一是做服務上的“有心人”,把參謀輔政當成一種責任、一大信念政府辦公室屬于政府系統(tǒng)的“參謀部”、“指揮部”和“后勤部”,處于承上啟下、協(xié)調(diào)左右、溝通內(nèi)外、聯(lián)系各方的核心、樞紐、“心臟”地位,作用非常重要,責任非常重大。這就要求我們牢牢把握職能定位,切實充當服務上的“有心人”,把參謀輔政當成一份責任、一種信念,盡心盡力地當好參謀助手。
二、教學過程:1、活動一:講故事,學誠信。1)師:春秋戰(zhàn)國時期,商鞅下令在都城南門外立一根三丈長的木頭,并許下諾言:誰能把這根木頭搬到北門,賞金十兩。有人將木頭扛到了北門,商鞅立即賞了他五十金。商鞅這一舉動,在百姓心中樹立起了威信。而商鞅接下來的變法就很快在秦國推廣開了,新法使秦國漸漸強盛,最終統(tǒng)一了中國。
教學目標:知識與能力目標:1.能夠借助三角函數(shù)的定義及單位圓推導出三角函數(shù)的誘導公式 2.能夠運用誘導公式,把任意角的三角函數(shù)的化簡、求值問題轉化為銳角的三角函數(shù)的化簡、求值問題情感目標:1.通過誘導公式的探求,培養(yǎng)學生的探索能力、鉆研精神和科學態(tài)度 2.通過誘導公式探求工程中的合作學習,培養(yǎng)學生團結協(xié)作的精神; 3. 通過誘導公式的運用,培養(yǎng)學生的劃歸能力,提高學生分析問題和解決問題的能力。 一導入:二、自學(閱讀教材第110---112頁,回答下列問題) 在直角坐標系下,角的終邊與圓心在原點的單位圓相交于,則,(一)終邊相同的角:終邊相同的角的 公式一:_______ ________________(二)關于軸的對稱點的特征: 。對于角而言:角關于軸對稱的角為_______公式二:__________ _________ _________
三、教師總結:在那如火如荼的苦難歲月,梁任公的政治主張屢屢因時而變,但為人處世的原則始終未變,他不是馮自由等人所描述的那種變色龍。他重感情,輕名利,嚴于律己,坦誠待人。無論是做兒子、做丈夫、做學生,還是做父親、做師長、做同事,他都能營造一個磁場,亮出一道風景。明鏡似水,善解人意是他的常態(tài),在某些關鍵時刻,則以大手筆寫實愛的海洋,讓海洋為寬容而定格,人間為之增色。我敢斷言,在風云際會和星光燦爛的中國近代人才群體中,特別是在遐邇有知的重量級歷史人物中,能在做人的問題上與梁啟超比試者是不大容易找到的。四、課后作業(yè):找出文中細節(jié)及側面描寫的地方,想一想這樣寫有什么好處,總結本文的寫作特點。五、板書設計:梁任公演講特點:
目標導學二:梳理內(nèi)容,明確觀點1.日軍的罪行可謂罄竹難書,面對南京大屠殺這段歷史,我國舉行國家公祭儀式,其目的是什么呢?請結合課文第一自然段的內(nèi)容進行闡述。明確:文章開篇簡要揭示了日軍南京大屠殺的罪行,明確公祭的初衷是悼念死難同胞,讓中國人民永遠牢記南京大屠殺歷史,與全世界愛好和平與正義的人們共同維護和平。2.請同學們快速閱讀第二、三自然段,看看這兩段分別寫了什么,有什么作用?明確:第二段主要列舉了全世界的正義之士以不同的方式紀念死難者。表明全世界正義之士對“南京大屠殺”歷史事實的尊重和對正義的堅持。第三段主要列舉了日本右翼分子否認歷史的一系列做法。揭露了日本右翼分子扭曲歷史,顛倒黑白的丑態(tài),與上文正義之士的做法形成鮮明對比,突出對日本右翼分子的批判。
6、思考:作者心目中的梁啟超是什么形象呢?明確:梁任公是位有學問,有文采,有熱心腸的學者。由學生找出文中體現(xiàn)梁啟超學問、文采的句子。教師展示幻燈。補充介紹:文采不僅體現(xiàn)在書面,也能從流暢的口語表達中反映。《箜篌引》短短十六字蘊涵了什么故事,竟讓梁啟超描述得生動感人以至作者多年后還印象深刻呢?《箜篌引》出自《漢樂府詩》,記敘了一個悲慘壯烈的故事:朝鮮水兵在水邊撐船巡邏時,見一個白發(fā)狂夫提壺渡江,被水沖走。他的妻子勸阻不及,悲痛欲絕,取出箜篌對著江水反復吟唱。一曲終了,她也投河隨夫而去。朝鮮水兵回家向自己的妻子麗玉講述了這個故事,麗玉援引故事中的悲情,創(chuàng)作了這首歌曲,聽過的人無不動容。7、朗讀訓練了解《箜篌引》的故事后,請各小組選派代表朗讀,由學生點評,體會梁啟超演講技巧的高超。8、文中說梁任公是個熱心腸的人,你同意嗎?通過結尾段的“熱心腸”轉入對其人格的分析。
1.教學內(nèi)容:本課是北師大版第三單元《分數(shù)》:《找最小公倍數(shù)》第一課時。是引導學生在自主參與、發(fā)現(xiàn)、歸納的基礎上認識并建立并理解公倍數(shù)和最小公倍數(shù)的概念的過程。并總結歸納出一些找最小公倍數(shù)的方法。2.教材編寫意圖:五年級學生的生活經(jīng)驗和知識背景比較豐富,新課程標準要求教材選擇具有現(xiàn)實性和趣味性的素材,采取螺旋上升的方式,由淺入深地促使學生在探索與交流中建立公倍數(shù)與最小公倍數(shù)的概念。在此之前,學生已經(jīng)了解了整除、倍數(shù)、因數(shù)以及公因數(shù)和最大公因數(shù)。通過寫出幾個數(shù)的倍數(shù),找出公有的倍數(shù),再從公有的倍數(shù)中找出最小的一個,從而引出公倍數(shù)與最小公倍數(shù)的概念。接著用集合圖形象地表示出兩個數(shù)的倍數(shù),以及這兩個數(shù)公有的倍數(shù),這一內(nèi)容的學習也為今后的通分、約分學習打下的基礎,具有科學的、嚴密的邏輯性。(二)對教材的處理意見1.教材中讓學生找4和6的倍數(shù),進而引出公倍數(shù)和最小公倍數(shù)的概念,利于學生建立對概念的理解。
一、創(chuàng)設情境,引入新課。課開始,首先通過談話問學生“你們喜歡玩游戲嗎?”隨后呈現(xiàn)例題的情境圖,讓學生在觀察中清楚的知道袋中有4個紅球和2個紅球。然后教師揭示摸球游戲的規(guī)則:每次任意摸一個球,摸好后放回袋中,一共摸30次。摸到紅球的次數(shù)多算小明贏;摸到黃球的次數(shù)多算小玲贏。接著讓學生猜一猜誰贏得可能性大一些。預設學生都會猜是小明贏得可能性大一些。然后組織學生在小組里進行摸球?qū)嶒?,并把摸的結果記錄在書本例題的第一個記錄表中,驗證剛才的猜想。在學生操作完之后,讓學生明確小明贏得可能性大一些。接著引導學生產(chǎn)生質(zhì)疑:“這樣的游戲公平嗎?為什么?”引導學生小結:口袋中紅球的個數(shù)比較多,所以每次任意摸一個球,摸到紅球的可能性要大,最后小明贏得可能性也就相應地要大一些,這樣摸球的游戲規(guī)則是不公平的。在此基礎上揭示課題并板書:游戲規(guī)則的公平性。
2、81頁的做一做。做完后,引導學生觀察4和8;16和32這一組的最大公因數(shù)的特點:當較大數(shù)是較小數(shù)的倍數(shù)時,他們的最大公因數(shù)是較小數(shù)。1和7;8和9這一組數(shù)的最大公因數(shù)只有1。這樣的練習設計,目的是讓學生發(fā)現(xiàn)求最大公因數(shù)中的特殊情況。四、遷移運用,拓展探究寫出下列各分數(shù)分子和分母的最大公因數(shù)。7/21 8/28 16/40 6/15 目的是為下一節(jié)課《約分》做好了知識的鋪墊。全課總結:通過今天的學習,你有什么收獲?同桌互說,指名匯報。這樣的總結,從知識的層面上做了一次回顧。并及時的總結了解學情,真正做到“堂堂清”五、說板書設計我本節(jié)課的板書設計力圖全面而簡明的將本課的內(nèi)容傳遞給學生,便于學生理解和記憶。各位評委老師,我僅從教材、教法、學法、及教學過程、板書設計等幾個方面對本課進行說明。這只是我預設的一種方案,但是課堂千變?nèi)f化的生成效果,最終還要和學生、課堂相結合。說課的不足之處還請多多指教,我的說課到此結束,謝謝各位評委老師。
3、歸納求最小公倍數(shù)的方法。師:想一想找“共同的休息日”和“總人數(shù)”的過程,說一說可以怎樣求兩個數(shù)的最小公倍數(shù)?(①找倍數(shù):從小到大依次找出各個數(shù)的倍數(shù);②找公有:把各個數(shù)的倍數(shù)進行對照找出公有的倍數(shù);③找最?。簭墓械谋稊?shù)中找出最小的一個。)4、看書88——89頁,你還有什么問題?師:觀察一下,為什么6和8這兩個數(shù)不相同,卻可以寫出相同的公倍數(shù)呢?公倍數(shù)與原有的這兩個數(shù)有什么關系?公倍數(shù)與它們的最小公倍數(shù)又有什么關系?教師畫出數(shù)軸表示6和8的倍數(shù),并可生動地比喻6寶寶步子小,要走3次才能到達24的位置。而8寶寶步子大,只要走兩次就到達24的位置。到達24的位置后,6寶寶和8寶寶就碰面了。可見公倍數(shù)24是6和8的不同倍數(shù)。三、解決問題,深化理解(練習是理解知識,掌握知識,形成技能的基本途徑,又是運用知識,發(fā)展智能,完善認知結構的重要手段。
教師活動:引導學生閱讀教材67頁,回答:什么是效率優(yōu)先,兼顧公平?如何貫徹此原則?學生活動:閱讀課本,認真總結,發(fā)表見解教師點評:效率優(yōu)先,實質(zhì)是發(fā)展生產(chǎn)力優(yōu)先,分配制度和分配政策要以促進生產(chǎn)力的發(fā)展和經(jīng)濟效益的提高為首要目標;兼顧公平,是指社會要將收入差距控制在合理的范圍內(nèi),使分配的結果能促使人們奮進,社會具有生機喝活力。堅持效率優(yōu)先、兼顧公平,首先,要允許和鼓勵一部分地區(qū)和個人通過誠實勞動和合法經(jīng)營先富起來,先富帶后富,最終達到共同富裕。其次,既要反對平均主義,又要防止收入差距懸殊;既要落實分配政策,又要提倡奉獻精神。再次,必須正確處理初次分配注重效率與再分配注重公平的關系。初次分配注重效率有利于充分調(diào)動人們的積極性。在再分配中,要加強政府對收入分配的調(diào)節(jié),調(diào)節(jié)過高收入,取締非法收入,提高低收入者的收入水平,通過完善社會保障制度等,把收入差距控制在一定范圍之內(nèi)。
一、教材分析《民主監(jiān)督:守望公共家園》是高一政治必修2第一單元第二課第四框題。在此之前,學生們已經(jīng)學習了公民所享有的政治權利和自由,了解到公民享有監(jiān)督權,這為過渡到本框題的學習起到了鋪墊的作用。本框題承接了教材第一課“公民的政治權利和自由”這部分內(nèi)容,又為后面第四課“權力的行使:需要監(jiān)督”的學習埋下伏筆。所以學好這個框題為學好以后的政治常識打下牢固的基礎,而且它在整個教材中也起到了承上啟下的作用。二、教學目標(一)知識目標1、識記公民的民主監(jiān)督權利、作用2、理解公民的民主監(jiān)督的重要性。3、學會分析如何行使監(jiān)督權(二)能力目標通過學習逐步形成民主監(jiān)督能力。(三)情感、態(tài)度與價值觀目標通過學習培養(yǎng)學生主人翁責任感。三、教學重點難點重點:公民的民主監(jiān)督權利、作用、重要性。難點:民主監(jiān)督的重要性
4.已知△ABC三個頂點坐標A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點式得直線BC的方程為 = ,即x-2y+3=0,由兩點間距離公式得|BC|= ,點A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點P(0,2),且A(1,1),B(-3,1)兩點到直線l的距離相等,求直線l的方程.解:(方法一)∵點A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當直線l過線段AB的中點時,A,B兩點到直線l的距離相等.∵AB的中點是(-1,1),又直線l過點P(0,2),∴直線l的方程是x-y+2=0.當直線l∥AB時,A,B兩點到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.
一、情境導學在一條筆直的公路同側有兩個大型小區(qū),現(xiàn)在計劃在公路上某處建一個公交站點C,以方便居住在兩個小區(qū)住戶的出行.如何選址能使站點到兩個小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點A、B,如何求A、B兩點間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標系中能否利用數(shù)軸上兩點間的距離求出任意兩點間距離?探究.當x1≠x2,y1≠y2時,|P1P2|=?請簡單說明理由.提示:可以,構造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個公式嗎?2.兩點間距離公式的理解(1)此公式與兩點的先后順序無關,也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當直線P1P2平行于x軸時,|P1P2|=|x2-x1|.當直線P1P2平行于y軸時,|P1P2|=|y2-y1|.
高斯(Gauss,1777-1855),德國數(shù)學家,近代數(shù)學的奠基者之一. 他在天文學、大地測量學、磁學、光學等領域都做出過杰出貢獻. 問題1:為什么1+100=2+99=…=50+51呢?這是巧合嗎?試從數(shù)列角度給出解釋.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法實際上解決了求等差數(shù)列:1,2,3,…,n,"… " 前100項的和問題.等差數(shù)列中,下標和相等的兩項和相等.設 an=n,則 a1=1,a2=2,a3=3,…如果數(shù)列{an} 是等差數(shù)列,p,q,s,t∈N*,且 p+q=s+t,則 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51問題2: 你能用上述方法計算1+2+3+… +101嗎?問題3: 你能計算1+2+3+… +n嗎?需要對項數(shù)的奇偶進行分類討論.當n為偶數(shù)時, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2當n為奇數(shù)數(shù)時, n-1為偶數(shù)
新知探究國際象棋起源于古代印度.相傳國王要獎賞國際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請在棋盤的第1個格子里放上1顆麥粒,第2個格子里放上2顆麥粒,第3個格子里放上4顆麥粒,依次類推,每個格子里放的麥粒都是前一個格子里放的麥粒數(shù)的2倍,直到第64個格子.請給我足夠的麥粒以實現(xiàn)上述要求.”國王覺得這個要求不高,就欣然同意了.假定千粒麥粒的質(zhì)量為40克,據(jù)查,2016--2017年度世界年度小麥產(chǎn)量約為7.5億噸,根據(jù)以上數(shù)據(jù),判斷國王是否能實現(xiàn)他的諾言.問題1:每個格子里放的麥粒數(shù)可以構成一個數(shù)列,請判斷分析這個數(shù)列是否是等比數(shù)列?并寫出這個等比數(shù)列的通項公式.是等比數(shù)列,首項是1,公比是2,共64項. 通項公式為〖a_n=2〗^(n-1)問題2:請將發(fā)明者的要求表述成數(shù)學問題.
二、典例解析例10. 如圖,正方形ABCD 的邊長為5cm ,取正方形ABCD 各邊的中點E,F,G,H, 作第2個正方形 EFGH,然后再取正方形EFGH各邊的中點I,J,K,L,作第3個正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個正方形的面積之和;(2) 如果這個作圖過程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個等比數(shù)列。解:設正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個正方形的頂點分別是第k個正方形各邊的中點,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25為首項,1/2為公比的等比數(shù)列.設{a_n}的前項和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個正方形的面積之和為25575/512cm^2.(2)當無限增大時,無限趨近于所有正方形的面積和
課前小測1.思考辨析(1)若Sn為等差數(shù)列{an}的前n項和,則數(shù)列Snn也是等差數(shù)列.( )(2)若a1>0,d<0,則等差數(shù)列中所有正項之和最大.( )(3)在等差數(shù)列中,Sn是其前n項和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項數(shù)為2n+1的等差數(shù)列中,所有奇數(shù)項的和為165,所有偶數(shù)項的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項.]3.等差數(shù)列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數(shù)列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數(shù)列{an}的通項公式是an=2n-48,則Sn取得最小值時,n為________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負項的和最小,即n=23或24.]二、典例解析例8.某校新建一個報告廳,要求容納800個座位,報告廳共有20排座位,從第2排起后一排都比前一排多兩個座位. 問第1排應安排多少個座位?分析:將第1排到第20排的座位數(shù)依次排成一列,構成數(shù)列{an} ,設數(shù)列{an} 的前n項和為S_n。
設計目的:通過學生的反饋練習,使教師能全面了解學生對公因式概念的理解是否到位,提取公因式的方法與步驟是否掌握,以便教師能及時地進行查缺補漏.但依然有部分同學會出現(xiàn)問題,如對首項出現(xiàn)負號時不能正確處理,此時,需要老師進一步引導.第四環(huán)節(jié) 課堂小結從今天的課程中,你學到了哪些知識?你認為提公因式法與單項式乘多項式有什么關系?怎樣用提公因式法分解因式?設計目的:通過學生的回顧與反思,強化學生對確定公因式的方法及提公因式法的步驟的理解,進一步清楚地了解提公因式法與單項式乘多項式的互逆關系,加深對類比的數(shù)學思想的理解。第五環(huán)節(jié) 當堂檢測把下列各式分解因式(1)2x2-4x (2)8m2n+2mn(3)-4a3b3+6a2b-2ab (4)2n2-mn-n*(5)3an+1-2anc-7an+2設計目的:檢驗學生的目標達成情況,其中第五小題供學有余力的學生選作。第六環(huán)節(jié) 課后反思教學反思
(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n為正整數(shù)).解析:(1)根據(jù)已知計算過程直接得出因式分解的方法即可;(2)根據(jù)已知分解因式的方法可以得出答案;(3)由(1)中計算發(fā)現(xiàn)規(guī)律進而得出答案.解:(1)因式分解的方法是提公因式法,共應用了3次;(2)分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,需應用上述方法2016次,結果是(1+x)2015;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.方法總結:解決此類問題需要認真閱讀,理解題意,根據(jù)已知得出分解因式的規(guī)律是解題關鍵.三、板書設計1.提公因式分解因式的一般步驟:(1)觀察;(2)適當變形;(3)確定公因式;(4)提取公因式.2.提公因式法因式分解的應用本課時是在上一課時的基礎上進行的拓展延伸,在教學時要給學生足夠主動權和思考空間,突出學生在課堂上的主體地位,引導和鼓勵學生自主探究,在培養(yǎng)學生創(chuàng)新能力的同時提高學生的邏輯思維能力.