本節(jié)通過學習用二分法求方程近似解的的方法,使學生體會函數與方程之間的關系,通過一些函數模型的實例,讓學生感受建立函數模型的過程和方法,體會函數在數學和其他學科中的廣泛應用,進一步認識到函數是描述客觀世界變化規(guī)律的基本數學模型,能初步運用函數思想解決一些生活中的簡單問題。課程目標1.了解二分法的原理及其適用條件.2.掌握二分法的實施步驟.3.通過用二分法求方程的近似解,使學生體會函數零點與方程根之間的聯系,初步形成用函數觀點處理問題的意識.數學學科素養(yǎng)1.數學抽象:二分法的概念;2.邏輯推理:用二分法求函數零點近似值的步驟;3.數學運算:求函數零點近似值;4.數學建模:通過一些函數模型的實例,讓學生感受建立函數模型的過程和方法,體會函數在數學和其他學科中的廣泛應用.
本節(jié)內容是學生學習了任意角和弧度制,任意角的三角函數后,安排的一節(jié)繼續(xù)深入學習內容,是求三角函數值、化簡三角函數式、證明三角恒等式的基本工具,是整個三角函數知識的基礎,在教材中起承上啟下的作用。同時,它體現的數學思想與方法在整個中學數學學習中起重要作用。課程目標1.理解并掌握同角三角函數基本關系式的推導及應用.2.會利用同角三角函數的基本關系式進行化簡、求值與恒等式證明.數學學科素養(yǎng)1.數學抽象:理解同角三角函數基本關系式;2.邏輯推理: “sin α±cos α”同“sin αcos α”間的關系;3.數學運算:利用同角三角函數的基本關系式進行化簡、求值與恒等式證明重點:理解并掌握同角三角函數基本關系式的推導及應用; 難點:會利用同角三角函數的基本關系式進行化簡、求值與恒等式證明.
《數學1必修本(A版)》的第五章4.5.2用二分法求方程的近似解.本節(jié)課要求學生根據具體的函數圖象能夠借助計算機或信息技術工具計算器用二分法求相應方程的近似解,了解這種方法是求方程近似解的常用方法,從中體會函數與方程之間的聯系;它既是本冊書中的重點內容,又是對函數知識的拓展,既體現了函數在解方程中的重要應用,同時又為高中數學中函數與方程思想、數形結合思想、二分法的算法思想打下了基礎,因此決定了它的重要地位.發(fā)展學生數學直觀、數學抽象、邏輯推理和數學建模的核心素養(yǎng)。課程目標 學科素養(yǎng)1.通過具體實例理解二分法的概念及其使用條件.2.了解二分法是求方程近似解的常用方法,能借助計算器用二分法求方程的近似解.3.會用二分法求一個函數在給定區(qū)間內的零點,從而求得方程的近似解. a.數學抽象:二分法的概念;b.邏輯推理:運用二分法求近似解的原理;
9.例二:如圖,AB∩α=B,A?α, ?a.直線AB與a具有怎樣的位置關系?為什么?解:直線AB與a是異面直線。理由如下:若直線AB與a不是異面直線,則它們相交或平行,設它們確定的平面為β,則B∈β, 由于經過點B與直線a有且僅有一個平面α,因此平面平面α與β重合,從而 , 進而A∈α,這與A?α矛盾。所以直線AB與a是異面直線。補充說明:例二告訴我們一種判斷異面直線的方法:與一個平面相交的直線和這個平面內不經過交點的直線是異面直線。10. 例3 已知a,b,c是三條直線,如果a與b是異面直線,b與c是異面直線,那么a與c有怎樣的位置關系?并畫圖說明.解: 直線a與直線c的位置關系可以是平行、相交、異面.如圖(1)(2)(3).總結:判定兩條直線是異面直線的方法(1)定義法:由定義判斷兩條直線不可能在同一平面內.
本節(jié)課是三角函數的繼續(xù),三角函數包含正弦函數、余弦函數、正切函數.而本課內容是正切函數的性質與圖像.首先根據單位圓中正切函數的定義探究其圖像,然后通過圖像研究正切函數的性質. 課程目標1、掌握利用單位圓中正切函數定義得到圖象的方法;2、能夠利用正切函數圖象準確歸納其性質并能簡單地應用.數學學科素養(yǎng)1.數學抽象:借助單位圓理解正切函數的圖像; 2.邏輯推理: 求正切函數的單調區(qū)間;3.數學運算:利用性質求周期、比較大小及判斷奇偶性.4.直觀想象:正切函數的圖像; 5.數學建模:讓學生借助數形結合的思想,通過圖像探究正切函數的性質. 重點:能夠利用正切函數圖象準確歸納其性質并能簡單地應用; 難點:掌握利用單位圓中正切函數定義得到其圖象.
由于三角函數是刻畫周期變化現象的數學模型,這也是三角函數不同于其他類型函數的最重要的地方,而且對于周期函數,我們只要認識清楚它在一個周期的區(qū)間上的性質,那么它的性質也就完全清楚了,因此本節(jié)課利用單位圓中的三角函數的定義、三角函數值之間的內在聯系性等來作圖,從畫出的圖形中觀察得出五個關鍵點,得到“五點法”畫正弦函數、余弦函數的簡圖.課程目標1.掌握“五點法”畫正弦曲線和余弦曲線的步驟和方法,能用“五點法”作出簡單的正弦、余弦曲線.2.理解正弦曲線與余弦曲線之間的聯系. 數學學科素養(yǎng)1.數學抽象:正弦曲線與余弦曲線的概念; 2.邏輯推理:正弦曲線與余弦曲線的聯系; 3.直觀想象:正弦函數余弦函數的圖像; 4.數學運算:五點作圖; 5.數學建模:通過正弦、余弦圖象圖像,解決不等式問題及零點問題,這正是數形結合思想方法的應用.
本節(jié)課是正弦函數、余弦函數圖像的繼續(xù),本課是正弦曲線、余弦曲線這兩種曲線的特點得出正弦函數、余弦函數的性質. 課程目標1.了解周期函數與最小正周期的意義;2.了解三角函數的周期性和奇偶性;3.會利用周期性定義和誘導公式求簡單三角函數的周期;4.借助圖象直觀理解正、余弦函數在[0,2π]上的性質(單調性、最值、圖象與x軸的交點等);5.能利用性質解決一些簡單問題. 數學學科素養(yǎng)1.數學抽象:理解周期函數、周期、最小正周期等的含義; 2.邏輯推理: 求正弦、余弦形函數的單調區(qū)間;3.數學運算:利用性質求周期、比較大小、最值、值域及判斷奇偶性.4.數學建模:讓學生借助數形結合的思想,通過圖像探究正、余弦函數的性質.重點:通過正弦曲線、余弦曲線這兩種曲線探究正弦函數、余弦函數的性質; 難點:應用正、余弦函數的性質來求含有cosx,sinx的函數的單調性、最值、值域及對稱性.
問題導入:問題一:試驗1:分別拋擲兩枚質地均勻的硬幣,A=“第一枚硬幣正面朝上”,B=“第二枚硬幣正面朝上”。事件A的發(fā)生是否影響事件B的概率?因為兩枚硬幣分別拋擲,第一枚硬幣的拋擲結果與第二枚硬幣的拋擲結果互相不受影響,所以事件A發(fā)生與否不影響事件B發(fā)生的概率。問題二:計算試驗1中的P(A),P(B),P(AB),你有什么發(fā)現?在該試驗中,用1表示硬幣“正面朝上”,用0表示“反面朝上”,則樣本空間Ω={(1,1),(1,0),(0,1),(0,0)},包含4個等可能的樣本點。而A={(1,1),(1,0)},B={(1,0),(0,0)}所以AB={(1,0)}由古典概率模型概率計算公式,得P(A)=P(B)=0.5,P(AB)=0.25, 于是 P(AB)=P(A)P(B)積事件AB的概率恰好等于事件A、B概率的乘積。問題三:試驗2:一個袋子中裝有標號分別是1,2,3,4的4個球,除標號外沒有其他差異。
1.圓柱、圓錐、圓臺的表面積與多面體的表面積一樣,圓柱、圓錐、圓臺的表面積也是圍成它的各個面的面積和。利用圓柱、圓錐、圓臺的展開圖如圖,可以得到它們的表面積公式:2.思考1:圓柱、圓錐、圓臺的表面積之間有什么關系?你能用圓柱、圓錐、圓臺的結構特征來解釋這種關系嗎?3.練習一圓柱的一個底面積是S,側面展開圖是一個正方體,那么這個圓柱的側面積是( )A 4πS B 2πS C πS D 4.練習二:如圖所示,在邊長為4的正三角形ABC中,E,F分別是AB,AC的中點,D為BC的中點,H,G分別是BD,CD的中點,若將正三角形ABC繞AD旋轉180°,求陰影部分形成的幾何體的表面積.5. 圓柱、圓錐、圓臺的體積對于柱體、錐體、臺體的體積公式的認識(1)等底、等高的兩個柱體的體積相同.(2)等底、等高的圓錐和圓柱的體積之間的關系可以通過實驗得出,等底、等高的圓柱的體積是圓錐的體積的3倍.
新知探究:向量的減法運算定義問題四:你能根據實數的減法運算定義向量的減法運算嗎?由兩個向量和的定義已知 即任意向量與其相反向量的和是零向量。求兩個向量差的運算叫做向量的減法。我們看到,向量的減法可以轉化為向量的加法來進行:減去一個向量相當于加上這個向量的相反向量。即新知探究(二):向量減法的作圖方法知識探究(三):向量減法的幾何意義問題六:根據問題五,思考一下向量減法的幾何意義是什么?問題七:非零共線向量怎樣做減法運算? 問題八:非零共線向量怎樣做減法運算?1.共線同向2.共線反向小試牛刀判一判(正確的打“√”,錯誤的打“×”)(1)兩個向量的差仍是一個向量。 (√ )(2)向量的減法實質上是向量的加法的逆運算. ( √ )(3)向量a與向量b的差與向量b與向量a的差互為相反向量。 ( √ )(4)相反向量是共線向量。 ( √ )
一.激趣導入?! ?. 教師展示做好的漂亮紙袋,讓孩子們產生想要動手的愿望。 2.結合多媒體課件,出示漂亮紙袋?! ⊥瑢W們,這些袋子漂亮嗎?你喜歡嗎?發(fā)現這些紙袋都是什么做成的?下面我們就來做一做這些漂亮的紙袋?! 《畬W習制作紙袋的基本過程?! ?.教師出示制作紙袋需要準備好的東西,讓孩子們自主檢查是否準備齊全?! ?.多媒體出示紙袋制作步驟,讓學生注意觀察,清晰每一步制作的過程: ?。?)把長方形的對折,畫上虛線,用小剪刀剪去我們不需要的部分,然后用雙面膠粘貼,形成一個紙袋。
教學過程:一、組織教學,導入學習1.觀察導入,激發(fā)興趣(教具出示)2.教師和學生一起做猜節(jié)日的游戲,激發(fā)學生的興趣。 每年的9月10日都是教師們最開心的日子,也是學生們表達對老師尊敬的日子,中國自古以來便有尊師重教的傳統(tǒng),《教師法》 第四條規(guī)定全社會應當尊重教師。
教學目標 知識目標:通過欣賞大自然的圖片,感知大自然不同特點的美?! 〖寄苣繕耍耗苡米约合矚g的方式表達對不同自然美的感受?! ∏楦袘B(tài)度與價值觀:培養(yǎng)學生熱愛大自然的情感,及愛護大自然的情感?! 〗虒W重點讓學生感受大自然不同的美,了解大自然的豐富,并能用簡單的語言表達自己的感受?! 〗虒W難點學習用審美的眼光去觀察大自然?! ≈饕谭▎l(fā)引導法、自學嘗試法 學習指導體驗探究法輔助指導法 教學資源教師:教材、課件?! W生:教材、自然風光片 教學過程: 教學活動教學意圖 教師學生
2學情分析 新入學的學生第一次接觸正規(guī)化的美術課,對一年級學生來說是新 奇、有趣、好玩的,而且新生入學前所受的教育各不相同,心理因素 也不一樣,在繪畫上、工藝制作上一定有著自己的創(chuàng)造思維、想象能 力和自己的個性,但這些會造成學習的不一致性、習慣不統(tǒng)一化,給 美術課的課堂帶來不必要的麻煩。因此, 對待這些剛進入課堂的小朋友, 我們在情感態(tài)度上要做出很大 的努力,小學生在思維的想象力、創(chuàng)造力方面發(fā)展的空間很大,所以 我們要好好把握機會, 激發(fā)孩子們對美術學習的興趣,讓孩子們能發(fā) 現美,有創(chuàng)造美的想法。
2學情分析 1、這一課是一年級的“造型·表現”學習領域,一年級孩子自制力較差,注意力集中時間不長,缺乏一定的造型能力,但好奇心很強,表現欲望非常強烈,非常希望得到老師和同學們的認可,從他們的興趣入手就能達到事半功倍的效果;2、教學方式應該是直觀的;3、讓學生通過欣賞與想象進行創(chuàng)作,激發(fā)他們對大自然的興趣,感受大自然的美。
2學情分析本課內容選用了苗族阿姐的背簍,黎族阿爸的魚籠,竹搖籃、簸箕等借助家庭中常見的竹器作為學習內容,目的是要求學生用線描的方法對竹器的外形及竹編的篾紋進行描繪,鍛煉學生對事物的觀察能力和表現能力。在此之前學生已經學過了如何用線描的方式描繪生活中的小物件,這為過渡到本課內容的學習起到了鋪墊作用,同時為后面的素描教學內容打下造型基礎。
教學評析:1、打破舊的教學模式。以往小學數學中把“統(tǒng)計”教學僅僅理解為統(tǒng)計圖、表的教學,而《數學課程標準》要求讓學生經歷、體驗數據的“收集、整理、描述和分析”的過程。因此,整個教學設計都從學生親自經歷和體驗統(tǒng)計過程為主線:引導學生發(fā)現并提出問題,用適當的方法收集和整理數據,用合適的圖、表展示數據,對數據作簡單的分析并對自己的分析、思考進行交流和改進。在這一過程,培養(yǎng)學生的創(chuàng)造力!2、構建“自主開放”的創(chuàng)新教學模式。在觀察草原動物、對怎樣數動物的只數及直觀形象的表示動物只數的過程中;在認識、及繪制統(tǒng)計圖、表的過程中,學生充分利用想象、猜測、操作、討論等學習方法,自主探索,充分發(fā)揮了學生的主體意識,培養(yǎng)了學生的觀察力、創(chuàng)造力。3、數學問題生活化,感受數學的實用性。
1、 如圖4-25,將一個圓分成三個大小相同的扇形,你能算出它們的圓心角的度數嗎?你知道每個扇形的面積和整個圓的面積的關系嗎?與同伴進行交流2、 畫一個半徑是2cm的圓,并在其中畫一個圓心為60º的扇形,你會計算這個扇形的面積嗎?與同伴交流。教師對答案進行匯總,講解本題解題思路:1、 因為一個圓被分成了大小相同的扇形,所以每個扇形的圓心角相同,又因為圓周角是360º,所以每個扇形的圓心角是360º÷3=120º,每個扇形的面積為整個圓的面積的三分之一。2、 先求出這個圓的面積S=πR²=4π,60÷360=1/6扇形面積=4π×1/6=2π/3【設計意圖】運用小組合作交流的方式,既培養(yǎng)了學生的合作意識和能力,又達到了互幫互助以弱帶強的目的,使學習比較吃力的同學也能參與到學習中來,體現了學生是學習的主體。
方法總結:在分辨一個圖形是否為多邊形時,一定要抓住多邊形定義中的關鍵詞語,如“線段”“首尾順次連接”“封閉”“平面圖形”等.如此,對于某些似是而非的圖形,只要根據定義進行對照和分析,即可判定.探究點二:確定多邊形的對角線一個多邊形從一個頂點最多能引出2015條對角線,這個多邊形的邊數是()A.2015 B.2016 C.2017 D.2018解析:這個多邊形的邊數為2015+3=2018.故選D.方法總結:過n邊形的一個頂點可以畫出(n-3)條對角線.本題只要逆向求解即可.探究點三:求扇形圓心角將一個圓分割成三個扇形,它們的圓心角的度數之比為2:3:4,求這三個扇形圓心角的度數.解析:用扇形圓心角所對應的比去乘360°即可求出相應扇形圓心角的度數.解:三個扇形的圓心角度數分別為:360°×22+3+4=80°;360°×32+3+4=120°;
尊敬的各位老師,親愛的同學們:今天我國旗下演講的題目是《心懷感恩》。“一粥一飯當思來之不易,半絲半縷恒念物力維限”,讓我們深知美好生活的彌足珍貴;“慈母手中線,游子身上衣”,讓我們銘記父母的養(yǎng)育之恩;“春蠶到死絲方盡,蠟炬成灰淚始干“,讓我們勿忘老師的無私奉獻;光陰可以流逝,時代可以變遷,讓我們永遠揮之不去的是同窗和摯友那份深深的思念之情,那相互幫助相互激勵的沒好日子。古人云:“滴水之恩當以涌泉相報”,讓我們都學會感恩,以行動感恩。感恩,是一種生活態(tài)度,是一種品德,是一種責任。常懷感恩之心,人與人,人與自然,人與社會就會變得更加和諧,更加親切。我們自身也會因為這種感恩心里的存在而變得愉快、健康。懂得感恩,才懂得付出,才會懂得回報,有人說善良的本質就是擁有一顆感恩的心,那么他一定會是一個幸福的人。學會感恩,我們就應該學會趕集社會對我們的關愛,感激祖國對我們的呵護——感時代之恩