由上表可知,共有6種結果,且每種結果是等可能的,其中兩次摸出白球的結果有2種,所以P(兩次摸出的球都是白球)=26=13;(2)列表如下:由上表可知,共有9種結果,且每種結果是等可能的,其中兩次摸出白球的結果有4種,所以P(兩次摸出的球都是白球)=49.方法總結:在試驗中,常出現(xiàn)“放回”和“不放回”兩種情況,即是否重復進行的事件,在求概率時要正確區(qū)分,如利用列表法求概率時,不重復在列表中有空格,重復在列表中則不會出現(xiàn)空格.三、板書設計用樹狀圖或表格求概率畫樹狀圖法列表法通過與學生現(xiàn)實生活相聯(lián)系的游戲為載體,培養(yǎng)學生建立概率模型的思想意識.在活動中進一步發(fā)展學生的合作交流意識,提高學生對所研究問題的反思和拓展的能力,逐步形成良好的反思意識.鼓勵學生思維的多樣性,發(fā)展學生的創(chuàng)新意識.
易錯提醒:利用b2-4ac判斷一元二次方程根的情況時,容易忽略二次項系數不能等于0這一條件,本題中容易誤選A.【類型三】 根的判別式與三角形的綜合應用已知a,b,c分別是△ABC的三邊長,當m>0時,關于x的一元二次方程c(x2+m)+b(x2-m)-2m ax=0有兩個相等的實數根,請判斷△ABC的形狀.解析:先將方程轉化為一般形式,再根據根的判別式確定a,b,c之間的關系,即可判定△ABC的形狀.解:將原方程轉化為一般形式,得(b+c)x2-2m ax+(c-b)m=0.∵原方程有兩個相等的實數根,∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據勾股定理的逆定理可知△ABC為直角三角形.方法總結:根據一元二次方程根的情況,利用判別式得到關于一元二次方程系數的等式或不等式,再結合其他條件解題.
(三)學以致用,鞏固新知為鞏固本節(jié)的教學重點我再次給出三道問題: 1)絕對值是7的數有幾個?各是什么?有沒有絕對值是-2的數?2)絕對值是0的數有幾個?各是什么? 3)絕對值小于3的整數一共有多少個?先讓學生通過小組討論得出結果,通過以上練習使學生在掌握知識的基礎上達到靈活運用,形成一定的能力。(四)總結歸納,知識升華小結時我也將充分發(fā)揮學生學習的主動性,發(fā)揮教師在教學的啟發(fā)引導作用,和學生一起合作把本節(jié)課所學的內容做一個小結。(五)布置作業(yè),拓展新知布置作業(yè)不是目的,目的是使學生能夠更好地掌握并運用本節(jié)課的內容。所以我會布置這樣一個作業(yè):請學生回家在父母的幫助下,找出南方和北方各三個城市的溫度,并比較這些溫度的大小,并寫出每個溫度的絕對值進行比較
[設計說明]:只給出情景故事,感知了一個大數,這樣還不能引起學生對大數的深刻認識,所以再給出宇宙星空中的這些大數,讓學生讀讀、看看這些數,引起學生強烈的認知上的沖突,形成一種心理上的想讀、想寫的求知欲望。(二)、引出問題、探索新知在上面的例子中,我們遇到了幾個很大的數,看起來、讀起來、寫起來都不方便,有沒有簡單的表示法呢?分以下步驟完成。1、回憶100 ,1000,10000,能寫成10( )2、300=3×100=3×10( )3000=3×1000=3×10()30000=3×10000=3×10()3、再由學生完成上面4個例子中的數的表示。(學生對160 000 000 000這個數可能表示為、16×1010,教師要利用學生這種錯誤,強調a的范圍)4、教師給出科學記數法表示:a×10( )(1≤a<10)。[設計說明]:通過層層遞進的探究設計,啟發(fā)學生成功地發(fā)現(xiàn)“科學記數法”的表示方法,同時又通過學生示錯,讓學生記住a的范圍,體現(xiàn)了以學生為主的探究式教學。
一、教材分析(一)、內容、地位和作用這節(jié)課是義務教育課程標準實驗教科書北師大版七年級第6章《數據的收集與表示》第一節(jié)《數據的收集》的第一課時。在此之前,學生在已經學習了一些初步的數據的處理問題,對運用數據去解決日常生活中的實際問題已有所了解,知道了運用數據的價值。本節(jié)課是在此基礎上對數據的收集又有了更進一步的學習與挖掘。為后面運用數據的知識去分析一些現(xiàn)象打下基礎。新的義務教育課程標準與我國以往的數學課程相比,在教學內容上大大加強了統(tǒng)計和概率,在教學方法上積極倡導自主探索和合作學習,幫助學生通過反復觀察,了解不確定的現(xiàn)象也能夠表現(xiàn)出規(guī)律,整個內容圍繞真實的數據展開教學。依據新課程標準,在教學中,應注重所學內容與日常生活、自然、社會和科學技術領域的聯(lián)系,使學生體會統(tǒng)計與概率對制定決策的重要作用。
五、課堂設計理念本節(jié)課著力體現(xiàn)以下幾個方面:1、突出問題的應用意識。在各個環(huán)節(jié)的安排上都設計成一個個問題,使學生能圍繞問題展開討思考、討論,進行學習。2、體現(xiàn)學生的主體意識。讓學生通過列算式與列方程的比較,分別歸納出它們的特點,從而感受到從算術方法到代數方法是數學的進步;讓學生通過合作交流,得出問題的不同解法;讓學生對一節(jié)課的學習內容、方法、注意點等進行歸納。3、體現(xiàn)學生思維的層次性。教師首先引導學生嘗試用算術方法解決問題,然后再引導學生列出含未知數的式了,尋找相等關系列出方程,在尋找相等關系、設未知數及作業(yè)的布置等環(huán)節(jié)中都注意了學生思維的層次性。4、滲透建模思想。把實際問題中的數量關系用方程形式表示出來,就是建立一種數學模型,教師有意識地按設未知數、列方程等步驟組織學生學習,就是培養(yǎng)學生由實際問題抽象出方程模型的能力。
最后我引導學生觀察自己手中的量角器引導學生在測量的時候有時用度的單位還不夠就必須用到比度還小的單位分和秒,進而明白度分秒之間的轉換關系,并且引導學生對比和度分秒進制一樣的還有時間。從而進入到例題2的講解。接下來讓學生通過隨堂練習來加強和鞏固本節(jié)課的內容。提高學生對本節(jié)課知識的系統(tǒng)綜合。(四)歸納總結。小結主要由學生完成,我作出適當的補充。最后總結角的比較表方法及估測和某些角之間的等量關系的書寫基本的幾何語句并能根據語句畫出幾何圖形。(五)布置作業(yè)通過作業(yè)及時了解學生學習效果,調整教學安排。使學生通過獨立思考,自我評價學習效果;學會反思,發(fā)現(xiàn)問題;并試著通過閱讀教材、查找資料或與同伴交流解決問題。
1、 教材的地位和作用本課教材所處位置,是小學所學算術數之后數的范圍的第一次擴充,是算術數到有理數的銜接與過渡,并且是以后學習數軸、相反數、絕對值以及有理數運算的基礎.2、 教學目標①理解有理數產生的必然性、合理性及有理數的分類;②能辨別正、負數,感受規(guī)定正、負的相對性;③體驗中國古代在數的發(fā)展方面的貢獻.3、 教學重點和難點教學重點:理解正數和負數的概念和有理數概念.教學難點:對負數概念的理解和有理數的分類.二、 教學分析鑒于初一年級學生的年齡特點,他們對概念的理解能力不強,精神不能長時間集中,但思維比較活躍。我決定采取啟發(fā)式教學法及情感教學,創(chuàng)設問題情境,引導學生主動思考,用大量的實例和生動的語言激發(fā)學生學習興趣,調節(jié)學習情緒。
(1) 這28天中屬于“重度染污”、“中度污染”、“輕度污染”、“良”和“優(yōu)”的天數各有幾天?出現(xiàn)的頻率各是多少?請用一張統(tǒng)計表來表示;(3) 從你作的統(tǒng)計圖表中,你得到哪些結論?說說你的理由.(三)課堂小結:本節(jié)課學習了用統(tǒng)計來直觀來表示數據,并從統(tǒng)計圖中發(fā)現(xiàn)數據間的聯(lián)系。整理數據——制統(tǒng)計表1、從資料給出的許多數據中選取相關數據進行整理;2、標目分成橫、縱兩種(允許不同分法);3、把數據放入相應位置。為了更清晰地用統(tǒng)計表展示與描繪數據,統(tǒng)計表必須有規(guī)范的結構:標題(統(tǒng)計表的名稱)標目(如“國家”、“屆數”…)數據、必要的說明(數據的單位、制表日期等)折線統(tǒng)計圖的步驟:(1)寫出統(tǒng)計圖名稱;(2)畫出橫、縱兩條互相垂直的數軸(有時不畫箭頭),分別表示兩個標目的數據;(3)根據橫、縱各個方向上的各對對應的標目數據畫點;(4)用線段把每相鄰兩點連接起來。
(五)、反饋矯正,注重參與: 為鞏固本節(jié)的教學重點讓學生獨立完成: 1、課本23頁練習1、2 2、課本23頁3題的(給全體學生以示范性讓一個同學板書) 為向學生進一步滲透數形結合的思想讓學生討論: 3、數軸上的點P與表示有理數3的點A距離是2, (1)試確定點P表示的有理數; (2)將A向右移動2個單位到B點,點B表示的有理數是多少? (3)再由B點向左移動9個單位到C點,則C點表示的有理數是多少? 先讓學生通過小組討論得出結果,通過以上練習使學生在掌握知識的基礎上達到靈活運用,形成一定的能力。 (六)、歸納小結,強化思想: 根據學生的特點,師生共同小結: 1、為了鞏固本節(jié)課的教學重點提問:你知道什么是數軸嗎?你會畫數軸嗎?這節(jié)課你學會了用什么來表示有理數? 2、數軸上,會不會有兩個點表示同一個有理數?會不會有一個點表示兩個不同的有理數? 讓學生牢固掌握一個有理數只對應數軸上的一個點,并能說出數軸上已知點所表示的有理數。
一、教材分析:本節(jié)課選自北京師范大學教育出版社七年級上冊第五章第三節(jié),是學生學習一元一次方程的含義,并掌握了解法后,通過分析圖形問題中的數量關系,建立一元一次方程并用之解決實際問題,是學生運用數學知識解決生活中實際問題中的典型素材,可提高學生解決問題的能力,提高學習數學的興趣,形成學以致用的思想,認識方程運用模型的重要環(huán)節(jié)。二、學情分析:通過前幾節(jié)解方程的學習,學生已經掌握了解、列方程的基本方法,在此過程中也初步掌握了運用方程解決實際問題的一般過程,基本會通過分析簡單問題中已知量與未知量的關系列出方程解應用題,但學生在列方程解應用題時常常會遇到從題設條件中找不到所依據的等量關系,或雖能找到等量關系,但不能列出方程這樣的問題,因此,在教師的引導下,通過學生親自動手制作模型,自主探索在模型變化過程中的等量關系,建立方程,從而將圖形問題代數化。
通過有針對性的練習,鞏固所學,拓展知識,形成應用能力。本環(huán)節(jié)主要是針對學生對本節(jié)內容的掌握程度進行檢測反饋。學生在經過自學、置疑、解疑、教師點撥后作一套本節(jié)的檢測題。做完后,教師或學生給出答案,并給予簡單解析。教師對檢測成績做以簡單的統(tǒng)計,了解本節(jié)課的學習效果。檢測題必須精心設計與安排,因為學生在做經過精心安排的檢測題時,不僅在積極地掌握數學知識,而且能獲得進行創(chuàng)造性思維的能力。要充分發(fā)揮檢測題的功能,設計檢測題時應由淺入深、難易適當、逐步提高、突出重點與關鍵、注意題型的搭配。在試題設計上,應將知識、素質、能力的考查統(tǒng)一起來,既有知識性、分析性題目,又有應用性、直覺形象性題目。提高創(chuàng)新性題型的比重和難度,少問“是什么”,多問“為什么”、“對某些問題,你以為如何”等,增強答案的發(fā)散性。
按此規(guī)律,第n個式子是 。師生活動:學生通過觀察,分析,歸納發(fā)現(xiàn)規(guī)律,并用含字母的式子表示一般結論。設計意圖:進一步理解字母表示數的意義,理解用含有字母的數學式子表示實際問題中的數量關系的簡潔性、必要性和一般性。(四)鞏固提升問題:你能給以上這些式子賦予新的含義嗎?師生活動:教師舉例說明比如:如果p表示我們班的人數,我們班80%的同學喜歡上數學課,那么0.8p 就可以表示我們班喜歡數學課的人數。學生思考、交流后發(fā)言五、練習檢測(1)5箱蘋果重m kg,每箱重 kg ;(2)一個數比a的 倍小5,則這個數為 ;(3)全校學生總數是x,其中女生占總數52%,則女生人數是 ,男生人數是 ;(4)某校前年購買計算機 x 臺,去年購買數量是前年的2倍,今年購買數量又是去年的2倍,則學校三年共購買計算機 臺;(5)某班有a名學生,現(xiàn)把一批圖書分給全班學生閱讀,如果每人分4本,還缺25本,則這批圖書共 本;(6)一個兩位數,十位上的數字為a,個位上的數字b,則這個兩位數為 .師生活動:學生板演,師生共同評價總結注意(5)帶分數化假分數設計意圖:進一步提高用含有字母的式子表示實際問題中的數量關系的能力。
2. 內容內在邏輯本單元親子之間的交往既承接了上一課的“師生之間”的交往,也為七年級 下冊關于中學生提升在集體中的交往水平和能力奠定了堅實的基礎,因此本單元 在教材中起承上啟下的作用。第一框“家的意味”,通過對“家規(guī)” “家訓”的探究,引出中國家庭文化中“孝”的精神內涵,引導學生對家庭美德進行深入思考,學會孝親敬長。第二框“愛在家人間”,通過體驗家人間的親情之愛,進而引導學生感受對 家人割舍不斷的情感。第三框“讓家更美好”,通過對傳統(tǒng)家庭與現(xiàn)代家庭的比較,引導學生認識 現(xiàn)代家庭的特點,樹立共創(chuàng)共享家庭美德的意識,共創(chuàng)和諧美德之家。從初識家中“孝”,體驗家中“愛”,處理家中“沖突”,到自覺共建家庭 “美德”,學生逐步體味親情之愛,將“親情之愛”內化于心、夕卜化于行。(三)學情分析(1) 認知水平與心理特點七年級學生正處于青春期,是生理和心理急劇變化的關鍵時期,自我意識不 斷增強,逆反心理更加強烈,情緒波動較大。
課堂教學設計說明求比一個數少幾的數的應用題是低年級教學的一個難點.為了分散難點,在復習準備階段做了孕伏.如:圓比三角形多2個,也可以說三角形比圓少2個.為了突破難點,讓學生動手擺、動口說、動筆寫,全方位地調動學生的各種感官參與教學全過程,使學生在參與學習的活動中領悟出“求比一個數少幾的數”的應用題仍然是把較大數看作兩部分組成的,從大數中去掉大數比小數多的部分,就是小數與大數同樣多的部分,也就是小數的數值.也可以通過“假設同樣多”去透徹地理解比一個數少幾的實際意義.確實使學生理解和掌握了這類應用題用減法計算的道理和解答方法.為了讓學生進一步加深理解和掌握“求比一個數少幾的數”的應用題的數量關系和解答方法,在鞏固練習的最后設計了一組對比題目.
1、試驗性操作實驗師:大家說紅花的照片能不能用方格代表?下面請同學們用方格代表紅花的照片,用我們的學具卡片擺出紅花的朵數。(學生操作,教師巡視。)師:大家說黃花的朵數能不能也可以這樣操作出?請同學們用上面的方法再操作出黃花的朵數。(學生操作)師:同學們已經擺出了紅花的朵數和黃花的朵數,怎么操作才能知道紅花和黃花一共是多少朵?(把紅花的朵數和黃花的朵數合并起來數一數)(學生操作,教師巡視。)師:請把合并起來的數整理一下,讓人一看就能知道是多少朵好嗎?請同學們寫出算式的答案。(即操作表達式)教師多媒體演示全部操作實驗過程,并簡單小結。2、驗證性操作實驗師:同學們,假如紅花是56朵,黃花是38朵,求“紅花和黃花共幾朵?”你們還能不能用上面的操作實驗方法來解決?(能)好!那就請你們試試看。(學生操作,教師巡視。)
第一課時:從不同角度觀察一個物體教學內容:教科書38頁例1、從不同角度觀察一個物體教學目標:1、知識目標:讓學生經歷觀察的過程,認識到從不同的位置觀察物體,所看到的形狀是不同的。能辨認從正面、左面、上面觀察到的簡單物體的形狀。2、能力目標:培養(yǎng)學生從不同角度觀察,分析事物的能力。培養(yǎng)學生構建簡單的空間想象力。教學重難點:幫助學生構建初步的空間想象力。學情分析:學生在日常生活中已經積累了豐富的觀察物體的感性經驗,已經能辨認從不同位置觀察到的簡單物體的形狀,因此可以放手讓學生自己去探究,讓學生真正地、實實在在地進行觀察和操作。教具學具:長方體、正方體、盒子等。教學設計:一、,謎語導入請同學們猜謎語:“左一片、右一片,摸得著,看不見,是什么呢?”(耳朵)為什么能看見別人的耳朵,卻看不見自己的耳朵呢?因為我們觀察的角度不一樣,那么今天我們就一起來進一步研究觀察物體(板書)
2、互動交流,探究規(guī)律。 (1)、小組內交流討論: 讓每個同學說出自己的發(fā)現(xiàn),說說自己的猜想,并討論郵政編碼中的數字是怎樣編排的。(師巡視,隨機參與討論。) (2)、全班展示交流: 師:那個小組愿意先來展示一下你們的探究結果? 生1:我們發(fā)現(xiàn)郵政編碼都是由6個數字組成的。…… 生2:我們發(fā)現(xiàn)前兩位數字表示省,如…… 生3:同一個省、市的郵政編碼前三位數字相同。比如……。 (讓學生充分發(fā)言) 【設計意圖:“自主探索——互動交流——匯報展示”,充分展現(xiàn)學生自主探究的過程,突出了學生的主體地位,培養(yǎng)了學生自主獲取知識的能力和合作交流的意識?!?3、共同優(yōu)化,形成結論。 (1) 教師配合多媒體課件說明郵政編碼的結構和組成: 師:我國郵政編碼的結構與含義采用“四級六位制”。編碼含義:郵政編碼的六位數字分別代表了省、市、郵政、縣市、投遞局四級單位。其中:前二位表示省(自治區(qū)、直轄市);前三位表示郵區(qū);前四位表示縣(市);最后兩位表示投遞局(所)
教學內容:整數乘法運算定律推廣到小數乘法 (P.12頁例8和“做一做”,練習二第2題。)教學要求: 使學生理解整數乘法的運算定律對于小數同樣適用,并會運用乘法的運算定律進行一些小數的簡便計算。教學重點: 乘法運算定律中數(包括整數和小數)的適用范圍。教學難點: 運用乘法的運算定律進行小數乘法的的簡便運算。教學用具:投影片若干張。教學過程:一、激發(fā):1、計算:25×95×4 25×32 4×48+6×48 102×562、在整數乘法中我們已學過哪些運算定律?請用字母表示出來。根據學生的回答,板書:乘法交換律 ab=ba乘法結合律 a(bc)=(ab)c乘法分配律 a(b+c)=ab+ac2、讓學生舉例說明怎樣應用這些定律使計算簡便。(注意學生舉例時所用的數。)3、出示教材P.9頁的3組算式:下面每組算式左右兩邊的結果相等嗎?
教材分析:例4是讓學生判斷媽媽要買三種生活用品,帶100元錢夠不夠??梢越Y合這種生活中經常出現(xiàn)的情景,使學生認識到,在日常生活中,有時需要進行精確計算,有時根據實際的需要只要估算出大致的結果就可以了,便于學生更完整、全面、深刻地認識數學的功能。估算的策略是多樣化的,可以用連加,也可以用連減,還可以用加減混合,中間包含了加法的估算和減法的估算。教材上呈現(xiàn)了兩種估算策略,有一名學生用連減的方法先估算出100-28大約得70,再估算出70-43大約得30,從而判斷用剩下的錢買水杯還夠,兩步計算中都運用了估算。另一名學生先用加法估算出28+43大約得70,再口算出大約還剩30元,從而得出買水杯還夠的結論,第一步計算運用了估算,第二步是精確計算。由于每個個體的思維方式和思維水平不同,所采取的估算策略也是不同的,教材上除了提供這兩種估算策略以外,還有一名學生提出問題:“還可以怎樣算呢?”提示教師在教學時讓學生靈活采用適合自己的估算方法,體現(xiàn)了算法多樣化的思想。