩個有理數(shù)互為倒數(shù)。(四)作業(yè):課本作業(yè)題

  • 北師大初中七年級數(shù)學上冊有理數(shù)的除法教案1

    北師大初中七年級數(shù)學上冊有理數(shù)的除法教案1

    解析:∵ab>0,根據(jù)“兩數(shù)相除,同號得正”可知,a、b同號,又∵a+b<0,∴可以判斷a、b均為負數(shù).故選D.方法總結:此題考查了有理數(shù)乘法和加法法則,將二者綜合考查是考試中常見的題型,此題的側重點在于考查學生的邏輯推理能力.讓學生深刻理解除法是乘法的逆運算,對學好本節(jié)內容有比較好的作用.教學設計可以采用課本的引例作為探究除法法則的過程.讓學生自己探索并總結除法法則,同時也讓學生對比乘法法則和除法法則,加深印象.并講清楚除法的兩種運算方法:(1)在除式的項和數(shù)字不復雜的情況下直接運用除法法則求解.(2)在多個有理數(shù)進行除法運算,或者是乘、除混合運算時應該把除法轉化為乘法,然后統(tǒng)一用乘法的運算律解決問題.

  • 北師大初中數(shù)學八年級上冊二元一次方程與一次函數(shù)1教案

    北師大初中數(shù)學八年級上冊二元一次方程與一次函數(shù)1教案

    由②得y=23x+23.在同一直角坐標系中分別作出一次函數(shù)y=3x-4和y=23x+23的圖象.如右圖,由圖可知,它們的圖象的交點坐標為(2,2).所以方程組3x-y=4,2x-3y=-2的解是x=2,y=2.方法總結:用畫圖象的方法可以直觀地獲得問題的結果,但不是很準確.三、板書設計1.二元一次方程組的解是對應的兩條直線的交點坐標;2.用圖象法解二元一次方程組的步驟:(1)變形:把兩個方程化為一次函數(shù)的形式;(2)作圖:在同一坐標系中作出兩個函數(shù)的圖象;(3)觀察圖象,找出交點的坐標;(4)寫出方程組的解.通過引導學生自主學習探索,進一步揭示了二元一次方程和函數(shù)圖象之間的對應關系,很自然的得到二元一次方程組的解與兩條直線的交點之間的對應關系.進一步培養(yǎng)了學生數(shù)形結合的意識,充分提高學生數(shù)形結合的能力,使學生在自主探索中學會不同數(shù)學知識間可以互相轉化的數(shù)學思想和方法.

上一頁123...606162636465666768697071下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!