討論歸納,總結出多個有理數相乘的規(guī)律:幾個不等于0的因數相乘,積的符號由負因數的個數決定。當負因數有奇數個時,積的符號為負;當負因數有偶數個時,積的符號為正。只要有一個因數為0,積就為0。(2)幾個不等于0的因數相乘時,積的絕對值是多少?(生:積的絕對值是這幾個因數的絕對值的乘積.)例2、計算:(1) ;(2) 分析:(1)有多個不為零的有理數相乘時,可以先確定積的符號,再把絕對值相乘;(2)若其中有一個因數為0,則積為0。解:(1) = (2) =0練習(1) ,(2) ,(3) 6、探索活動:把-6表示成兩個整數的積,有多少種可能性?把它們全部寫出來。(三)課堂小結通過本節(jié)課的學習,大家學會了什么?(1)有理數的乘法法則。(2)多個不等于0的有理數相乘,積的符號由負因數的個數決定。(3)幾個數相乘時,如果有一個因數是0,則積就為0。(4)乘積是1的兩個有理數互為倒數。(四)作業(yè):課本作業(yè)題
解析:∵ab>0,根據“兩數相除,同號得正”可知,a、b同號,又∵a+b<0,∴可以判斷a、b均為負數.故選D.方法總結:此題考查了有理數乘法和加法法則,將二者綜合考查是考試中常見的題型,此題的側重點在于考查學生的邏輯推理能力.讓學生深刻理解除法是乘法的逆運算,對學好本節(jié)內容有比較好的作用.教學設計可以采用課本的引例作為探究除法法則的過程.讓學生自己探索并總結除法法則,同時也讓學生對比乘法法則和除法法則,加深印象.并講清楚除法的兩種運算方法:(1)在除式的項和數字不復雜的情況下直接運用除法法則求解.(2)在多個有理數進行除法運算,或者是乘、除混合運算時應該把除法轉化為乘法,然后統(tǒng)一用乘法的運算律解決問題.
方法總結:股票每天的漲跌都是在前一天的基礎上進行的,不要理解為每天都是在67元的基礎上漲跌.另外熟記運算法則并根據題意準確列出算式也是解題的關鍵.三、板書設計加法法則(1)同號兩數相加,取與加數相同的符號,把絕對 值相加.(2)異號兩數相加,取絕對值較大加數的符號,并 用較大的絕對值減去較小的絕對值.(3)互為相反數的兩數相加得0.(4)一個數同0相加,仍得這個數.本課時利用情境教學、解決問題等方法進行教學,使學生在情境中提出問題,并尋找解決問題的途徑,因此不知不覺地進入學習氛圍,把學生從被動學習變?yōu)橹鲃酉雽W.在本節(jié)教學中,要堅持以學生為主體,教師為主導,充分調動學生的興趣和積極性,使他們最大限度地參與到課堂的活動中.
1.掌握有理數混合運算的順序,并能熟練地進行有理數加、減、乘、除、乘方的混合運算.2.在運算過程中能合理地應用運算律簡化運算.一、情境導入在學完有理數的混合運算后,老師為了檢驗同學們的學習效果,出了下面這道題:計算-32+(-6)÷12×(-4).小明和小穎很快給出了答案.小明:-32+(-6)÷12×(-4)=-9+(-6)÷(-2)=-9+3=-6.小穎:-32+(-6)÷12×(-4)=-9+(-6)×2×(-4)=39.你能判斷出誰的計算正確嗎?二、合作探究探究點一:有理數的混合運算計算:(1)(-5)-(-5)×110÷110×(-5);(2)-1-{(-3)3-[3+23×(-112)]÷(-2)}.解析:(1)題是含有減法、乘法、除法的混合運算,運算時,一定要注意運算順序,尤其是本題中的乘除運算.要從左到右進行計算;(2)題有大括號、中括號,在運算時,可從里到外進行.注意要靈活掌握運算順序.
1、掌握有理數混合運算法則,并能進行有理數的混合運算的計算。2、經歷“二十四”點游戲,培養(yǎng)學生的探究能力[教學重點]有理數混合運算法則。[教學難點]培養(yǎng)探索思 維方式。【教學過程】情境導入——有理數的混合運算是指一個算式里含有加、減、乘、除、乘方的多種運算.下面的算式里有哪幾種運算?3+50÷22×( )-1.有理數混合運算的運算順序規(guī)定如下:1 先算乘方,再算乘除,最后算加減;2 同級運算,按照從左至右的順序進行;3 如果有括號,就先算小括號里的,再算中括號里的,最后算大括號里的。 加法和減法叫做第一級運算;乘法和除法叫做第二級運算;乘方和開方(今后將會學到)叫做第三級運算。注意:可以應用運算律,適當改變運算順序,使運算簡便.合作探究——
師生共同歸納法則2、異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。生5:這兩天的庫存量合計增加了2噸。(+3)+(-1)=+2 或(+8)+(-6)=+2師:會不會出現和為零的情況?提示:可以聯系倉庫進出貨的具體情形。生6:如星期一倉庫進貨5噸,出貨5噸,則庫存量為零。(+5)+(-5)=0師生共同歸納法則3、互為相反數的兩個數相加得零。師:你能用加法法則來解釋法則3嗎?生7:可用異號兩數相加的法則。一般地還有:一個數同零相加,仍得這個數。小結:運算關鍵:先分類運算步驟:先確定符號,再計算絕對值做一做:(口答)確定下列各題中和的符號,并說明理由:(1)(+3)+(+7);(2)(-10)+(-3);(3)(+6)+(-5);(4)0+(-5).例 計算下列各式:(1)(-3)+(-4);(2)(-2.5)+5;(3)(-2)+0;(4)(+ )+(- )教法:請四位學生板演,讓學生批改并說明理由。
1.能從統(tǒng)計圖中獲取信息,并求出相關數據的平均數、中位數、眾數;(重點)2.理解并分析平均數、中位數、眾數所體現的集中趨勢.(難點)一、情境導入某次射擊比賽,甲隊員的成績如下:(1)根據統(tǒng)計圖,確定10次射擊成績的眾數、中位數,說說你的做法,并與同伴交流.(2)先估計這10次射擊成績的平均數,再具體算一算,看看你的估計水平如何.二、合作探究探究點一:從折線統(tǒng)計圖分析數據的集中趨勢廣州市努力改善空氣質量,近年空氣質量明顯好轉,根據廣州市環(huán)境保護局公布的2006~2010年這五年各年的全年空氣質量優(yōu)良的天數,繪制成折線圖如圖所示.根據圖中信息回答:(1)這五年的全年空氣質量優(yōu)良天數的中位數是________;(2)這五年的全年空氣質量優(yōu)良天數與它前一年相比較,增加最多的是________年(填寫年份);(3)求這五年的全年空氣質量優(yōu)良天數的平均數.解析:(1)由圖知,把這五年的全年空氣質量優(yōu)良天數按照從小到大的順序排列為:333,334,345,347,357,所以中位數是345;
(4)從平均分看,兩隊的平均分相同,實力大體相當;從折線的走勢看,甲隊比賽成績呈上升趨勢,而乙隊比賽成績呈下降趨勢;從獲勝場數看,甲隊勝三場,乙隊勝兩場,甲隊成績較好;從方差看,甲隊比賽成績比乙隊比賽成績波動小,甲隊成績較穩(wěn)定.綜上所述,選派甲隊參賽更能取得好成績.方法總結:本題是反映數據集中程度與離散程度的綜合題.從圖形中得到兩隊的成績,然后從平均數、方差的角度來考慮,在平均數相同的情況下,方差越小的越穩(wěn)定.三、板書設計數據的離散程度極差:一組數據中最大數據與最小數據的差方差:各個數據與平均數差的平方的平均數 s2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2]標準差:方差的算術平方根 公式:s=s2經歷表示數據離散程度的幾個量的探索過程,通過實例體會用樣本估計總體的統(tǒng)計思想,培養(yǎng)學生的數學應用能力.通過小組合作,培養(yǎng)學生的合作意識;通過解決實際問題,讓學生體會數學與生活的密切聯系.
解:(1)∵點(1,5)在反比例函數y=kx的圖象上,∴5=k1,即k=5,∴反比例函數的解析式為y=5x.又∵點(1,5)在一次函數y=3x+m的圖象上,∴5=3+m,即m=2,∴一次函數的解析式為y=3x+2;(2)由題意,聯立y=5x,y=3x+2.解得x1=1,y1=5或x2=-53,y2=-3.∴這兩個函數圖象的另一個交點的坐標為(-53,-3).三、板書設計反比例函數的圖象形狀:雙曲線位置當k>0時,兩支曲線分別位于 第一、三象限內當k<0時,兩支曲線分別位于 第二、四象限內畫法:列表、描點、連線(描點法)通過學生自己動手列表、描點、連線,提高學生的作圖能力.理解函數的三種表示方法及相互轉換,對函數進行認識上的整合,逐步明確研究函數的一般要求.反比例函數的圖象具體展現了反比例函數的整體直觀形象,為學生探索反比例函數的性質提供了思維活動的空間.
如圖,四邊形OABC是邊長為1的正方形,反比例函數y=kx的圖象經過點B(x0,y0),則k的值為.解析:∵四邊形OABC是邊長為1的正方形,∴它的面積為1,且BA⊥y軸.又∵點B(x0,y0)是反比例函數y=kx圖象上的一點,則有S正方形OABC=|x0y0|=|k|,即1=|k|.∴k=±1.又∵點B在第二象限,∴k=-1.方法總結:利用正方形或矩形或三角形的面積確定|k|的值之后,要注意根據函數圖象所在位置或函數的增減性確定k的符號.三、板書設計反比例函數的性質性質當k>0時,在每一象限內,y的值隨x的值的增大而減小當k<0時,在每一象限內,y的值隨x的值的增大而增大反比例函數圖象中比例系數k的幾何意義通過對反比例函數圖象的全面觀察和比較,發(fā)現函數自身的規(guī)律,概括反比例函數的有關性質,進行語言表述,訓練學生的概括、總結能力,在相互交流中發(fā)展從圖象中獲取信息的能力.讓學生積極參與到數學學習活動中,增強他們對數學學習的好奇心與求知欲.
補充題:為了預防“非典”,某學校對教室采用藥熏消毒,已知藥物燃燒時,室內每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成為正比例,藥物燃燒后,y與x成反比例(如右圖),現測得藥物8分鐘燃畢,此時室內空氣中每立方米的含藥量6毫克,請根據題中所提供的信息,解答下列問題:(1)藥物燃燒時,y關于x的函數關系式為 ,自變量x的取值范圍為 ;藥物燃燒后,y關于x的函數關系式為 .(2)研究表明,當空氣中每立方米的含藥量低于1.6毫克時學生方可進教室,那么從消毒開始,至少需要經過______分鐘后,學生才能回到教室;(3)研究表明,當空氣中每立方米的含藥量不低于3毫克且持續(xù)時間不低于10分鐘時,才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?答案:(1)y= x, 010,即空氣中的含藥量不低于3毫克/m3的持續(xù)時間為12分鐘,大于10分鐘的有效消毒時間.
二.思考:(-2) 可以寫成-2 嗎?( ) 可以寫成 嗎?(指名學生回答,師生共同總結:負數和分數的乘方書寫時,一定要把整個負數和分數用小括號括起來)三.計算:①(-2) ,②-2 ,③(- ) ,④ (叫4個學生上臺板演,其他練習本上完成,教師巡視,確保人人學得緊張高效).(四)討論更正,合作探究1.學生自由更正,或寫出不同解法;2.評講思考:將三題①③中將底數換成為正數或0,結果有什么規(guī)律?學生總結:負數的奇次冪是負數,負數的偶次冪是正數,正數的任何次冪都是正數,0的任何正整數次冪都為0。有理數的乘方就是幾個相同因數積的運算,可以運用有理數乘方法則進行符號的確定和冪的求值.乘方的含義:①表示一種運算;②表示運算的結果.
四、教學設計反思這節(jié)內容是學生利用數形結合的思想去研究正比例函數的圖象,對函數與圖象的對應關系有點陌生.在教學過程中教師應通過情境創(chuàng)設激發(fā)學生的學習興趣,對函數與圖象的對應關系應讓學生動手去實踐,去發(fā)現,對正比例函數的圖象是一條直線應讓學生自己得出.在得出結論之后,讓學生能運用“兩點確定一條直線”,很快作出正比例函數的圖象.在鞏固練習活動中,鼓勵學生積極思考,提高學生解決實際問題的能力.當然,根據學生狀況,教學設計也應做出相應的調整。如第一環(huán)節(jié):創(chuàng)設情境 引入課題,固然可以激發(fā)學生興趣,但也可能容易讓學生關注代數表達式的尋求,甚至對部分學生形成一定的認知障礙,因此該環(huán)節(jié)也可以直接開門見山,直入主題,如提出問題:正比例函數的代數形式是y=kx,那么,一個正比例函數對應的圖形具有什么特征呢?
因為反比例函數的圖象經過點A(1.5,400),所以有k=600.所以反比例函數的關系式為p=600S(S>0);(2)當S=0.2時,p=6000.2=3000,即壓強是3000Pa;(3)由題意知600S≤6000,所以S≥0.1,即木板面積至少要有0.1m2.方法總結:本題滲透了物理學中壓強、壓力與受力面積之間的關系p= ,當壓力F一定時,p與S成反比例.另外,利用反比例函數的知識解決實際問題時,要善于發(fā)現實際問題中變量之間的關系,從而進一步建立反比例函數模型.三、板書設計反比例函數的應用實際問題與反比例函數反比例函數與其他學科知識的綜合經歷分析實際問題中變量之間的關系,建立反比例函數模型,進而解決問題的過程,提高運用代數方法解決問題的能力,體會數學與現實生活的緊密聯系,增強應用意識.通過反比例函數在其他學科中的運用,體驗學科整合思想.
(4)議一議:頻率與概率有什么區(qū)別和聯系?隨著重復實驗次數的不斷增加,頻率的變化趨勢如何?結論:從上面的試驗可以看到:當重復實驗的次數大量增加時,事件發(fā) 生的頻率就穩(wěn)定在相應的概率附近,因此,我們可以通過大量重復實驗,用一個事件發(fā)生的頻率來估計這一事件發(fā)生的概率。三、做一做:1.某運動員投籃5次, 投中4次,能否說該運動員投一次籃,投中的概率為4/5?為什么?2.回答下列問題:(1)抽檢1000件襯衣,其中不合格的襯衣有2件,由 此估計抽1件襯衣合格的概率是多少?(2)1998年,在美國密歇根州漢諾城市的一個農場里出生了1頭白色的小奶牛,據統(tǒng)計,平均出生1千萬頭牛才會有1頭是白色的,由此估計出生一頭奶牛為白色的概率為多少?
在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結:正方形被對角線分成4個等腰直角三角形,因此在正方形中解決問題時常用到等腰三角形的性質與直角三角形的性質.【類型三】 利用正方形的性質證明線段相等如圖,已知過正方形ABCD的對角線BD上一點P,作PE⊥BC于點E,PF⊥CD于點F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時只需說明AP=CP,由正方形對角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結:(1)在正方形中,常利用對角線互相垂直平分證明線段相等;(2)無論是正方形還是矩形,經常連接對角線,這樣可以使分散的條件集中.
判斷下面抽樣調查選取樣本的方法是否合適:(1)檢查某啤酒廠即將出廠的啤酒質量情況,先隨機抽取若干箱(捆),再在抽取的每箱(捆)中,隨機抽取1~2瓶檢查;(2)通過網上問卷調查方式,了解百姓對央視春節(jié)晚會的評價;(3)調查某市中小學生學習負擔的狀況,在該市每所小學的每個班級選取一名學生,進行問卷調查;(4)教育部為了調查中小學亂收費情況,調查了某市所有中小學生.解析:本題應看樣本是否為簡單隨機樣本,是否具有代表性.解:(1)合適,這是一種隨機抽樣的方法,樣本為簡單隨機樣本.(2)不合適,我國農村人口眾多,多數農民是不上網的,所以調查的對象在總體中不具有代表性.(3)不合適,選取的樣本中個體太少.(4)不合適,樣本雖然足夠大,但遺漏了其他城市里的這些群體,應在全國范圍內分層選取樣本,除了上述原因外,每班的學生全部作為樣本是沒有必要的.
方法總結:題中未給出圖形,作高構造直角三角形時,易漏掉鈍角三角形的情況.如在本例題中,易只考慮高AD在△ABC內的情形,忽視高AD在△ABC外的情形.探究點二:利用勾股定理求面積如圖,以Rt△ABC的三邊長為斜邊分別向外作等腰直角三角形.若斜邊AB=3,則圖中△ABE的面積為________,陰影部分的面積為________.解析:因為AE=BE,所以S△ABE=12AE·BE=12AE2.又因為AE2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因為AC2+BC2=AB2,所以陰影部分的面積為14AB2+14AB2=12AB2=12×32=92.故填94、92.方法總結:求解與直角三角形三邊有關的圖形面積時,要結合圖形想辦法把圖形的面積與直角三角形三邊的平方聯系起來,再利用勾股定理找到圖形面積之間的等量關系.
探究點二:勾股定理的簡單運用如圖,高速公路的同側有A,B兩個村莊,它們到高速公路所在直線MN的距離分別為AA1=2km,BB1=4km,A1B1=8km.現要在高速公路上A1、B1之間設一個出口P,使A,B兩個村莊到P的距離之和最短,求這個最短距離和.解析:運用“兩點之間線段最短”先確定出P點在A1B1上的位置,再利用勾股定理求出AP+BP的長.解:作點B關于MN的對稱點B′,連接AB′,交A1B1于P點,連BP.則AP+BP=AP+PB′=AB′,易知P點即為到點A,B距離之和最短的點.過點A作AE⊥BB′于點E,則AE=A1B1=8km,B′E=AA1+BB1=2+4=6(km).由勾股定理,得B′A2=AE2+B′E2=82+62,∴AB′=10(km).即AP+BP=AB′=10km,故出口P到A,B兩村莊的最短距離和是10km.方法總結:解這類題的關鍵在于運用幾何知識正確找到符合條件的P點的位置,會構造Rt△AB′E.三、板書設計勾股定理驗證拼圖法面積法簡單應用通過拼圖驗證勾股定理并體會其中數形結合的思想;應用勾股定理解決一些實際問題,學會勾股定理的應用并逐步培養(yǎng)學生應用數學解決實際問題的能力,為后面的學習打下基礎.
1.會用計算器求平方根和立方根;(重點)2.運用計算器探究數字規(guī)律,提高推理能力.一、情境導入前面我們通過平方和立方運算求出一些特殊數的平方根和立方根,如4的平方根是±2,116的平方根是±14,0.064的立方根是0.4,-8的立方根是-2等.那么如何求3,189,-39,311的值呢?二、合作探究探究點一:利用計算器進行開方運算 用計算器求6+7的值.解:按鍵順序為■6+7=SD,顯示結果為:9.449489743.方法總結:當被開方數不是一個數時,輸入時一定要按鍵.解本題時常出現的錯誤是:■6+7=SD,錯的原因是被開方數是6,而不是6與7的和,這樣在輸入時,對“6+7”進行開方,使得計算的是6+7而不是6+7,從而導致錯誤.K探究點二:利用科學計算器比較數的大小利用計算器,比較下列各組數的大?。?1)2,35;(2)5+12,15+2.解:(1)按鍵順序:■2=SD,顯示結果為1.414213562.按鍵順序:SHIFT■5=,顯示結果為1.709975947.所以2<35.