提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

北師大初中八年級數(shù)學下冊變形后提公因式因式分解教案

  • 北師大初中數(shù)學九年級上冊一元二次方程的解及其估算1教案

    北師大初中數(shù)學九年級上冊一元二次方程的解及其估算1教案

    首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進一步在這個范圍內取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計一元二次方程根的取值范圍時,當ax2+bx+c(a≠0)的值由正變負或由負變正時,x的取值范圍很重要,因為只有在這個范圍內,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設計一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實際問題確定其解的大致范圍;(2)再通過列表,具體計算,進行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實際生活中一些較為復雜的方程時應用廣泛.在本節(jié)課中讓學生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學設計上,強調自主學習,注重合作交流,在探究過程中獲得數(shù)學活動的經(jīng)驗,提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.

  • 北師大初中數(shù)學七年級上冊整式及其加減說課稿

    北師大初中數(shù)學七年級上冊整式及其加減說課稿

    ②.通過“由文字語言到符號語言”再“由符號語言到文字語言”讓學生從正反兩方面雙向建構.突破難點策略:①.分三步分散難點:引入時大量的實際情景,讓學生體會到代數(shù)式存在的普遍性;讓學生給自己構造的一些簡單代數(shù)式賦予實際意義,進一步體會代數(shù)式的模型思想;通過“主題研究”等環(huán)節(jié)進一步提高解決實際問題的能力.②.適時安排小組合作與交流,使學生在傾聽、質疑、說服、推廣的過程中得到“同化”和“順應”,直至豁然開朗,突破思維的瓶頸.2.生成預設為生成服務,本案編代數(shù)式、主題研究等環(huán)節(jié)的設計為學生精彩的生成提供了很好的平臺,在實際教學過程中,教師要注重生成信息的捕捉,善于發(fā)現(xiàn)學生思維的亮點,及時進行引導和激勵,并根據(jù)具體教學對象,適當調整教與學,使教學過程真正成為生成教育智慧和增強實踐能力的過程.讓預設與生成齊飛.

  • 北師大初中七年級數(shù)學上冊應用一元一次方程——追趕小明教案2

    北師大初中七年級數(shù)學上冊應用一元一次方程——追趕小明教案2

    由于題目較簡單,所以學生分析解答時很有信心,且正確率也比較高,同時也進一步體會到了借助“線段圖”分析行程問題的優(yōu)越性.六、歸納總結:活動內容:學生歸納總結本節(jié)課所學知識:1.會借線段圖分析行程問題.2.各種行程問題中的規(guī)律及等量關系.同向追及問題:①同時不同地——甲路程+路程差=乙路程; 甲時間=乙時間.②同地不同時——甲時間+時間差=乙時間; 甲路程=乙路程.相向的相遇問題:甲路程+乙路程=總路程; 甲時間=乙時間.目的:強調本課的重點內容是要學會借線段圖來分析行程問題,并能掌握各種行程問題中的規(guī)律及等量關系.引導學生自己對所學知識和思想方法進行歸納和總結,從而形成自己對數(shù)學知識的理解和解決問題的方法策略.

  • 北師大初中七年級數(shù)學上冊應用一元一次方程——追趕小明教案1

    北師大初中七年級數(shù)學上冊應用一元一次方程——追趕小明教案1

    解:(1)設x分鐘后兩人第一次相遇,由題意,得360x-240x=400.解得x=103.(103×360+103×240)÷400=5(圈).答:兩人一共跑了5圈.(2)設x分鐘后兩人第一次相遇,由題意,得360x+240x=400.解得x=23(分鐘)=40(秒).答:40秒后兩人第一次相遇.方法總結:環(huán)形問題中的相等關系:兩個人同地背向而行:相遇問題(首次相遇),甲的行程+乙的行程=一圈周長;兩個人同地同向而行:追及問題(首次追上),甲的行程-乙的行程=一圈周長.三、板書設計追趕小明→行程問題→相遇問題追及問題環(huán)形問題教學過程中,通過對開放性問題的探討與交流,體驗生活中數(shù)學的應用與價值,感受數(shù)學與人類生活的密切聯(lián)系,激發(fā)學生學習數(shù)學的興趣,培養(yǎng)學生的創(chuàng)新意識、團隊精神和克服困難的勇氣.

  • 北師大初中九年級數(shù)學下冊二次函數(shù)y=x2和y=-x2的圖象與性質2教案

    北師大初中九年級數(shù)學下冊二次函數(shù)y=x2和y=-x2的圖象與性質2教案

    【教學目標】(一)教學知識點能夠利用描點法作出函數(shù) 的圖象,并根據(jù)圖象認識和理解二次函數(shù) 的性質;比較兩者的異同.(二)能力訓練要求:經(jīng)歷探索二次函數(shù) 圖象的作法和性質的過程,獲得利用圖象研究函數(shù)性質的經(jīng)驗.(三)情感態(tài)度與價值觀:通過學生自己的探索活動,達到對拋物線自身特點的認識和對二次函數(shù)性質的理解. 【重、難點】重點 :會畫y=ax2的圖象,理解其性質。難點:描點法畫y=ax2的圖象,體會數(shù)與形的相互聯(lián)系。 【導學流程】 一、自主預習(用時15分鐘)1.創(chuàng)設教學情境我們在教學了正比例函數(shù)、一次函數(shù)、反比例函數(shù)的定義后,都借助圖像研究了它們的性質.而上節(jié)課我們所學的二次函數(shù)的圖象是什么呢?本節(jié)課我們將從最簡單的二次函數(shù)y=x2入手去研究

  • 北師大初中九年級數(shù)學下冊二次函數(shù)y=ax2+bx+c的圖象與性質1教案

    北師大初中九年級數(shù)學下冊二次函數(shù)y=ax2+bx+c的圖象與性質1教案

    解析:(1)已知拋物線解析式y(tǒng)=ax2+bx+0.9,選定拋物線上兩點E(1,1.4),B(6,0.9),把坐標代入解析式即可得出a、b的值,繼而得出拋物線解析式;(2)求出y=1.575時,對應的x的兩個值,從而可確定t的取值范圍.解:(1)由題意得點E的坐標為(1,1.4),點B的坐標為(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的拋物線的解析式為y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,當y=1.575時,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,則t的取值范圍為32<t<92.方法總結:解答本題的關鍵是注意審題,將實際問題轉化為求函數(shù)問題,培養(yǎng)自己利用數(shù)學知識解答實際問題的能力.三、板書設計二次函數(shù)y=ax2+bx+c的圖象與性質1.二次函數(shù)y=ax2+bx+c的圖象與性質2.二次函數(shù)y=ax2+bx+c的應用

  • 北師大初中九年級數(shù)學下冊二次函數(shù)y=ax2+bx+c的圖象與性質2教案

    北師大初中九年級數(shù)學下冊二次函數(shù)y=ax2+bx+c的圖象與性質2教案

    1.使學生掌握用描點法畫出函數(shù)y=ax2+bx+c的圖象。2.使學生掌握用圖象或通過配方確定拋物線的開口方向、對稱軸和頂點坐標。讓學生經(jīng)歷探索二次函數(shù)y=ax2+bx+c的圖象的開口方向、對稱軸和頂點坐標以及性質的過程,理解二次函數(shù)y=ax2+bx+c的性質。用描點法畫出二次函數(shù)y=ax2+bx+c的圖象和通過配方確定拋物線的對稱軸、頂點坐標理解二次函數(shù)y=ax2+bx+c(a≠0)的性質以及它的對稱軸(頂點坐標分別是x=-b2a、(-b2a,4ac-b24a)一、提出問題1.你能說出函數(shù)y=-4(x-2)2+1圖象的開口方向、對稱軸和頂點坐標嗎?(函數(shù)y=-4(x-2)2+1圖象的開口向下,對稱軸為直線x=2,頂點坐標是(2,1)。2.函數(shù)y=-4(x-2)2+1圖象與函數(shù)y=-4x2的圖象有什么關系?(函數(shù)y=-4(x-2)2+1的圖象可以看成是將函數(shù)y=-4x2的圖象向右平移2個單位再向上平移1個單位得到的)

  • 北師大初中九年級數(shù)學下冊二次函數(shù)y=a(x-h)2+k的圖象與性質1教案

    北師大初中九年級數(shù)學下冊二次函數(shù)y=a(x-h)2+k的圖象與性質1教案

    (3)設點A的坐標為(m,0),則點B的坐標為(12-m,0),點C的坐標為(12-m,-16m2+2m),點D的坐標為(m,-16m2+2m).∴“支撐架”總長AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函數(shù)的圖象開口向下,∴當m=3米時,“支撐架”的總長有最大值為15米.方法總結:解決本題的關鍵是根據(jù)圖形特點選取一個合適的參數(shù)表示它們,得出關系式后運用函數(shù)性質來解.三、板書設計二次函數(shù)y=a(x-h(huán))2+k的圖象與性質1.二次函數(shù)y=a(x-h(huán))2+k的圖象與性質2.二次函數(shù)y=a(x-h(huán))2+k的圖象與y=ax2的圖象的關系3.二次函數(shù)y=a(x-h(huán))2+k的應用要使課堂真正成為學生展示自我的舞臺,還學生課堂學習的主體地位,教師要把激發(fā)學生學習熱情和提高學生學習能力放在教學首位,為學生提供展示自己聰明才智的機會,使課堂真正成為學生展示自我的舞臺.充分利用合作交流的形式,能使教師發(fā)現(xiàn)學生分析問題、解決問題的獨到見解以及思維的誤區(qū),以便指導今后的教學.

  • 北師大初中九年級數(shù)學下冊二次函數(shù)y=x2和y=-x2的圖象與性質1教案

    北師大初中九年級數(shù)學下冊二次函數(shù)y=x2和y=-x2的圖象與性質1教案

    雨后天空的彩虹、河上架起的拱橋等都會形成一條曲線.問題1:這些曲線能否用函數(shù)關系式表示?問題2:如何畫出這樣的函數(shù)圖象?二、合作探究探究點:二次函數(shù)y=x2和y=-x2的圖象與性質【類型一】 二次函數(shù)y=x2和y=-x2的圖象的畫法及特點在同一平面直角坐標系中,畫出下列函數(shù)的圖象:(1)y=x2;(2)y=-x2.根據(jù)圖象分別說出拋物線(1)(2)的對稱軸、頂點坐標、開口方向及最高(低)點坐標.解析:利用列表、描點、連線的方法作出兩個函數(shù)的圖象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描點、連線可得圖象如下:(1)拋物線y=x2的對稱軸為y軸,頂點坐標為(0,0),開口方向向上,最低點坐標為(0,0);(2)拋物線y=-x2的對稱軸為y軸,頂點坐標為(0,0),開口方向向下,最高點坐標為(0,0).方法總結:畫拋物線y=x2和y=-x2的圖象時,還可以根據(jù)它的對稱性,先用描點法描出拋物線的一側,再利用對稱性畫另一側.

  • 北師大初中九年級數(shù)學下冊二次函數(shù)y=ax2和y=ax2+c的圖象與性質1教案

    北師大初中九年級數(shù)學下冊二次函數(shù)y=ax2和y=ax2+c的圖象與性質1教案

    變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第5題【類型二】 在同一坐標系中判斷二次函數(shù)和一次函數(shù)的圖象在同一直角坐標系中,一次函數(shù)y=ax+c和二次函數(shù)y=ax2+c的圖象大致為()解析:∵一次函數(shù)和二次函數(shù)都經(jīng)過y軸上的點(0,c),∴兩個函數(shù)圖象交于y軸上的同一點,故B選項錯誤;當a>0時,二次函數(shù)的圖象開口向上,一次函數(shù)的圖象從左向右上升,故C選項錯誤;當a<0時,二次函數(shù)的圖象開口向下,一次函數(shù)的圖象從左向右下降,故A選項錯誤,D選項正確.故選D.方法總結:熟記一次函數(shù)y=kx+b在不同情況下所在的象限,以及熟練掌握二次函數(shù)的有關性質(開口方向、對稱軸、頂點坐標等)是解決問題的關鍵.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升” 第4題【類型三】 二次函數(shù)y=ax2+c的圖象與三角形的綜合

  • 北師大初中七年級數(shù)學上冊應用一元一次方程——水箱變高了教案2

    北師大初中七年級數(shù)學上冊應用一元一次方程——水箱變高了教案2

    從而為列方程找等量關系作了鋪墊.環(huán)節(jié)2中的表格發(fā)給每個小組,為增強小組討論結果的展示起到了較好的作用.環(huán)節(jié)3中通過讓學生自己設計表格為討論的得出起到輔助作用.2.相信學生并為學生提供充分展示自己的機會本節(jié)課的設計中,通過學生多次的動手操作活動,引導學生進行探索,使學生確實是在舊知識的基礎上探求新內容,探索的過程是沒有難度的任何學生都會動手操作,每個學生都有體會的過程,都有感悟的可能,這種形式讓學生切身去體驗問題的情景,從而進一步幫助學生理解比較復雜的問題,再把實際問題抽象成數(shù)學問題.3.注意改進的方面本節(jié)課由于構題新穎有趣,所以一開始就抓住了學生的求知欲望,課堂氣氛活躍,討論問題積極主動.但由于學生發(fā)表自己的想法較多,使得教學時間不能很好把握,導致課堂練習時間緊張,今后予以改進.

  • 北師大初中七年級數(shù)學上冊應用一元一次方程——水箱變高了教案1

    北師大初中七年級數(shù)學上冊應用一元一次方程——水箱變高了教案1

    解:設截取圓鋼的長度為xmm.根據(jù)題意,得π(902)2x=131×131×81,解方程,得x=686.44π.答:截取圓鋼的長度為686.44πmm.方法總結:圓鋼由圓柱形變成了長方體,形狀發(fā)生了變化,但是體積保持不變.“變形之前圓鋼的體積=變形之后長方體的體積”就是我們所要尋找的等量關系.探究點三:面積變化問題將一個長、寬、高分別為15cm、12cm和8cm的長方體鋼坯鍛造成一個底面是邊長為12cm的正方形的長方體鋼坯.試問:是鍛造前的長方體鋼坯的表面積大,還是鍛造后的長方體鋼坯的表面積大?請你計算比較.解析:由鍛造前后兩長方體鋼坯體積相等,可求出鍛造后長方體鋼坯的高.再計算鍛造前后兩長方體鋼坯的表面積,最后比較大小即可.解析:設鍛造后長方體的高為xcm,依題意,得15×12×8=12×12x.解得x=10.鍛造前長方體鋼坯的表面積為2×(15×12+15×8+12×8)=2×(180+120+96)=792(cm2),鍛造后長方體鋼坯的表面積為2×(12×12+12×10+12×10)=2×(144+120+120)=768(cm2).

  • 北師大初中七年級數(shù)學上冊利用移項與合并同類項解一元一次方程教案2

    北師大初中七年級數(shù)學上冊利用移項與合并同類項解一元一次方程教案2

    練習:現(xiàn)在你能解答課本85頁的習題3.1第6題嗎?有一個班的同學去劃船,他們算了一下,如果增加一條船,正好每條船坐6人,如果送還了一條船 ,正好每條船坐9人,問這個班共多少同學?小結提問:1、今天你又學會了解方程的哪些方法?有哪些步聚?每一步的依據(jù)是什么?2、現(xiàn)在你能回答前面提到的古老的代數(shù)書中的“對消”與“還原”是什么意思嗎?3、今天討論的問題中的相等關系又有何共同特點?學生思考后回答、整理:① 解方程的步驟及依據(jù)分別是:移項(等式的性質1)合并(分配律)系數(shù)化為1(等式的性質2)表示同一量的兩個不同式子相等作業(yè):1、 必做題:課本習題2、 選做題:將一塊長、寬、高分別為4厘米、2厘米、3厘米的長方體橡皮泥捏成一個底面半徑為2厘米的圓柱,它的高是多少?(精確到0.1厘米)

  • 北師大初中七年級數(shù)學上冊利用移項與合并同類項解一元一次方程教案1

    北師大初中七年級數(shù)學上冊利用移項與合并同類項解一元一次方程教案1

    (3)移項得-4x=4+8,合并同類項得-4x=12,系數(shù)化成1得x=-3;(4)移項得1.3x+0.5x=0.7+6.5,合并同類項得1.8x=7.2,系數(shù)化成1得x=4.方法總結:將所有含未知數(shù)的項移到方程的左邊,常數(shù)項移到方程的右邊,然后合并同類項,最后將未知數(shù)的系數(shù)化為1.特別注意移項要變號.探究點三:列一元一次方程解應用題把一批圖書分給七年級某班的同學閱讀,若每人分3本,則剩余20本,若每人分4本,則缺25本,這個班有多少學生?解析:根據(jù)實際書的數(shù)量可得相應的等量關系:3×學生數(shù)量+20=4×學生數(shù)量-25,把相關數(shù)值代入即可求解.解:設這個班有x個學生,根據(jù)題意得3x+20=4x-25,移項得3x-4x=-25-20,合并同類項得-x=-45,系數(shù)化成1得x=45.答:這個班有45人.方法總結:列方程解應用題時,應抓住題目中的“相等”、“誰比誰多多少”等表示數(shù)量關系的詞語,以便從中找出合適的等量關系列方程.

  • 北師大初中數(shù)學九年級上冊反比例函數(shù)的性質1教案

    北師大初中數(shù)學九年級上冊反比例函數(shù)的性質1教案

    如圖,四邊形OABC是邊長為1的正方形,反比例函數(shù)y=kx的圖象經(jīng)過點B(x0,y0),則k的值為.解析:∵四邊形OABC是邊長為1的正方形,∴它的面積為1,且BA⊥y軸.又∵點B(x0,y0)是反比例函數(shù)y=kx圖象上的一點,則有S正方形OABC=|x0y0|=|k|,即1=|k|.∴k=±1.又∵點B在第二象限,∴k=-1.方法總結:利用正方形或矩形或三角形的面積確定|k|的值之后,要注意根據(jù)函數(shù)圖象所在位置或函數(shù)的增減性確定k的符號.三、板書設計反比例函數(shù)的性質性質當k>0時,在每一象限內,y的值隨x的值的增大而減小當k<0時,在每一象限內,y的值隨x的值的增大而增大反比例函數(shù)圖象中比例系數(shù)k的幾何意義通過對反比例函數(shù)圖象的全面觀察和比較,發(fā)現(xiàn)函數(shù)自身的規(guī)律,概括反比例函數(shù)的有關性質,進行語言表述,訓練學生的概括、總結能力,在相互交流中發(fā)展從圖象中獲取信息的能力.讓學生積極參與到數(shù)學學習活動中,增強他們對數(shù)學學習的好奇心與求知欲.

  • 北師大初中數(shù)學九年級上冊反比例函數(shù)的應用2教案

    北師大初中數(shù)學九年級上冊反比例函數(shù)的應用2教案

    補充題:為了預防“非典”,某學校對教室采用藥熏消毒,已知藥物燃燒時,室內每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成為正比例,藥物燃燒后,y與x成反比例(如右圖),現(xiàn)測得藥物8分鐘燃畢,此時室內空氣中每立方米的含藥量6毫克,請根據(jù)題中所提供的信息,解答下列問題:(1)藥物燃燒時,y關于x的函數(shù)關系式為 ,自變量x的取值范圍為 ;藥物燃燒后,y關于x的函數(shù)關系式為 .(2)研究表明,當空氣中每立方米的含藥量低于1.6毫克時學生方可進教室,那么從消毒開始,至少需要經(jīng)過______分鐘后,學生才能回到教室;(3)研究表明,當空氣中每立方米的含藥量不低于3毫克且持續(xù)時間不低于10分鐘時,才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?答案:(1)y= x, 010,即空氣中的含藥量不低于3毫克/m3的持續(xù)時間為12分鐘,大于10分鐘的有效消毒時間.

  • 北師大初中數(shù)學九年級上冊一元二次方程的根與系數(shù)的關系1教案

    北師大初中數(shù)學九年級上冊一元二次方程的根與系數(shù)的關系1教案

    方程有兩個不相等的實數(shù)根.綜上所述,m=3.易錯提醒:本題由根與系數(shù)的關系求出字母m的值,但一定要代入判別式驗算,字母m的取值必須使判別式大于0,這一點很容易被忽略.三、板書設計一元二次方程的根與系數(shù)的關系關系:如果方程ax2+bx+c=0(a≠0) 有兩個實數(shù)根x1,x2,那么x1+x2 =-ba,x1x2=ca應用利用根與系數(shù)的關系求代數(shù)式的值已知方程一根,利用根與系數(shù)的關系求方程的另一根判別式及根與系數(shù)的關系的綜合應用讓學生經(jīng)歷探索,嘗試發(fā)現(xiàn)韋達定理,感受不完全的歸納驗證以及演繹證明.通過觀察、實踐、討論等活動,經(jīng)歷發(fā)現(xiàn)問題、發(fā)現(xiàn)關系的過程,養(yǎng)成獨立思考的習慣,培養(yǎng)學生觀察、分析和綜合判斷的能力,激發(fā)學生發(fā)現(xiàn)規(guī)律的積極性,激勵學生勇于探索的精神.通過交流互動,逐步養(yǎng)成合作的意識及嚴謹?shù)闹螌W精神.

  • 北師大初中數(shù)學九年級上冊一元二次方程的根與系數(shù)的關系2教案

    北師大初中數(shù)學九年級上冊一元二次方程的根與系數(shù)的關系2教案

    3、一般地,對于關于 方程 為已知常數(shù), ,試用求根公式求出它的兩個解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致。【知識應用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個根是2,求它的另一個根及 的值。(3)不解方程,求一 元二次方程 兩個根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個根是 ?!練w納小結】【作業(yè)】1、已知方程 的一個根是1,求它的另一個根及 的值。2、設 是方程 的兩個根,不解方程,求下列各式的值。① ;② 3、求一個一元次方程,使它的兩 個根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;

  • 北師大初中數(shù)學九年級上冊反比例函數(shù)的圖象1教案

    北師大初中數(shù)學九年級上冊反比例函數(shù)的圖象1教案

    解:(1)∵點(1,5)在反比例函數(shù)y=kx的圖象上,∴5=k1,即k=5,∴反比例函數(shù)的解析式為y=5x.又∵點(1,5)在一次函數(shù)y=3x+m的圖象上,∴5=3+m,即m=2,∴一次函數(shù)的解析式為y=3x+2;(2)由題意,聯(lián)立y=5x,y=3x+2.解得x1=1,y1=5或x2=-53,y2=-3.∴這兩個函數(shù)圖象的另一個交點的坐標為(-53,-3).三、板書設計反比例函數(shù)的圖象形狀:雙曲線位置當k>0時,兩支曲線分別位于   第一、三象限內當k<0時,兩支曲線分別位于   第二、四象限內畫法:列表、描點、連線(描點法)通過學生自己動手列表、描點、連線,提高學生的作圖能力.理解函數(shù)的三種表示方法及相互轉換,對函數(shù)進行認識上的整合,逐步明確研究函數(shù)的一般要求.反比例函數(shù)的圖象具體展現(xiàn)了反比例函數(shù)的整體直觀形象,為學生探索反比例函數(shù)的性質提供了思維活動的空間.

  • 北師大初中數(shù)學九年級上冊反比例函數(shù)的應用1教案

    北師大初中數(shù)學九年級上冊反比例函數(shù)的應用1教案

    因為反比例函數(shù)的圖象經(jīng)過點A(1.5,400),所以有k=600.所以反比例函數(shù)的關系式為p=600S(S>0);(2)當S=0.2時,p=6000.2=3000,即壓強是3000Pa;(3)由題意知600S≤6000,所以S≥0.1,即木板面積至少要有0.1m2.方法總結:本題滲透了物理學中壓強、壓力與受力面積之間的關系p= ,當壓力F一定時,p與S成反比例.另外,利用反比例函數(shù)的知識解決實際問題時,要善于發(fā)現(xiàn)實際問題中變量之間的關系,從而進一步建立反比例函數(shù)模型.三、板書設計反比例函數(shù)的應用實際問題與反比例函數(shù)反比例函數(shù)與其他學科知識的綜合經(jīng)歷分析實際問題中變量之間的關系,建立反比例函數(shù)模型,進而解決問題的過程,提高運用代數(shù)方法解決問題的能力,體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系,增強應用意識.通過反比例函數(shù)在其他學科中的運用,體驗學科整合思想.

上一頁123...91011121314151617181920下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!