五、板書設(shè)計第一節(jié)色彩斑斕的文化生活一.當(dāng)代文化生活素描(現(xiàn)狀、原因)1、現(xiàn)狀(1)文化生產(chǎn):色彩斑斕(2)文化消費:多種選擇2、當(dāng)代文化生活色彩斑斕的原因有哪些?/當(dāng)代人們在文化生活中為什么會面對多種選擇?(1)現(xiàn)代科學(xué)技術(shù)(2)大眾傳媒(3)社會主義市場經(jīng)濟的發(fā)展(4)現(xiàn)代文化產(chǎn)業(yè)的發(fā)展二.文化生活中的“喜”與“憂”1、喜(1)表現(xiàn)①它能滿足人們?nèi)遮叾鄻踊奈幕枨螅鋵嵢藗兊木裆睥谒梢酝ㄟ^靈活而有吸引力的表現(xiàn)方式,傳播科學(xué)文化知識③它便于采取群眾喜聞樂見的方式,使人們潛移默化地接受正確的價值觀念,提高思想道德素質(zhì)④它易于引導(dǎo)人們的消費觀念,推動生產(chǎn)的發(fā)展(2)原因:文化市場和大眾傳媒的發(fā)展2、憂(1)表現(xiàn)①有些部門和單位在經(jīng)濟利益的驅(qū)動下,不顧社會效益,肆意生產(chǎn)、銷售品位低下的文化產(chǎn)品
教師點撥:是社會主義意識形態(tài)的本質(zhì)體現(xiàn),是全國人民團結(jié)奮斗的共同思想基礎(chǔ)。④建設(shè)社會主義核心價值體系的要求設(shè)置探究問題:建設(shè)社會主義核心價值體系的要求有哪些?學(xué)生自主學(xué)習(xí)教材,得出結(jié)論板書:3建設(shè)社會主義核心價值體系的要求設(shè)計意圖:在掌握了內(nèi)容的基礎(chǔ)上,這一部分知識的學(xué)習(xí)水到渠成。高舉旗幟科學(xué)發(fā)展板書:1、中共引領(lǐng)文化前進方向的旗幟是——中國特色社會主義設(shè)置探究問題:高舉中國特色社會主義偉大旗幟最根本的要求是什么?學(xué)生自主學(xué)習(xí),回答問題板書:2高舉中國特色社會主義偉大旗幟,最根本的是堅持中國特色社會主義理論體系。教師繼續(xù)追問:這一理論體系的基本內(nèi)涵是什么?能否舉例說明這一理論體系有什么特點。學(xué)生討論,教師點撥:這個理論體系,堅持和發(fā)展了馬克思列寧主義、毛澤東思想,是馬克思主義中國化最新成果。中國特色社會主義理論體系具有強大的生命力、創(chuàng)造力、感召力,是不斷豐富和發(fā)展的馬克思主義
設(shè)計意圖:使同學(xué)從各屆奧運會會徽的設(shè)計上看各國文化,讓學(xué)生體會不同會徽體現(xiàn)的不同的民族文化,了解不同民族的文化特色,感悟文化多樣性的價值,使學(xué)生產(chǎn)生情感認(rèn)同,從而突破難點。探究活動5:教師多媒體呈現(xiàn)中法文化年的flash,顯示中國到法國舉辦中國文化年的圖片,比如:在法國街頭出現(xiàn)了中國的京劇臉譜,中國孩子玩的風(fēng)車,中國的大熊貓。出示法國到中國舉辦文化年的圖片,比如:法國在北京舉辦的音樂會,法國空軍的飛行表演等。學(xué)生討論:中法文化年的舉辦對中法兩國來說有什么現(xiàn)實意義?探究活動6:播放理查德.克萊德曼演奏的《梁山伯與祝英臺》的視頻討論:(1)此曲吸引你之處在哪里?(2)由此可見,對待文化差異的正確態(tài)度是什么?活動5和活動6的設(shè)計意圖在于讓學(xué)生懂得,面對開放的世界,既要尊重本民族的文化,同時也要尊重其他民族的文化,從而突破難點。
《奇偶性》內(nèi)容選自人教版A版第一冊第三章第三節(jié)第二課時;函數(shù)奇偶性是研究函數(shù)的一個重要策略,因此奇偶性成為函數(shù)的重要性質(zhì)之一,它的研究也為今后指對函數(shù)、冪函數(shù)、三角函數(shù)的性質(zhì)等后續(xù)內(nèi)容的深入起著鋪墊的作用.課程目標(biāo)1、理解函數(shù)的奇偶性及其幾何意義;2、學(xué)會運用函數(shù)圖象理解和研究函數(shù)的性質(zhì);3、學(xué)會判斷函數(shù)的奇偶性.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:用數(shù)學(xué)語言表示函數(shù)奇偶性;2.邏輯推理:證明函數(shù)奇偶性;3.數(shù)學(xué)運算:運用函數(shù)奇偶性求參數(shù);4.數(shù)據(jù)分析:利用圖像求奇偶函數(shù);5.數(shù)學(xué)建模:在具體問題情境中,運用數(shù)形結(jié)合思想,利用奇偶性解決實際問題。重點:函數(shù)奇偶性概念的形成和函數(shù)奇偶性的判斷;難點:函數(shù)奇偶性概念的探究與理解.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。
學(xué)生已經(jīng)學(xué)習(xí)了指數(shù)運算性質(zhì),有了這些知識作儲備,教科書通過利用指數(shù)運算性質(zhì),推導(dǎo)對數(shù)的運算性質(zhì),再學(xué)習(xí)利用對數(shù)的運算性質(zhì)化簡求值。課程目標(biāo)1、通過具體實例引入,推導(dǎo)對數(shù)的運算性質(zhì);2、熟練掌握對數(shù)的運算性質(zhì),學(xué)會化簡,計算.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:對數(shù)的運算性質(zhì);2.邏輯推理:換底公式的推導(dǎo);3.數(shù)學(xué)運算:對數(shù)運算性質(zhì)的應(yīng)用;4.數(shù)學(xué)建模:在熟悉的實際情景中,模仿學(xué)過的數(shù)學(xué)建模過程解決問題.重點:對數(shù)的運算性質(zhì),換底公式,對數(shù)恒等式及其應(yīng)用;難點:正確使用對數(shù)的運算性質(zhì)和換底公式.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入回顧指數(shù)性質(zhì):(1)aras=ar+s(a>0,r,s∈Q).(2)(ar)s= (a>0,r,s∈Q).(3)(ab)r= (a>0,b>0,r∈Q).那么對數(shù)有哪些性質(zhì)?如 要求:讓學(xué)生自由發(fā)言,教師不做判斷。而是引導(dǎo)學(xué)生進一步觀察.研探.
對數(shù)與指數(shù)是相通的,本節(jié)在已經(jīng)學(xué)習(xí)指數(shù)的基礎(chǔ)上通過實例總結(jié)歸納對數(shù)的概念,通過對數(shù)的性質(zhì)和恒等式解決一些與對數(shù)有關(guān)的問題.課程目標(biāo)1、理解對數(shù)的概念以及對數(shù)的基本性質(zhì);2、掌握對數(shù)式與指數(shù)式的相互轉(zhuǎn)化;數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:對數(shù)的概念;2.邏輯推理:推導(dǎo)對數(shù)性質(zhì);3.數(shù)學(xué)運算:用對數(shù)的基本性質(zhì)與對數(shù)恒等式求值;4.數(shù)學(xué)建模:通過與指數(shù)式的比較,引出對數(shù)定義與性質(zhì).重點:對數(shù)式與指數(shù)式的互化以及對數(shù)性質(zhì);難點:推導(dǎo)對數(shù)性質(zhì).教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入已知中國的人口數(shù)y和年頭x滿足關(guān)系 中,若知年頭數(shù)則能算出相應(yīng)的人口總數(shù)。反之,如果問“哪一年的人口數(shù)可達到18億,20億,30億......”,該如何解決?要求:讓學(xué)生自由發(fā)言,教師不做判斷。而是引導(dǎo)學(xué)生進一步觀察.研探.
《基本不等式》在人教A版高中數(shù)學(xué)第一冊第二章第2節(jié),本節(jié)課的內(nèi)容是基本不等式的形式以及推導(dǎo)和證明過程。本章一直在研究不等式的相關(guān)問題,對于本節(jié)課的知識點有了很好的鋪墊作用。同時本節(jié)課的內(nèi)容也是之后基本不等式應(yīng)用的必要基礎(chǔ)。課程目標(biāo)1.掌握基本不等式的形式以及推導(dǎo)過程,會用基本不等式解決簡單問題。2.經(jīng)歷基本不等式的推導(dǎo)與證明過程,提升邏輯推理能力。3.在猜想論證的過程中,體會數(shù)學(xué)的嚴(yán)謹(jǐn)性。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:基本不等式的形式以及推導(dǎo)過程;2.邏輯推理:基本不等式的證明;3.數(shù)學(xué)運算:利用基本不等式求最值;4.數(shù)據(jù)分析:利用基本不等式解決實際問題;5.數(shù)學(xué)建模:利用函數(shù)的思想和基本不等式解決實際問題,提升學(xué)生的邏輯推理能力。重點:基本不等式的形成以及推導(dǎo)過程和利用基本不等式求最值;難點:基本不等式的推導(dǎo)以及證明過程.
例7 用描述法表示拋物線y=x2+1上的點構(gòu)成的集合.【答案】見解析 【解析】 拋物線y=x2+1上的點構(gòu)成的集合可表示為:{(x,y)|y=x2+1}.變式1.[變條件,變設(shè)問]本題中點的集合若改為“{x|y=x2+1}”,則集合中的元素是什么?【答案】見解析 【解析】集合{x|y=x2+1}的代表元素是x,且x∈R,所以{x|y=x2+1}中的元素是全體實數(shù).變式2.[變條件,變設(shè)問]本題中點的集合若改為“{y|y=x2+1}”,則集合中的元素是什么?【答案】見解析 【解析】集合{ y| y=x2+1}的代表元素是y,滿足條件y=x2+1的y的取值范圍是y≥1,所以{ y| y=x2+1}={ y| y≥1},所以集合中的元素是大于等于1的全體實數(shù).解題技巧(認(rèn)識集合含義的2個步驟)一看代表元素,是數(shù)集還是點集,二看元素滿足什么條件即有什么公共特性。
學(xué)生在初中學(xué)習(xí)了 ~ ,但是現(xiàn)實生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉(zhuǎn)體 ”,且主動輪和被動輪的旋轉(zhuǎn)方向不一致.因此為了準(zhǔn)確描述這些現(xiàn)象,本節(jié)課主要就旋轉(zhuǎn)度數(shù)和旋轉(zhuǎn)方向?qū)堑母拍钸M行推廣.課程目標(biāo)1.了解任意角的概念.2.理解象限角的概念及終邊相同的角的含義.3.掌握判斷象限角及表示終邊相同的角的方法.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:理解任意角的概念,能區(qū)分各類角;2.邏輯推理:求區(qū)域角;3.數(shù)學(xué)運算:會判斷象限角及終邊相同的角.重點:理解象限角的概念及終邊相同的角的含義;難點:掌握判斷象限角及表示終邊相同的角的方法.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入初中對角的定義是:射線OA繞端點O按逆時針方向旋轉(zhuǎn)一周回到起始位置,在這個過程中可以得到 ~ 范圍內(nèi)的角.但是現(xiàn)實生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉(zhuǎn)體 ”,且主動輪和被動輪的旋轉(zhuǎn)方向不一致.
本節(jié)主要內(nèi)容是三角函數(shù)的誘導(dǎo)公式中的公式二至公式六,其推導(dǎo)過程中涉及到對稱變換,充分體現(xiàn)對稱變換思想在數(shù)學(xué)中的應(yīng)用,在練習(xí)中加以應(yīng)用,讓學(xué)生進一步體會 的任意性;綜合六組誘導(dǎo)公式總結(jié)出記憶誘導(dǎo)公式的口訣:“奇變偶不變,符號看象限”,了解從特殊到一般的數(shù)學(xué)思想的探究過程,培養(yǎng)學(xué)生用聯(lián)系、變化的辯證唯物主義觀點去分析問題的能力。誘導(dǎo)公式在三角函數(shù)化簡、求值中具有非常重要的工具作用,要求學(xué)生能熟練的掌握和應(yīng)用。課程目標(biāo)1.借助單位圓,推導(dǎo)出正弦、余弦第二、三、四、五、六組的誘導(dǎo)公式,能正確運用誘導(dǎo)公式將任意角的三角函數(shù)化為銳角的三角函數(shù),并解決有關(guān)三角函數(shù)求值、化簡和恒等式證明問題2.通過公式的應(yīng)用,了解未知到已知、復(fù)雜到簡單的轉(zhuǎn)化過程,培養(yǎng)學(xué)生的化歸思想,以及信息加工能力、運算推理能力、分析問題和解決問題的能力。
函數(shù)在高中數(shù)學(xué)中占有很重要的比重,因而作為函數(shù)的第一節(jié)內(nèi)容,主要從三個實例出發(fā),引出函數(shù)的概念.從而就函數(shù)概念的分析判斷函數(shù),求定義域和函數(shù)值,再結(jié)合三要素判斷函數(shù)相等.課程目標(biāo)1.理解函數(shù)的定義、函數(shù)的定義域、值域及對應(yīng)法則。2.掌握判定函數(shù)和函數(shù)相等的方法。3.學(xué)會求函數(shù)的定義域與函數(shù)值。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:通過教材中四個實例總結(jié)函數(shù)定義;2.邏輯推理:相等函數(shù)的判斷;3.數(shù)學(xué)運算:求函數(shù)定義域和求函數(shù)值;4.數(shù)據(jù)分析:運用分離常數(shù)法和換元法求值域;5.數(shù)學(xué)建模:通過從實際問題中抽象概括出函數(shù)概念的活動,培養(yǎng)學(xué)生從“特殊到一般”的分析問題的能力,提高學(xué)生的抽象概括能力。重點:函數(shù)的概念,函數(shù)的三要素。難點:函數(shù)概念及符號y=f(x)的理解。
一、教學(xué)理念在新課改精神指導(dǎo)下,我在本課教學(xué)中力求貫徹以下教學(xué)理念:新課標(biāo)的指引觀 、生本位的學(xué)生觀、探究式的學(xué)習(xí)觀、多角色的教師觀、 發(fā)展性的評價觀二、教材地位《馬克思主義的誕生》是人教版必修一第五單元第18課內(nèi)容,本課講述的是國際共產(chǎn)主義運動范疇的歷史,是人類社會進入一個新的發(fā)展時期。從總體上概述了社會主義從空想到科學(xué),從理論到實踐的歷程。說明了科學(xué)社會主義理論是歷史發(fā)展的必然結(jié)果。本課在國際工運史上占有重要的地位。通過學(xué)習(xí)學(xué)生可對馬克思主義加深了解,理解人類歷史發(fā)展的必然趨勢以及人類一直不斷追求進步的精神,幫助學(xué)生樹立正確的人生觀、價值觀,達到以史鑒今,服務(wù)現(xiàn)實的目的。
XXX軟件有限公司 20xx.01 – 20xx.01幼兒班教師負責(zé)與班級外教、助教協(xié)調(diào)好班級各項工作,定期召開班務(wù)會,做好總結(jié),同時傳達好工作安排,負責(zé)開展組織家長會,家長開放日,親子活動,組織大大小小的活動幾十場,策劃活動方案、擔(dān)任活動的主持人工作。XXX軟件有限公司 20xx.01 – 20xx.01幼兒班教師擔(dān)任校內(nèi)助理實習(xí)生,在校實習(xí)期間,曾協(xié)助完成 30 余人外賓的來訪接待和研討會議的組織執(zhí)行,受到外賓和領(lǐng)導(dǎo)的高度肯定。實習(xí)結(jié)束后獲得公司上級與同事一致認(rèn)可,榮獲最佳新人獎
【教學(xué)目標(biāo)】知識與技能目標(biāo):掌握對數(shù)函數(shù)的圖像及性質(zhì);過程與方法目標(biāo):通過圖像特征的觀察,理解對數(shù)函數(shù)的性質(zhì),并從中體會從具體到一般及數(shù)形結(jié)合的方法;情感態(tài)度與價值觀目標(biāo):在教學(xué)活動中培養(yǎng)學(xué)生的學(xué)習(xí)興趣,感受數(shù)學(xué)知識的應(yīng)用價值,體驗知識之間的內(nèi)在邏輯之美?!窘虒W(xué)重點】對數(shù)函數(shù)的圖像及性質(zhì)。【教學(xué)難點】對數(shù)函數(shù)性質(zhì)與應(yīng)用。
二、對數(shù)函數(shù)的概念1. 計算對數(shù)的值 N1248x 思路(引入對數(shù)的概念):讓學(xué)生依次計算、、、、、、,體會每一個真數(shù)都能找到唯一一個對數(shù)與之對應(yīng),這就形成了一個函數(shù),我們稱這個函數(shù)為對數(shù)函數(shù)。
【課件展示】《秦朝中央集權(quán)制度的建立》《教材簡析》《教學(xué)目標(biāo)》《教法簡介》《教學(xué)過程設(shè)計及特色簡述》【師】本節(jié)內(nèi)容以秦代政治體制和官僚系統(tǒng)的建立為核心內(nèi)容,主要包括秦朝中央集權(quán)制的建立的背景、建立過程及影響。本節(jié)內(nèi)容在整個單元中起到承前啟后的作用,在整個模塊中也有相當(dāng)重要的地位。讓學(xué)生了解中國古代中央集權(quán)政治體制的初建對于理解我國古代政治制度的發(fā)展乃至我們今天的政治體制是十分必要的。 本堂課我采用多媒體和講授法及歷史辯論法相結(jié)合,通過巧妙設(shè)計問題情境,調(diào)動學(xué)生的學(xué)習(xí)積極性,使學(xué)生主動學(xué)習(xí),探究思考。教師引導(dǎo)和組織學(xué)生采取小組討論、情景體驗等方式,達到教學(xué)目標(biāo)。 本節(jié)內(nèi)容分三個部分,下面首先看秦朝中央集權(quán)制度建立的前提即秦的統(tǒng)一
一、教材分析下面我來談一談對教材的認(rèn)識:主要從教材的地位和作用、以及在此基礎(chǔ)上確立的教學(xué)目標(biāo)、教學(xué)重難點這三個方面來談。首先,來談教材的地位和作用:本課教材內(nèi)容主要從三個方面向?qū)W生介紹了現(xiàn)代中國教育的發(fā)展?fàn)顩r和趨勢:人民教育的奠基、動亂中的教育和教育的復(fù)興,全面講述了新中國教育的三個階段。本課是文化史中中國史部分的最后一課, 也是必修三冊書中唯一涉及教育的一課。而教育是思想文化史中的重要組成部分,江澤民同志在談到教育的時候曾經(jīng)說過,“百年大計,教育為本。教育為本,在于育人”。教育是關(guān)系國計民生的大事。學(xué)生通過學(xué)習(xí)新中國教育發(fā)展的史實,理解“科教興國”、“國運興衰,系于教育”的深刻含義。最終由此激發(fā)學(xué)生樹立“知識改變命運、讀書成就人生”的信念,樹立勤奮學(xué)習(xí)、成人成才、報效祖國、服務(wù)社會的崇高理想。故本課的教學(xué)有極大的現(xiàn)實意義。談完了教材的地位和作用,我再分析一下教學(xué)目標(biāo):
二、教學(xué)目標(biāo):1、知識與能力(1)了解我國古代冶金、制瓷、絲織業(yè)發(fā)展的基本情況;(2)了解中國古代手工業(yè)享譽世界的史實,培養(yǎng)學(xué)生的民族自信心。2、過程與方法(1)通過大量的歷史圖片,指導(dǎo)學(xué)生欣賞一些精湛的手工業(yè)藝術(shù)品,提高學(xué)生探究古代手工業(yè)的興趣;(2)運用歷史材料引導(dǎo)學(xué)生歸納古代手工業(yè)產(chǎn)品的基本特征。3、情感態(tài)度與價值觀:通過本課教學(xué),使學(xué)生充分地感受到我國古代人民的聰明與才智,認(rèn)識到古代許多手工業(yè)品具有較高的藝術(shù)價值,以及在世界上的領(lǐng)先地位和對世界文明的影響,增強民族自豪感。
高斯(Gauss,1777-1855),德國數(shù)學(xué)家,近代數(shù)學(xué)的奠基者之一. 他在天文學(xué)、大地測量學(xué)、磁學(xué)、光學(xué)等領(lǐng)域都做出過杰出貢獻. 問題1:為什么1+100=2+99=…=50+51呢?這是巧合嗎?試從數(shù)列角度給出解釋.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法實際上解決了求等差數(shù)列:1,2,3,…,n,"… " 前100項的和問題.等差數(shù)列中,下標(biāo)和相等的兩項和相等.設(shè) an=n,則 a1=1,a2=2,a3=3,…如果數(shù)列{an} 是等差數(shù)列,p,q,s,t∈N*,且 p+q=s+t,則 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51問題2: 你能用上述方法計算1+2+3+… +101嗎?問題3: 你能計算1+2+3+… +n嗎?需要對項數(shù)的奇偶進行分類討論.當(dāng)n為偶數(shù)時, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2當(dāng)n為奇數(shù)數(shù)時, n-1為偶數(shù)
我們知道數(shù)列是一種特殊的函數(shù),在函數(shù)的研究中,我們在理解了函數(shù)的一般概念,了解了函數(shù)變化規(guī)律的研究內(nèi)容(如單調(diào)性,奇偶性等)后,通過研究基本初等函數(shù)不僅加深了對函數(shù)的理解,而且掌握了冪函數(shù),指數(shù)函數(shù),對數(shù)函數(shù),三角函數(shù)等非常有用的函數(shù)模型。類似地,在了解了數(shù)列的一般概念后,我們要研究一些具有特殊變化規(guī)律的數(shù)列,建立它們的通項公式和前n項和公式,并應(yīng)用它們解決實際問題和數(shù)學(xué)問題,從中感受數(shù)學(xué)模型的現(xiàn)實意義與應(yīng)用,下面,我們從一類取值規(guī)律比較簡單的數(shù)列入手。新知探究1.北京天壇圜丘壇,的地面有十板布置,最中間是圓形的天心石,圍繞天心石的是9圈扇環(huán)形的石板,從內(nèi)到外各圈的示板數(shù)依次為9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型號的女裝上對應(yīng)的尺碼分別是38,40,42,44,46,48 ②3.測量某地垂直地面方向上海拔500米以下的大氣溫度,得到從距離地面20米起每升高100米處的大氣溫度(單位℃)依次為25,24,23,22,21 ③