正方體的體積=棱長×棱長×棱長用字母a表示棱長,V=a×a×a.也可以寫成a3讀作a的立方.表示3個a相乘.不要誤認為a與3相乘。寫a3時3寫在a的右上角要寫小些.所以正方體的體積公式一般寫成: V=a3(五)、鞏固練習(xí)、運用公式練習(xí)是數(shù)學(xué)中教學(xué)鞏固新知、形成技能、發(fā)展思維、提高學(xué)生分析問題、解決問題能力的有效手段,為了加強學(xué)生的理解,使學(xué)生能正確運用公式.我設(shè)計了多層次的練習(xí)。1、通過讓學(xué)生完成看圖求體積,這樣有助于學(xué)生理解長方體正方體的體積與它的長寬高的關(guān)系,記住長方體的體積計算公式.2、我對安排了四個判斷題,以加深學(xué)生對a的立方的理解和運用。3,解決實際問題,我安排了兩道題目的是讓學(xué)生所學(xué)新知識解決生活中的一些實際問題。
2、從正面初步感受成正比例量的特征發(fā)給學(xué)生學(xué)習(xí)卡,呈現(xiàn)給學(xué)生兩組成正比例的量,目的是讓學(xué)生從正面發(fā)現(xiàn)正比例的特征,通過觀察、自主探索與合作交流等方式初步建構(gòu)正比例的意義并做抽象歸納。3、在練習(xí)中繼續(xù)感受成正比例量的特征練習(xí)分兩個層次,首先呈現(xiàn)給學(xué)生簡單的成正比例和不成正比例的三組量進行比較,然后呈現(xiàn)一些易錯的數(shù)量關(guān)系進行判斷,目的是讓學(xué)生在比較中,逐步剝離無關(guān)因素,突出正比例的本質(zhì)特征,并形成正確的正比例的判定思路。(三)說學(xué)法在本節(jié)課中,我著重引導(dǎo)學(xué)生,在獨立思考的基礎(chǔ)上,學(xué)會小組合作交流。具體表現(xiàn)在學(xué)會思考,學(xué)會觀察,學(xué)會表達,學(xué)會思考。使學(xué)生有足夠的時間和空間經(jīng)歷觀察、猜測、推理等活動過程,并對學(xué)生進行激勵性的評價,讓學(xué)生樂于說,善于說。
首先,學(xué)生帶著如下三個問題自學(xué)課文,(電腦出示):(1)用什么方法可以得到計算圓錐體積的公式?(2)圓柱和圓錐等底等高是什么意思?(3)得出了什么結(jié)論?圓錐體積的計算公式是什么?其次,學(xué)生操作實驗,先讓學(xué)生比較圓柱和圓錐是等底等高。再讓學(xué)生做在圓錐中裝滿沙土往等底等高的圓柱中倒和在圓柱中裝滿沙土往等底等高的圓錐中倒的實驗,得出倒三次正好倒?jié)M。使學(xué)生理解等底等高的圓柱和圓錐,圓錐的體積是圓柱體積的,圓柱的體積是圓錐的3倍。第三、小組討論,全班交流,歸納,推導(dǎo)出圓錐體積的計算公式:V= Sh。第四、讓學(xué)生做在小圓錐里裝滿沙土往大圓柱中倒的實驗,得出倒三次不能倒?jié)M。再次強調(diào),只有等底等高的圓柱和圓錐才存在著一定的倍數(shù)關(guān)系。第五、師生小結(jié):圓錐的體積等于和它等底等高的圓柱體積的三分之一。
一、說教材“正比例和反比例的意義”這部分內(nèi)容著重使學(xué)生理解正反比例的意義。正、反比例關(guān)系是比較重要的一種數(shù)量關(guān)系,學(xué)生理解并掌握了這種數(shù)量關(guān)系,可以應(yīng)用它解決一些簡單的正、反比例方面的實際問題。二、說教學(xué)目標1.使學(xué)生理解正、反比例的意義,能夠初步判斷兩種相關(guān)聯(lián)的量是否成比例,成什么比例.2.通過觀察、比較、歸納,提高學(xué)生綜合概括推理的能力.三、說教學(xué)重點理解正反比例的意義,掌握正反比例的變化的規(guī)律.四、說教學(xué)難點理解正反比例的意義,掌握正反比例的變化的規(guī)律.五、說學(xué)情在教學(xué)了正比例知識后,大部分學(xué)生都明白了如何判斷兩個量是不是正比例,在做題時,學(xué)生出錯的可能性不大,主要在于語言表達的完整性和科學(xué)性上。可是一旦教授了反比例的知識之后,學(xué)生開始混淆兩者了!不知道是把兩個量相“乘”還是相“除”!這是由于學(xué)生對于“正”和 “反”的理解不夠到位。
(二)師生互動,驗證猜想活動二:學(xué)生自由探索,圓柱體積計算方法以小組為單位設(shè)計出一種自己學(xué)過的知識計算圓柱體積的方法,通過合作,學(xué)生想到的辦法可能有:①把橡皮泥捏成圓柱體,再捏成長方體,量出長方體的長、寬、高。算出長方體的體積,也就是圓柱的體積。②把圓柱形的杯子裝滿沙子,鋪平,然后把沙子倒入較大的長方體的盒子中,量出長方體盒子的長、寬及沙子的高,算出沙子的體積,也就是圓柱的體積。如果杯子的厚度忽略不計的話。杯子的容積就是杯子的體積。③把一個圓柱體放到裝有(正)長方體容器中,水會上升,上升的水的體積就是圓柱的體積。(這一活動的設(shè)計,是通過觀察力求讓學(xué)生體驗到我們在計算圓柱的體積時都是把圓柱的體積轉(zhuǎn)化為其他形體的體積來進行計算的。由此,也就可以驗證學(xué)生的猜想是否準確,但是為了不影響學(xué)生的求知欲,我設(shè)計了這樣一個問題:你能用這些方法來計算我們的學(xué)校門口這根圓柱形柱子的體積嗎?
(一)說教材《百分數(shù)的一般應(yīng)用題》是在學(xué)生學(xué)過用分數(shù)解決問題和百分數(shù)的意義、百分數(shù)和分數(shù)、小數(shù)的互化的基礎(chǔ)上進行教學(xué)的。主要內(nèi)容是求常見的百分率,也就是求一個數(shù)是另一個數(shù)的百分之幾的實際問題,這種問題與求一個數(shù)是另一個數(shù)的幾分之幾的問題相同。所以求常見的百分率的思路和方法與分數(shù)解決問題大致相同。通過這部分教學(xué),既加深了學(xué)生對百分數(shù)的認識,又加強了知識間的聯(lián)系。這部分教材在安排上有以下一些特點:1、從學(xué)生已有的知識和生活經(jīng)驗出發(fā),幫助學(xué)生理解數(shù)學(xué)。2、設(shè)置數(shù)學(xué)活動生活情境,培養(yǎng)學(xué)生的解決問題意識和探究精神。(二)說學(xué)生對學(xué)生來說,利用已有的知識和生活經(jīng)驗,依據(jù)數(shù)量關(guān)系列式解答并不困難,但要求學(xué)生找準誰和誰比,很重要。二、說教學(xué)目標與重難點根據(jù)以上分析,我確定了本節(jié)課的教學(xué)目標如下:1、使學(xué)生加深對百分數(shù)的認識,理解生活中的百分率的含義,掌握求百分率的方法。2、依據(jù)分數(shù)與百分數(shù)應(yīng)用題的內(nèi)在聯(lián)系,培養(yǎng)學(xué)生的遷移類推能力和數(shù)學(xué)的應(yīng)用意識3、讓學(xué)生在具體的情況中感受百分數(shù)來源于生活實際,在應(yīng)用中體驗數(shù)學(xué)的價值。重點:解答求一個數(shù)是另一個數(shù)的百分之幾的應(yīng)用題。
1、說內(nèi)容:百分數(shù)的意義和寫法是人教版義務(wù)教育課程標準實驗教科書六年級數(shù)學(xué)上冊第五單元的內(nèi)容。2、說教材:這部分內(nèi)容是在學(xué)生學(xué)過整數(shù)、小數(shù)特別是分數(shù)的意義和應(yīng)用的基礎(chǔ)上進行教學(xué)的。百分數(shù)的意義和寫法是本單元的基礎(chǔ),學(xué)生只有理解了百分數(shù)的意義,才能正確地運用它解決實際問題。二、學(xué)情分析:百分數(shù)對于六年級學(xué)生來說并不陌生,他們有的可能已經(jīng)認識百分數(shù),并且能夠正確讀出百分數(shù),但大多數(shù)學(xué)生對百分數(shù)意義的理解還不十分準確,學(xué)生極易把百分數(shù)等同于分母是100的一般分數(shù)。因此教學(xué)中如何激活學(xué)生的相關(guān)經(jīng)驗,及時引導(dǎo)學(xué)生理解百分數(shù)和分數(shù)的聯(lián)系與區(qū)別,讓學(xué)生完成百分數(shù)意義的建構(gòu),顯得尤為重要。三、教學(xué)目標:1、知識與技能:讓學(xué)生經(jīng)歷從實際問題中抽象出百分數(shù)的過程,體會引入百分數(shù)的必要性,理解百分數(shù)的意義,會正確讀寫百分數(shù)。
(二)注重學(xué)法。堅持“發(fā)展為本”,促進學(xué)生個性發(fā)展,并在時間和空間諸方面為學(xué)生提供發(fā)展的充分條件,以培養(yǎng)學(xué)生的實踐能力、探索能力和創(chuàng)新精神為目標。在教學(xué)過程中,注意引導(dǎo)學(xué)生怎樣有序觀察、怎樣概括結(jié)論,通過一系列活動,培養(yǎng)學(xué)生動手、動口、動腦的能力,使學(xué)生的觀察能力、抽象概括能力逐步提高,教會學(xué)生學(xué)習(xí)。使學(xué)生通過自己的努力有所感受,有所感悟,有所發(fā)現(xiàn),有所創(chuàng)新。小學(xué)生學(xué)習(xí)的數(shù)學(xué)應(yīng)該是生活中的數(shù)學(xué),是學(xué)生“自己的數(shù)學(xué)”。讓學(xué)生在生活情境中“尋”數(shù)學(xué),在實踐操作中“做”數(shù)學(xué),在現(xiàn)實生活中“用”數(shù)學(xué)。“學(xué)以致用”是學(xué)習(xí)的出發(fā)點和歸宿點,也是學(xué)習(xí)數(shù)學(xué)的終結(jié)所在。讓學(xué)生感到數(shù)學(xué)的有趣和可學(xué),我們還應(yīng)注重將數(shù)學(xué)知識提升應(yīng)用到生活中,提高學(xué)生處理問題的實際能力,讓學(xué)生真正做到會學(xué)習(xí)、會創(chuàng)造、會生活的一代新人,讓數(shù)學(xué)課堂真正成為學(xué)生活動的、創(chuàng)造的課堂。三、優(yōu)化程序,突出主體。
為什么B和C的答案都對呢?(因為比還可以寫成分數(shù)的形式,但是讀還是讀做幾比幾。)4、判斷:(1)小明今年10歲,爸爸37歲,父親和兒子的年齡比是10∶37。(2)一項工程,甲單獨做要7天完成,乙單獨做要5天完成,甲乙兩人的工作效率比是7∶5。(3)大卡車的載重量是6噸,小卡車的載重量是3噸,大小卡車載重量的比是2?!?】第二層練習(xí)1、寫出比值是2的比?!?】隨機練習(xí)(看時間情況定)小明今年12歲,是六年一班學(xué)生,該班共有42個學(xué)生,小明爸爸今年38歲,在保險公司上班,每月工資1000元,年薪12000元,小明媽媽每月工資800元,年薪9600元,她所在單位有職工24人。要求:根據(jù)題目中提供的條件,尋找合適的量,說出兩個數(shù)之間的比。五、課堂總結(jié),拓展延伸。1、這節(jié)課學(xué)習(xí)了什么知識?你有什么收獲?2、你能說出一些生活中的關(guān)于比的例子嗎?(學(xué)生舉例)
多年的小學(xué)教學(xué)經(jīng)驗告訴我:小學(xué)高年級的學(xué)生已有一定的自學(xué)能力,關(guān)鍵是看我們設(shè)置的情景和學(xué)生的生活是不是緊密聯(lián)系,是不是喚起了學(xué)生的已有表象,并不和使用多種媒體有絕對聯(lián)系。所以在學(xué)習(xí)例題中我引導(dǎo)學(xué)生自主探討,從中發(fā)現(xiàn)問題,提出問題,最后獨立解決問題,從而訓(xùn)練學(xué)生數(shù)學(xué)語言表達能力,發(fā)展學(xué)生的創(chuàng)造性思維。⒋質(zhì)疑問難。㈣新知總結(jié)對上面所學(xué)知識,教師引導(dǎo)學(xué)生作一次歸納總結(jié),讓學(xué)生明確要求圓周長時,必須設(shè)法求得圓的直徑或半徑。這樣使學(xué)生對求圓周長有明確的認識,進一步深化重點。㈤新知運用國家教委加強與改進小學(xué)數(shù)學(xué)教學(xué)的意見中提出:基礎(chǔ)訓(xùn)練是使學(xué)生融會貫通地掌握知識,形成熟練技能和發(fā)展智力的重要手段。所以在本節(jié)練習(xí)中我以基礎(chǔ)練習(xí)為主,適當(dāng)補充了提高練習(xí)。
教材分析:例2以學(xué)校興趣小組為題材,引出稍復(fù)雜的已知一個數(shù)的幾分之幾是多少,求這個數(shù)的實際問題。用算術(shù)方法解決這樣的實際問題,不僅需要逆向思考,還要把“比一個數(shù)多它的幾分之幾”,轉(zhuǎn)化為“是一個數(shù)的幾分之幾”,比較抽象,思維難度大。用方程解,可以列成形如 的方程,也可以列成形如 的方程,前者仍然要經(jīng)歷從“多幾分之幾”到“是幾分之幾”的轉(zhuǎn)化,實際上是方程的形式,算術(shù)的思路。教學(xué)重點:弄清單位“1”的量,會分析題中的數(shù)量關(guān)系。教學(xué)難點:分析題中的數(shù)量關(guān)系。學(xué)情分析:由于小學(xué)生目前尚未接觸到比較復(fù)雜的,用算術(shù)方法很難解決的實際問題,所以對方程解法的優(yōu)越認識不足。一些學(xué)生覺得用方程解需要寫設(shè)句,比較麻煩,因此喜歡用算術(shù)解法。對此,教師一方面應(yīng)肯定學(xué)生自己想到的正確解法,另一方面又要因勢利導(dǎo),從進一步學(xué)習(xí)的需要與方程解法的特點等角度,使學(xué)生初步了解學(xué)習(xí)列方程解決問題的重要性。從而提高學(xué)習(xí)用方程解決問題的自覺性和積極性。
(一)教材分析本節(jié)課是在學(xué)生已經(jīng)學(xué)過除法和分數(shù)的意義以及分數(shù)與除法的關(guān)系的基礎(chǔ)上進行教學(xué)的。由于學(xué)生在理解比的意義上比較困難,教材并沒有采取直接給出“比”的概念的做法,而是密切聯(lián)系學(xué)生已有的生活經(jīng)驗和學(xué)習(xí)經(jīng)驗,提供了多種情境,引發(fā)學(xué)生的討論和思考,讓學(xué)生體會引入比的必要性,感受比在生活中的廣泛存在,也為“比的應(yīng)用”“比例”等后續(xù)學(xué)習(xí)做好鋪墊。(二)教學(xué)目標在認真分析教材的基礎(chǔ)上,結(jié)合學(xué)生實際,我從知識、能力、情感等方面擬定了本節(jié)課的教學(xué)目標:知識目標:經(jīng)歷從具體情境中抽象出比的過程,理解比的意義,能正確讀寫比,會求比值。能力目標:培養(yǎng)學(xué)生自主學(xué)習(xí)、獨立思考,能利用比的知識解決一些生活中的數(shù)學(xué)問題。情感目標:引導(dǎo)學(xué)生廣泛聯(lián)系生活實際,充分感受數(shù)學(xué)知識的美與樂趣,激發(fā)學(xué)生的求知欲望。
課程名稱數(shù)學(xué)課題名稱8.2 直線的方程課時2授課日期2016.3任課教師劉娜目標群體14級五高班教學(xué)環(huán)境教室學(xué)習(xí)目標知識目標: (1)理解直線的傾角、斜率的概念; (2)掌握直線的傾角、斜率的計算方法. 職業(yè)通用能力目標: 正確分析問題的能力 制造業(yè)通用能力目標: 正確分析問題的能力學(xué)習(xí)重點直線的斜率公式的應(yīng)用.學(xué)習(xí)難點直線的斜率概念和公式的理解.教法、學(xué)法講授、分析、討論、引導(dǎo)、提問教學(xué)媒體黑板、粉筆
課程分析中專數(shù)學(xué)課程教學(xué)是專業(yè)建設(shè)與專業(yè)課程體系改革的一部分,應(yīng)與專業(yè)課教學(xué)融為一體,立足于為專業(yè)課服務(wù),解決實際生活中常見問題,結(jié)合中專學(xué)生的實際,強調(diào)數(shù)學(xué)的應(yīng)用性,以滿足學(xué)生在今后的工作崗位上的實際應(yīng)用為主,這也體現(xiàn)了新課標中突出應(yīng)用性的理念。分段函數(shù)的實際應(yīng)用在本課程中的地位:(1) 函數(shù)是中專數(shù)學(xué)學(xué)習(xí)的重點和難點,函數(shù)的思想貫穿于整個中專數(shù)學(xué)之中,分段函數(shù)在科技和生活的各個領(lǐng)域有著十分廣泛的應(yīng)用。(2) 本節(jié)所探討學(xué)習(xí)分段函數(shù)在生活生產(chǎn)中的實際問題上應(yīng)用,培養(yǎng)學(xué)生分析與解決問題的能力,養(yǎng)成正確的數(shù)學(xué)化理性思維的同時,形成一種意識,即數(shù)學(xué)“源于生活、寓于生活、用于生活”。教材分析 教材使用的是中等職業(yè)教育課程改革國家規(guī)劃教材,依照13級教學(xué)計劃,函數(shù)的實際應(yīng)用舉例內(nèi)容安排在第三章函數(shù)的最后一部分講解。本節(jié)內(nèi)容是在學(xué)生熟知函數(shù)的概念,表示方法和對函數(shù)性質(zhì)有一定了解的基礎(chǔ)上研究分段函數(shù),同時深化學(xué)生對函數(shù)概念的理解和認識,也為接下來學(xué)習(xí)指數(shù)函數(shù)和對數(shù)函數(shù)作了良好鋪墊。根據(jù)13級學(xué)生實際情況,由生活生產(chǎn)中的實際問題入手,求得分段函數(shù)此部分知識以學(xué)生生活常識為背景,可以引導(dǎo)學(xué)生分析得出。
課題序號 授課班級 授課課時2授課形式新課授課章節(jié) 名稱§9-1 平面基本性質(zhì)使用教具多媒體課件教學(xué)目的1.了解平面的定義、表示法及特點,會用符號表示點、線、面之間的關(guān)系—基礎(chǔ)模塊 2.了解平面的基本性質(zhì)和推論,會應(yīng)用定理和推論解釋生活中的一些現(xiàn)象—基礎(chǔ)模塊 3.會用斜二測畫法畫立體圖形的直觀圖—基礎(chǔ)模塊 4.培養(yǎng)學(xué)生的空間想象能力教學(xué)重點用適當(dāng)?shù)姆柋硎军c、線、面之間的關(guān)系;會用斜二測畫法畫立體圖形的直觀圖教學(xué)難點從平面幾何向立體幾何的過渡,培養(yǎng)學(xué)生的空間想象能力.更新補充 刪節(jié)內(nèi)容 課外作業(yè) 教學(xué)后記能動手畫,動腦想,但立體幾何的語言及想象能力差
4.已知△ABC三個頂點坐標A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點式得直線BC的方程為 = ,即x-2y+3=0,由兩點間距離公式得|BC|= ,點A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點P(0,2),且A(1,1),B(-3,1)兩點到直線l的距離相等,求直線l的方程.解:(方法一)∵點A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過線段AB的中點時,A,B兩點到直線l的距離相等.∵AB的中點是(-1,1),又直線l過點P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時,A,B兩點到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.
一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個大型小區(qū),現(xiàn)在計劃在公路上某處建一個公交站點C,以方便居住在兩個小區(qū)住戶的出行.如何選址能使站點到兩個小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點A、B,如何求A、B兩點間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標系中能否利用數(shù)軸上兩點間的距離求出任意兩點間距離?探究.當(dāng)x1≠x2,y1≠y2時,|P1P2|=?請簡單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個公式嗎?2.兩點間距離公式的理解(1)此公式與兩點的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時,|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時,|P1P2|=|y2-y1|.
一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點間的距離公式,點到直線的距離公式,關(guān)于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠測量的什么距離?A.兩平行線的距離 B.點到直線的距離 C. 點到點的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點P(x_0,y_0 ),,點P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長.公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點到直線的距離.1.原點到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]
1.直線2x+y+8=0和直線x+y-1=0的交點坐標是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點坐標是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,可設(shè)交點坐標為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,若l1⊥l2,則點P的坐標為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點P的坐標為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點. 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對于m的任意實數(shù)值都成立,根據(jù)恒等式的要求,m的一次項系數(shù)與常數(shù)項均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
新知探究我們知道,等差數(shù)列的特征是“從第2項起,每一項與它的前一項的差都等于同一個常數(shù)” 。類比等差數(shù)列的研究思路和方法,從運算的角度出發(fā),你覺得還有怎樣的數(shù)列是值得研究的?1.兩河流域發(fā)掘的古巴比倫時期的泥版上記錄了下面的數(shù)列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《莊子·天下》中提到:“一尺之錘,日取其半,萬世不竭.”如果把“一尺之錘”的長度看成單位“1”,那么從第1天開始,每天得到的“錘”的長度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在營養(yǎng)和生存空間沒有限制的情況下,某種細菌每20 min 就通過分裂繁殖一代,那么一個這種細菌從第1次分裂開始,各次分裂產(chǎn)生的后代個數(shù)依次是2,4,8,16,32,64,… ⑤4.某人存入銀行a元,存期為5年,年利率為 r ,那么按照復(fù)利,他5年內(nèi)每年末得到的本利和分別是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥