1、運用橡皮筋聽音樂學(xué)生討論并回答。《我愛米蘭》曲調(diào)跳蕩《飛來的花瓣》曲調(diào)平穩(wěn)2、運用學(xué)生自帶的鑰匙鏈等能發(fā)出聲音的第二次欣賞《我愛米蘭》《飛來的花瓣》老師引導(dǎo)學(xué)生分析樂曲節(jié)奏的不同《我愛米蘭》節(jié)奏緊密《飛來的花瓣》節(jié)奏寬松6、運用身體動作第三次次欣賞《我愛米蘭》《飛來的花瓣》老師引導(dǎo)學(xué)生分析樂曲速度的不同《我愛米蘭》速度稍快《飛來的花瓣》速度中速7、運用彩色紙第四次欣賞《我愛米蘭》《飛來的花瓣》老師引導(dǎo)學(xué)生分析樂曲情緒的不同《我愛米蘭》情緒明快《飛來的花瓣》情緒深情(五)拓展延伸這一環(huán)節(jié)主要是讓學(xué)生積累課外的音樂知識,拓寬學(xué)生的文化視野,提高學(xué)生的人文素養(yǎng)。最后,請大家用自己的話說說對歌曲的理解?師生在《長大后我就成了你》的歌曲聲中結(jié)束本課。六:板書設(shè)計:層次分明。對比清晰謝謝大家!我的說課到此結(jié)束,敬請各位評委老師多多給予指導(dǎo)。
(1)喊:喂--喂;你好啊--你好??;(2)唱:有旋律的,2468小節(jié)的旋律"喂喂喂""嘩啦啦""叮咚叮咚"(3)這些都可能是山里的什么聲音?師生討論(4)師生接唱"大山的回聲--喂喂喂;風(fēng)吹樹葉--嘩啦啦;山里的泉水--叮咚叮咚;山里的歌聲--多動聽"連接話題:如果你到了山里,你最想做什么事情?那我們就去山里摘一摘果子吧!第二部分學(xué)唱部分1、播放伴奏音樂,師生一起根據(jù)音高,做摘果子和吃果子的律動2、再次播放伴奏,邊哼唱邊表演摘果子動作過渡句:自己摘的果子可真好吃啊,我們以拉歌的形式把山里的小伙伴也叫出來吧!3、第三遍播放伴奏,教師范唱前8小節(jié)4、熟悉歌詞以畫圖的方式,將歌詞展現(xiàn)出來山里的孩子心愛山,從小就生長在山路間,山里的泉水香噴噴,山里的果子,肥又甜,山里的孩子心愛山,山里有我的好家園,山上是我們村里的樹,山下是我們村里的田。
三、深入學(xué)習(xí)體驗春之歌聲——唱春天在新歌學(xué)唱環(huán)節(jié),仍然以春天音樂會為主線,通過老師的導(dǎo)入“今天咱們就來學(xué)唱這次音樂會的主題歌《春天舉行音樂會》,教師進行范唱,進而激發(fā)學(xué)好主題歌的愿望,再通過用“啦”模唱歌譜、有節(jié)奏的朗讀歌詞增強對歌曲的了解,音樂會節(jié)目的形式多樣,除了它們四個音樂家獨奏之外,還有合奏的地方,再提出滴答答答答︱沙沙0沙|沙沙?|轟隆隆隆隆|嘩啦0啦|嘩啦?|難點樂句中節(jié)奏的變化即十六分音符的用法,在學(xué)唱歌曲過程中,采用分角色接龍表演唱等形式,讓學(xué)生在聆聽中主動感受、體驗歌曲的意境,并從歌曲的速度、力度等音樂要素出發(fā),引導(dǎo)學(xué)生在參與表演中感受歌曲,感悟春雨的輕柔、春雷的有力,春水的熱情、春筍的自豪應(yīng)如何唱,重視學(xué)生思維的創(chuàng)造和發(fā)展過程,讓學(xué)生明白怎樣才能更好的表現(xiàn)歌曲,而不是單純的停留在只是會唱歌曲的基礎(chǔ)上,在此過程中進一步的培養(yǎng)了學(xué)生的音樂審美技能。四、創(chuàng)造表現(xiàn),再現(xiàn)春之和諧?!灤禾?/p>
5、好,非常不錯,請你上來把這個名字寫下來吧。6、老師覺得這段音樂還缺點什么,于是我做了一些變化,來聽聽,這段音樂和之前比起來,都有哪些變化呢?(出示比一比課件)六、比一比1、(速度慢了,音高變低了,力度變?nèi)趿?,樂器多了弦樂器,音樂多了B主題)2、小木偶心情怎么樣了?別著急,我們再來聽聽(分別聆聽①②片段)3、老師把這個主題稱之為B主題,誰來給這個主題取一個生動的名字呢?4、小木偶很傷心,誰來說一句話鼓勵鼓勵他?5、小木偶聽到你們的話了,接著來聽聽,小木偶心情又有什么變化?6、變得高興起來了,又挑起了剛才的“快樂舞”(貼上A1主題,寫上“快樂舞”)7、那現(xiàn)在我們完整的來聆聽曲子吧,聽到“快樂舞”時用舞蹈表示,聽到“悲傷舞時坐下來劃旋律線表示。
教法、學(xué)法分析我通過閱讀教材、教參和新課標(biāo),分析學(xué)生學(xué)習(xí)狀況,認為對這一教學(xué)內(nèi)容理解起來比較容易。所以,在教學(xué)時我準(zhǔn)備采取以下策略:1、放手讓學(xué)生自主解決問題,嘗試計算例7的1、2題。再通過學(xué)生口述計算過程,教師設(shè)問、強調(diào)重點使學(xué)生掌握本節(jié)課知識。2、通過學(xué)生反復(fù)敘述算理,培養(yǎng)學(xué)生口頭表達能力,并使他們自主探索“被除數(shù)中間或末尾沒有0,商中間或末尾有0”這一知識形成的過程。教學(xué)目標(biāo)1、在熟練掌握一位數(shù)筆算除法法則的基礎(chǔ)上,會正確計算商中間或末尾有0的除法的另一種情況。2、能熟練地進行商中間有零和末尾有零的除法,形成一定的筆算技能。3、能結(jié)合具體情境估算三位數(shù)除以一位數(shù)的商,增強估算的意識和能力。
說明:此處進行的是一次嘗試應(yīng)用乘方運算來解決開頭的問題,互相呼應(yīng),以體現(xiàn)整節(jié)課的完整性,把學(xué)生開始的興趣再次引向高潮。趣味探索:一張薄薄的紙對折56次后有多厚?試驗一下你能折這么厚嗎?說明:這個探索實際上仍是對學(xué)生應(yīng)用能力的一個檢查,紙對折56次,用什么運算來計算比較方便,另外計算過程中可使用計算器,進一步加深對乘方意義的理解(五)作業(yè)P56頁1、2說明:這兩個習(xí)題是對課本上例題的簡單重復(fù)和模仿,通過本節(jié)課的學(xué)習(xí),多數(shù)學(xué)生應(yīng)該可以較輕松地完成??傊谡麄€教學(xué)設(shè)計中,我始終以學(xué)生為課堂主體,讓他們積極參與到教學(xué)中來,不斷從舊知識中獲得新的認識,通過不斷進行聯(lián)系比較,讓學(xué)生主動自覺地去思考、探索、總結(jié)直至發(fā)現(xiàn)結(jié)果、發(fā)現(xiàn)"方法",進而優(yōu)化了整個教學(xué)。
一、教材分析(一)教材的地位和作用:本節(jié)課是北師大七年級(上)義務(wù)教育課程標(biāo)準(zhǔn)實驗教材第2章第6節(jié)第一課時的內(nèi)容。它是學(xué)生在已經(jīng)掌握有理數(shù)加法、減法、乘法、除法、乘方以后進行學(xué)習(xí)的。它是建立在有理數(shù)的有關(guān)概念和各種運算的意義及法則的基礎(chǔ)上進行的綜合性運算。它是本章的重點之一,是以上各種運算的繼續(xù)和發(fā)展,對學(xué)生運算能力和數(shù)學(xué)學(xué)習(xí)能力的培養(yǎng),有著十分重要的意義,同時也是初中數(shù)學(xué)運算的重要內(nèi)容之一,是后續(xù)學(xué)習(xí)的基礎(chǔ)。(二)教學(xué)目標(biāo)的確立:參照義務(wù)教育階段《數(shù)學(xué)課程標(biāo)準(zhǔn)》的要求,確定本節(jié)課的教學(xué)目標(biāo)如下:1、知識技能目標(biāo):(1)掌握有理數(shù)的混合運算法則及運算順序。(2)熟練的進行有理數(shù)的混合運算。2、能力目標(biāo):培養(yǎng)學(xué)生的觀察能力和運算能力。3、情感與態(tài)度目標(biāo):(1)培養(yǎng)學(xué)生在計算前認真審題,確定運算順序,計算中按步驟審慎進行,并養(yǎng)成驗算的良好的學(xué)習(xí)習(xí)慣。
五、兩點說明。(一)、板書設(shè)計這節(jié)課的板書我是這樣設(shè)計的,在黑板的正上方中間處寫明課題,然后把板書分為左右兩部分,左邊是有理數(shù)除法的法則,為了培養(yǎng)學(xué)生把文字語言轉(zhuǎn)化成符號語言的能力,板書中只出現(xiàn)兩種法則的符號表示,從而加深他們對法則的理解,板書右邊是學(xué)生的板演,以便于比較他們做題中出現(xiàn)的問題。板書下方是課堂小結(jié),重點寫出:有理數(shù)的除法可以轉(zhuǎn)化成有理數(shù)的乘法,以體現(xiàn)本節(jié)課中的重要的數(shù)學(xué)思想方法。有理數(shù)的除法板演練習(xí):有理數(shù)除法的法則:a÷b=a×1/b(b≠0) 1a>0,b>0,a/b>0;a0; 2a>0,b0,a/b<0. 3課堂小結(jié):有理數(shù)的除法 有理數(shù)的乘法轉(zhuǎn)化(二)、時間分配:教學(xué)過程中的八個環(huán)節(jié)所需的時間分別為:1分鐘、2分鐘、5分鐘、8分鐘、8分鐘、16分鐘、2分鐘、1分鐘。
5、總結(jié)學(xué)生解題過程中存在的問題,并指導(dǎo)并糾正、分析根本原因。6、通過演示法給學(xué)生演示完整、詳細和規(guī)范的解題過程。7、總結(jié)有理數(shù)的運算順序和方法。先讓學(xué)生自己總結(jié)運算順序,培養(yǎng)學(xué)生自己思考的能力,然后教師進行糾正。等這個過程結(jié)束之后,再給出完整的運算順序和方法。8、出示練習(xí)題,鞏固所學(xué)知識,教師及時指正。9、最后布置課后作業(yè)題。四、教學(xué)評價本節(jié)課我注重體現(xiàn)“以教師為主導(dǎo)、學(xué)生為主體、以學(xué)生發(fā)展為本的教學(xué)思想”。1、通過具體的題目引入,讓學(xué)生先以自己的知識體系解決問題,在這過程中發(fā)現(xiàn)問題、歸納總結(jié)原因,并予以解決。一方面復(fù)習(xí)前面所學(xué)的基本運算,另一方面完善學(xué)生的知識體系。2、培養(yǎng)學(xué)生自主學(xué)習(xí)與探究的能力、分析與解決問題的能力。
“數(shù)的運算”是“數(shù)與代數(shù)”學(xué)習(xí)領(lǐng)域的重要內(nèi)容,減法是其中的一種基本運算.本課的學(xué)習(xí)遠接小學(xué)階段關(guān)于整數(shù)、分?jǐn)?shù)(包括小數(shù))的減法運算,近承第四節(jié)有理數(shù)的加法運算.通過對有理數(shù)的減法運算的學(xué)習(xí),學(xué)生將對減法運算有進一步的認識和理解,為后繼諸如實數(shù)、復(fù)數(shù)的減法運算的學(xué)習(xí)奠定了堅實的基礎(chǔ).鑒于以上對教學(xué)內(nèi)容在教材體系中的位置及地位的認識和理解,確定本節(jié)課的教學(xué)目標(biāo)如下:1、知識目標(biāo):經(jīng)歷探索有理數(shù)的減法法則的過程,理解有理數(shù)的減法法則,并能熟練運用法則進行有理數(shù)的減法運算.2、能力目標(biāo):經(jīng)歷由特例歸納出一般規(guī)律的過程,培養(yǎng)學(xué)生的抽象概括能力及表達能力;通過減法到加法的轉(zhuǎn)化,讓學(xué)生初步體會轉(zhuǎn)化、化歸的數(shù)學(xué)思想.3、情感目標(biāo):
目的:進一步理解追擊問題的實質(zhì),與課程引入中的灰太狼追喜羊羊故事呼應(yīng),問題得到解決。環(huán)節(jié)三、運用鞏固活動內(nèi)容:育紅學(xué)校七年級學(xué)生步行郊外旅行,1班的學(xué)生組成前隊,步行速度為4千米/小時,3班的學(xué)生組成后隊,步行速度為6千米/小時,1班出發(fā)一個小時后,3班才出發(fā)。請根據(jù)以上的事實提出問題并嘗試回答。問題1:3班追上1班用了多長時間 ?問題2:3班追上1班時,他們離學(xué)校多遠?問題3:………………目的:給學(xué)生提供進一步鞏固建立方程模型的基本過程和方法的熟悉機會,讓學(xué)生活學(xué)活用,真正讓學(xué)生學(xué)會借線段圖分析行程問題的方法,得出其中的等量關(guān)系,從而正確地建立方程求解問題,同時還需注意檢驗方程解的合理性.實際活動效果:由于題目較簡單,所以學(xué)生分析解答時很有信心,且正確率也比較高,同時也進一步體會到了借助“線段圖”分析行程問題的優(yōu)越性.
教學(xué)目標(biāo):1.知道二次函數(shù)與一元二次方程的聯(lián)系,提高綜合解決問題的能力.2.會求拋物線與坐標(biāo)軸交點坐標(biāo),會結(jié)合函數(shù)圖象求方程的根.教學(xué)重點:二次函數(shù)與一元二次方程的聯(lián)系.預(yù)設(shè)難點:用二次函數(shù)與一元二次方程的關(guān)系綜合解題.☆ 預(yù)習(xí)導(dǎo)航 ☆一、鏈接:1.畫一次函數(shù)y=2x-3的圖象并回答下列問題(1)求直線y=2x-3與x軸的交點坐標(biāo); (2)解方程2x-3=0(3)說出直線y=2x-3與x軸交點的橫坐標(biāo)和方程根的關(guān)系2.不解方程3x2-2x+4=0,此方程有 個根。二、導(dǎo)讀畫二次函數(shù)y= x2-5x+4的圖象1.觀察圖象,拋物線與x軸的交點坐標(biāo)是什么?2.求一元二次方程x2-5x+4=0的解。3.拋物線與x軸交點的橫坐標(biāo)與一元二次方程x2-5x+4=0的解有什么關(guān)系?(3)一元二次方程ax2+bx+c=0是二次函數(shù)y=ax2+bx+c當(dāng)函數(shù)值y=0時的特殊情況.二次函數(shù)y=ax2+bx+c的圖象與x軸交點的橫坐標(biāo)與一元二次方程ax2+bx+c=0的根有什么關(guān)系?
解:(1)設(shè)第一次落地時,拋物線的表達式為y=a(x-6)2+4,由已知:當(dāng)x=0時,y=1,即1=36a+4,所以a=-112.所以函數(shù)表達式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據(jù)題意:CD=EF(即相當(dāng)于將拋物線AEMFC向下平移了2個單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結(jié):解決此類問題的關(guān)鍵是先進行數(shù)學(xué)建模,將實際問題中的條件轉(zhuǎn)化為數(shù)學(xué)問題中的條件.常有兩個步驟:(1)根據(jù)題意得出二次函數(shù)的關(guān)系式,將實際問題轉(zhuǎn)化為純數(shù)學(xué)問題;(2)應(yīng)用有關(guān)函數(shù)的性質(zhì)作答.
解析:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據(jù)對稱軸是x=-3,求出b=6,即可得出答案;(2)根據(jù)CD∥x軸,得出點C與點D關(guān)于x=-3對稱,根據(jù)點C在對稱軸左側(cè),且CD=8,求出點C的橫坐標(biāo)和縱坐標(biāo),再根據(jù)點B的坐標(biāo)為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點C與點D關(guān)于x=-3對稱.∵點C在對稱軸左側(cè),且CD=8,∴點C的橫坐標(biāo)為-7,∴點C的縱坐標(biāo)為(-7)2+6×(-7)+5=12.∵點B的坐標(biāo)為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結(jié):此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象和性質(zhì),注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.
【類型四】 含整數(shù)指數(shù)冪、零指數(shù)冪與絕對值的混合運算計算:-22+(-12)-2+(2015-π)0-|2-π2|.解析:分別根據(jù)有理數(shù)的乘方、零指數(shù)冪、負整數(shù)指數(shù)冪及絕對值的性質(zhì)計算出各數(shù),再根據(jù)實數(shù)的運算法則進行計算.解:-22+(-12)-2+(2015-π)0-|2-π2|=-4+4+1-2+π2=π2-1.方法總結(jié):熟練掌握有理數(shù)的乘方、零指數(shù)冪、負整數(shù)指數(shù)冪及絕對值的性質(zhì)是解答此題的關(guān)鍵.三、板書設(shè)計1.同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.2.零次冪:任何一個不等于零的數(shù)的零次冪都等于1.即a0=1(a≠0).3.負整數(shù)次冪:任何一個不等于零的數(shù)的-p(p是正整數(shù))次冪,等于這個數(shù)p次冪的倒數(shù).即a-p=1ap(a≠0,p是正整數(shù)).從計算具體問題中的同底數(shù)冪的除法,逐步歸納出同底數(shù)冪除法的一般性質(zhì).教學(xué)時要多舉幾個例子,讓學(xué)生從中總結(jié)出規(guī)律,體驗自主探究的樂趣和數(shù)學(xué)學(xué)習(xí)的魅力,為以后的學(xué)習(xí)奠定基礎(chǔ)
問題:2015年9月24日,美國國家航空航天局(下簡稱:NASA)對外宣稱將有重大發(fā)現(xiàn)宣布,可能發(fā)現(xiàn)除地球外適合人類居住的星球,一時間引起了人們的廣泛關(guān)注.早在2014年,NASA就發(fā)現(xiàn)一顆行星,這顆行星是第一顆在太陽系外恒星旁發(fā)現(xiàn)的適居帶內(nèi)、半徑與地球相若的系外行星,這顆行星環(huán)繞紅矮星開普勒186,距離地球492光年.1光年是光經(jīng)過一年所行的距離,光的速度大約是3×105km/s.問:這顆行星距離地球多遠(1年=3.1536×107s)?3×105×3.1536×107×492=3×3.1536×4.92×105×107×102=4.6547136×10×105×107×102.問題:“10×105×107×102”等于多少呢?二、合作探究探究點:同底數(shù)冪的乘法【類型一】 底數(shù)為單項式的同底數(shù)冪的乘法計算:(1)23×24×2;(2)-a3·(-a)2·(-a)3;(3)mn+1·mn·m2·m.解析:(1)根據(jù)同底數(shù)冪的乘法法則進行計算即可;(2)先算乘方,再根據(jù)同底數(shù)冪的乘法法則進行計算即可;(3)根據(jù)同底數(shù)冪的乘法法則進行計算即可.
③設(shè)每件襯衣降價x元,獲得的利潤為y元,則定價為 元 ,每件利潤為 元 ,每星期多賣 件,實際賣出 件。所以Y= 。(0<X<20)何時有最大利潤,最大利潤為多少元?比較以上兩種可能,襯衣定價多少元時,才能使利潤最大?☆ 歸納反思 ☆總結(jié)得出求最值問題的一般步驟:(1)列出二次函數(shù)的解析式,并根據(jù)自變量的實際意義,確定自變量的取值范圍;(2)在自變量的取值范圍內(nèi),運用公式法或通過配方法求出二次函數(shù)的最值?!? 達標(biāo)檢測 ☆ 1、用長為6m的鐵絲做成一個邊長為xm的矩形,設(shè)矩形面積是ym2,,則y與x之間函數(shù)關(guān)系式為 ,當(dāng)邊長為 時矩形面積最大.2、藍天汽車出租公司有200輛出租車,市場調(diào)查表明:當(dāng)每輛車的日租金為300元時可全部租出;當(dāng)每輛車的日租金提高10元時,每天租出的汽車會相應(yīng)地減少4輛.問每輛出租車的日租金提高多少元,才會使公司一天有最多的收入?
(8)物價部門規(guī)定,此新型通訊產(chǎn)品售價不得高于每件80元。在此情況下,售價定為多少元時,該公司可獲得最大利潤?最大利潤為多少萬元?若該公司計劃年初投入進貨成本m不超過200萬元,請你分析一下,售價定為多少元,公司獲利最大?售價定為多少元,公司獲利最少?三、小練兵:某商場經(jīng)營某種品牌的童裝,購進時的單價是60元.根據(jù)市場調(diào)查,銷售量y(件)與銷售單價x(元)之間的函數(shù)關(guān)系式為y= –20 x +1800.(1)寫出銷售該品牌童裝獲得的利潤w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;(2)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,不高于78元,那么商場銷售該品牌童裝獲得的最大利潤是多少元?(3)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,且商場要完成不少于240件的銷售任務(wù),那么商場銷售該品牌童裝獲得的最大利潤是多少元?
(2)問銷售該商品第幾天時,當(dāng)天銷售利潤最大,最大利潤是多少?解析:(1)分1≤x<50和50≤x≤90兩種情況進行討論,利用利潤=每件的利潤×銷售的件數(shù),即可求得函數(shù)的解析式;(2)利用(1)得到的兩個解析式,結(jié)合二次函數(shù)與一次函數(shù)的性質(zhì)分別求得最值,然后兩種情況下取最大的即可.解:(1)當(dāng)1≤x<50時,y=(200-2x)(x+40-30)=-2x2+180x+2000;當(dāng)50≤x≤90時,y=(200-2x)(90-30)=-120x+12000.綜上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)當(dāng)1≤x<50時,y=-2x2+180x+2000,二次函數(shù)開口向下,對稱軸為x=45,當(dāng)x=45時,y最大=-2×452+180×45+2000=6050;當(dāng)50≤x≤90時,y=-120x+12000,y隨x的增大而減小,當(dāng)x=50時,y最大=6000.綜上所述,銷售該商品第45天時,當(dāng)天銷售利潤最大,最大利潤是6050元.方法總結(jié):本題考查了二次函數(shù)的應(yīng)用,讀懂表格信息、理解利潤的計算方法,即利潤=每件的利潤×銷售的件數(shù),是解決問題的關(guān)鍵.
如圖所示,要用長20m的鐵欄桿,圍成一個一面靠墻的長方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長為xm,花圃的面積為ym2,那么y=x(20-2x).試問:x為何值時,才能使y的值最大?二、合作探究探究點一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結(jié):求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達標(biāo)訓(xùn)練” 第1題探究點二:利用二次函數(shù)求圖形面積的最大值【類型一】 利用二次函數(shù)求矩形面積的最大值