活動目的:(1)通過小組討論活動,讓學生理解坐標系的特點,并能應用特點解決問題。(2)培養(yǎng)學生逆向思維的習慣。(3)在小組討論中培養(yǎng)學生勇于探索,團結(jié)協(xié)作的精神。第四環(huán)節(jié):練習隨堂練習 (體現(xiàn)建立直角坐標系的多樣性)(補充)某地為了發(fā)展城市群,在現(xiàn)有的四個中小城市A,B,C,D附近新建機場E,試建立適當?shù)闹苯亲鴺讼?,并寫出各點的坐標。第五環(huán)節(jié):小結(jié)內(nèi)容:小結(jié)本節(jié)課自己的收獲和進步,從知識和能力上兩個方面總結(jié),老師予于肯定和鼓勵。目的:鼓勵學生大膽發(fā)言,敢于表達自己的觀點,同時學生之間可以相互學習,共同提高,老師給予肯定和鼓勵,激發(fā)學生的學習熱情。第六環(huán)節(jié):布置作業(yè)A類:課本習題5.5。B類:完成A類同時,補充:(1)已知點A到x軸、y軸的距離均為4,求A點坐標;(2)已知x軸上一點A(3,0),B(3,b),且AB=5,求b的值。
探究點三:列一元一次方程解應用題某單位計劃“五一”期間組織職工到東湖旅游,如果單獨租用40座的客車若干輛則剛好坐滿;如果租用50座的客車則可以少租一輛,并且有40個剩余座位.(1)該單位參加旅游的職工有多少人?(2)如同時租用這兩種客車若干輛,問有無可能使每輛車剛好坐滿?如有可能,兩種車各租多少輛?(此問可只寫結(jié)果,不寫分析過程)解析:(1)先設(shè)該單位參加旅游的職工有x人,利用人數(shù)不變,車的輛數(shù)相差1,可列出一元一次方程求解;(2)可根據(jù)租用兩種汽車時,利用假設(shè)一種車的數(shù)量,進而得出另一種車的數(shù)量求出即可.解:(1)設(shè)該單位參加旅游的職工有x人,由題意得方程x40-x+4050=1,解得x=360,答:該單位參加旅游的職工有360人;(2)有可能,因為租用4輛40座的客車、4輛50座的客車剛好可以坐360人,正好坐滿.方法總結(jié):解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程再求解.
解:設(shè)每張300元的門票買了x張,則每張400元的門票買了(8-x)張,由題意得300x+400×(8-x)=2700,解得x=5,∴買400元每張的門票張數(shù)為8-5=3(張).答:每張300元的門票買了5張,每張400元的門票買了3張.方法總結(jié):解題的關(guān)鍵是熟練掌握列方程解應用題的一般步驟:①根據(jù)題意找出等量關(guān)系;②列出方程;③解方程;④作答.三、板書設(shè)計本節(jié)課的教學先讓學生回顧上一節(jié)所學的知識,復習鞏固方程的解法,讓學生進一步明白解方程的步驟是逐漸發(fā)展的,后面的步驟是在前面步驟的基礎(chǔ)上發(fā)展而成的.然后通過一個實際問題,列出一個有括號的方程,大膽放手讓學生去探索、猜想各種解法,去嘗試各種解題的途徑,啟發(fā)學生在化歸思想影響下想到要去括號.
方法總結(jié):讓利10%,即利潤為原來的90%.探究點三:求原價某商場節(jié)日酬賓:全場8折.一種電器在這次酬賓活動中的利潤率為10%,它的進價為2000元,那么它的原價為多少元?解析:本題中的利潤為(2000×10%)元,銷售價為(原價×80%)元,根據(jù)公式建立起方程即可.解:設(shè)原價為x元,根據(jù)題意,得80%x-2000=2000×10%.解得x=2750.答:它的原價為2750元.方法總結(jié):典例關(guān)系:售價=進價+利潤,售價=原價×打折數(shù)×0.1,售價=進價×(1+利潤率).三、板書設(shè)計本節(jié)課從和我們的生活息息相關(guān)的利潤問題入手,讓學生在具體情境中感受到數(shù)學在生活實際中的應用,從而激發(fā)他們學習數(shù)學的興趣.根據(jù)“實際售價=進價+利潤”等數(shù)量關(guān)系列一元一次方程解決與打折銷售有關(guān)的實際問題.審清題意,找出等量關(guān)系是解決問題的關(guān)鍵.另外,商品經(jīng)濟問題的題型很多,讓學生觸類旁通,達到舉一反三,靈活的運用有關(guān)的公式解決實際問題,提高學生的數(shù)學能力.
屬于此類問題一般有以下三種情況①具體數(shù)字,此時化簡的條件已暗中給定,②恒為非負值或根據(jù)題中的隱含條件,如(1)小題。③給出明確的條件,如(2)小題。第二類,需討論后再化簡。當題目中給定的條件不能判定絕對值符號內(nèi)代數(shù)式值的符號時,則需討論后化簡,如(4)小題。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同號,又∵a+b=-6<0,∴a<0,b<0∴ .說明:此題中的隱含條件a<0,b<0不能忽視。否則會出現(xiàn)錯誤。例4.化簡: 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.這樣x=6, ,x=-5,把數(shù)軸分成四段(四個區(qū)間)在這五段里分別討論如下:當x≥6時,原式=(x-6)-(1+2x)+(x+5)=-2.當 時,原式=-(x-6)-(1+2x)+(x+5)=-2x+10.當 時,原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.當x<-5時,原式=-(x-6)+(1+2x)-(x+5)=2.說明:利用公式 ,如果絕對值符號里面的代數(shù)式的值的符號無法決定,則需要討論。方法是:令每一個絕對值內(nèi)的代數(shù)式為零,求出對應的“零點”,再用這些“零點”把數(shù)軸分成若干個區(qū)間,再在每個區(qū)間內(nèi)進行化簡。
第一環(huán)節(jié):情境引入內(nèi)容:(一) 情境1實物投影,并呈現(xiàn)問題:在一望無際的呼倫貝爾大草原上,一頭老牛和一匹小馬馱著包裹吃力地行走著,老牛喘著氣吃力地說:“累死我了”,小馬說:“你還累,這么大的個,才比我多馱2個.”老牛氣不過地說:“哼,我從你背上拿來一個,我的包裹就是你的2倍!”,小馬天真而不信地說:“真的?!”同學們,你們能否用數(shù)學知識幫助小馬解決問題呢?請每個學習小組討論(討論2分鐘,然后發(fā)言).教師注意引導學生設(shè)兩個未知數(shù),從而得出二元一次方程.這個問題由于涉及到老牛和小馬的馱包裹的兩個未知數(shù),我們設(shè)老牛馱x個包裹,小馬馱y個包裹,老牛的包裹數(shù)比小馬多2個,由此得方程 ,若老牛從小馬背上拿來1個包裹,這時老牛的包裹是小馬的2倍, 得方程: .
方法總結(jié):題中未給出圖形,作高構(gòu)造直角三角形時,易漏掉鈍角三角形的情況.如在本例題中,易只考慮高AD在△ABC內(nèi)的情形,忽視高AD在△ABC外的情形.探究點二:利用勾股定理求面積如圖,以Rt△ABC的三邊長為斜邊分別向外作等腰直角三角形.若斜邊AB=3,則圖中△ABE的面積為________,陰影部分的面積為________.解析:因為AE=BE,所以S△ABE=12AE·BE=12AE2.又因為AE2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因為AC2+BC2=AB2,所以陰影部分的面積為14AB2+14AB2=12AB2=12×32=92.故填94、92.方法總結(jié):求解與直角三角形三邊有關(guān)的圖形面積時,要結(jié)合圖形想辦法把圖形的面積與直角三角形三邊的平方聯(lián)系起來,再利用勾股定理找到圖形面積之間的等量關(guān)系.
意圖:課后作業(yè)設(shè)計包括了三個層面:作業(yè)1是為了鞏固基礎(chǔ)知識而設(shè)計;作業(yè)2是為了擴展學生的知識面;作業(yè)3是為了拓廣知識,進行課后探究而設(shè)計,通過此題可讓學生進一步認識勾股定理的前提條件.效果:學生進一步加強對本課知識的理解和掌握.教學設(shè)計反思(一)設(shè)計理念依據(jù)“學生是學習的主體”這一理念,在探索勾股定理的整個過程中,本節(jié)課始終采用學生自主探索和與同伴合作交流相結(jié)合的方式進行主動學習.教師只在學生遇到困難時,進行引導或組織學生通過討論來突破難點.(二)突出重點、突破難點的策略為了讓學生在學習過程中自我發(fā)現(xiàn)勾股定理,本節(jié)課首先情景創(chuàng)設(shè)激發(fā)興趣,再通過幾個探究活動引導學生從探究等腰直角三角形這一特殊情形入手,自然過渡到探究一般直角三角形,學生通過觀察圖形,計算面積,分析數(shù)據(jù),發(fā)現(xiàn)直角三角形三邊的關(guān)系,進而得到勾股定理.
目的:課后作業(yè)設(shè)計包括了兩個層面:作業(yè)1是為了鞏固基礎(chǔ)知識而設(shè)計;作業(yè)2是為了擴展學生的知識面;拓廣知識,增加學生對數(shù)學問題本質(zhì)的思考而設(shè)計,通過此題可讓學生進一步運用三元一次方程組解決問題.教學設(shè)計反思1.本節(jié)課的內(nèi)容屬于選修學習的內(nèi)容,主要突出對數(shù)學興趣濃厚、學有余力的同學進一步探究和拓展使用,在數(shù)學方法和思想方面需重點引導,通過引導,使學生明白解多元方程組的一般方法和思想,理解鞏固環(huán)節(jié)需多注意多種解題方法的引導,并且比較各種解題方法之間的優(yōu)劣,總結(jié)出解多元方程的基本方法.2.作為選修課,在內(nèi)容上要讓學生理解三元一次方程組概念的同時,要讓學生理解為什么要用三元一次方程組甚至多元方程組去求解實際問題的必要性,從而掌握本堂課的基礎(chǔ)知識.在教學的過程中,要讓學生充分理解對復雜的實際問題方程中元越多,等量關(guān)系的建立就越直接;充分理解代入消元法和加減法解方程的優(yōu)點和缺點,有關(guān)這一方面的題目要讓學生充分討論、交流、合作,其理解才會深刻.
意圖:(1)介紹與勾股定理有關(guān)的歷史,激發(fā)學生的愛國熱情;(2)學生加強了對數(shù)學史的了解,培養(yǎng)學習數(shù)學的興趣;(3)通過讓部分學生搜集材料,展示材料,既讓學生得到充分的鍛煉,同時也活躍了課堂氣氛.效果:學生熱情高漲,對勾股定理的歷史充滿了濃厚的興趣,同時也為中國古代數(shù)學的成就感到自豪.也有同學提出:當代中國數(shù)學成就不夠強,還應發(fā)奮努力.有同學能意識這一點,這讓我喜出望外.第六環(huán)節(jié): 回顧反思 提煉升華內(nèi)容:教師提問:通過這節(jié)課的學習,你有什么樣的收獲?師生共同暢談收獲.目的:(1)歸納出本節(jié)課的知識要點,數(shù)形結(jié)合的思想方法;(2)教師了解學生對本節(jié)課的感受并進行總結(jié);(3)培養(yǎng)學生的歸納概括能力.效果:由于這節(jié)課自始至終都注意了調(diào)動學生學習的積極性,所以學生談的收獲很多,包括利用拼圖驗證勾股定理中蘊含的數(shù)形結(jié)合思想,學生對勾股定理的歷史的感悟及對勾股定理應用的認識等等.
第三環(huán)節(jié):課堂小結(jié)活動內(nèi)容:1. 通過前面幾個題,你對列方程組解決實際問題的方法和步驟掌握的怎樣?2. 這里面應該注意的是什么?關(guān)鍵是什么?3. 通過今天的學習,你能不能解決求兩個量的問題?(可以用二元一次方程組解決的。4. 列二元一次方程組解決實際問題的主要步驟是什么?說明:通過以上四個問題,學生基本上掌握了列二元一次方程組解決實際問題的方法和步驟,可啟發(fā)學生說出自己的心得體會及疑問.活動意圖:引導學生自己小結(jié)本節(jié)課的知識要點及數(shù)學方法,使知識系統(tǒng)化.說明:還可以建議有條件的學生去讀一讀《孫子算經(jīng)》,可以在網(wǎng)上查,找出自己喜歡的問題,互相出題;同位的同學還可互相編題考察對方;還可以設(shè)置"我為老師出難題"活動,每人編一道題,給老師,老師再提出:"誰來幫我解難題",以此激發(fā)學生的學習興趣和信心。
解:設(shè)甲班的人數(shù)為x人,乙班的人數(shù)為y人,根據(jù)題意,得x+y=93,14x+13y=27,解得x=48,y=45.答:甲班的人數(shù)為48人,乙班的人數(shù)為45人.方法總結(jié):設(shè)未知數(shù)時,一般是求什么,設(shè)什么,并且所列方程的個數(shù)與未知數(shù)的個數(shù)相等.解這類問題的應用題,要抓住題中反映數(shù)量關(guān)系的關(guān)鍵字:和、差、倍、幾分之幾、比、大、小、多、少、增加、減少等,明確各種反映數(shù)量關(guān)系的關(guān)鍵字的含義.三、板書設(shè)計列方程組,解決問題)一般步驟:審、設(shè)、列、解、驗、答關(guān)鍵:找等量關(guān)系通過“雞兔同籠”,把同學們帶入古代的數(shù)學問題情景,學生體會到數(shù)學中的“趣”;進一步強調(diào)數(shù)學與生活的聯(lián)系,突出顯示數(shù)學教學的實際價值,培養(yǎng)學生的人文精神;進一步豐富學生數(shù)學學習的成功體驗,激發(fā)學生對數(shù)學學習的好奇心,進一步形成積極參與數(shù)學活動、主動與他人合作交流的意識.
1.會用計算器求平方根和立方根;(重點)2.運用計算器探究數(shù)字規(guī)律,提高推理能力.一、情境導入前面我們通過平方和立方運算求出一些特殊數(shù)的平方根和立方根,如4的平方根是±2,116的平方根是±14,0.064的立方根是0.4,-8的立方根是-2等.那么如何求3,189,-39,311的值呢?二、合作探究探究點一:利用計算器進行開方運算 用計算器求6+7的值.解:按鍵順序為■6+7=SD,顯示結(jié)果為:9.449489743.方法總結(jié):當被開方數(shù)不是一個數(shù)時,輸入時一定要按鍵.解本題時常出現(xiàn)的錯誤是:■6+7=SD,錯的原因是被開方數(shù)是6,而不是6與7的和,這樣在輸入時,對“6+7”進行開方,使得計算的是6+7而不是6+7,從而導致錯誤.K探究點二:利用科學計算器比較數(shù)的大小利用計算器,比較下列各組數(shù)的大?。?1)2,35;(2)5+12,15+2.解:(1)按鍵順序:■2=SD,顯示結(jié)果為1.414213562.按鍵順序:SHIFT■5=,顯示結(jié)果為1.709975947.所以2<35.
1.舉例說明什么時候用普查的方式獲得數(shù)據(jù)較好,什么時候用抽樣調(diào)查的方式獲得數(shù)據(jù)較好?2、下列調(diào)查中分別采用了那些調(diào)查方式?⑴為了了解你們班同學的身高,對全班同學進行調(diào)查.⑵為了了解你們學校學生對新教材的喜好情況,對所有學號是5的倍數(shù)的同學進行調(diào)查。3、說明在以下問題中,總體、個體、樣本各指什么?⑴為了考察一個學校的學生參加課外體育活動的情況,調(diào)查了其中20名學生每天參加課外體育活動的時間.⑵為了了解一批電池的壽命,從中抽取10只進行實驗。⑶為了考察某公園一年中每天進園的人數(shù),在其中的30天里對進園的人數(shù)進行了統(tǒng)計。通過本節(jié)課的學習,同學們有什么收獲和疑問?1、基本概念:⑴.調(diào)查、普查、抽樣調(diào)查.⑵.總體、個體、樣本.2、何時采用普查、何時采用抽樣調(diào)查,各有什么優(yōu)缺點?
由于題目較簡單,所以學生分析解答時很有信心,且正確率也比較高,同時也進一步體會到了借助“線段圖”分析行程問題的優(yōu)越性.六、歸納總結(jié):活動內(nèi)容:學生歸納總結(jié)本節(jié)課所學知識:1.會借線段圖分析行程問題.2.各種行程問題中的規(guī)律及等量關(guān)系.同向追及問題:①同時不同地——甲路程+路程差=乙路程; 甲時間=乙時間.②同地不同時——甲時間+時間差=乙時間; 甲路程=乙路程.相向的相遇問題:甲路程+乙路程=總路程; 甲時間=乙時間.目的:強調(diào)本課的重點內(nèi)容是要學會借線段圖來分析行程問題,并能掌握各種行程問題中的規(guī)律及等量關(guān)系.引導學生自己對所學知識和思想方法進行歸納和總結(jié),從而形成自己對數(shù)學知識的理解和解決問題的方法策略.
先讓學生自己總結(jié),然后互相交流,得出結(jié)論。解一元一次方程,一般要通過去分母,去括號,移項,合并同類項,未知數(shù)的系數(shù)化為1等步驟,把一個一元一次方程“轉(zhuǎn)化”成x=a的形式。解題時,要靈活運用這些步驟。板書:解一元一次方程一般步驟:1、 去分母-----等式性質(zhì)22、 去括號----去括號法則3、 移項----等式性質(zhì)14、 合并同類項----合并同類項法則5、 系數(shù)化為1.----等式性質(zhì)2【課堂練習】練習:解下列一元一次方程解方程: (2) ;思路點拔:(1)去分母所選的乘數(shù)應是所有分母的最小公倍數(shù),不應遺漏。(2)用分母的最小公倍數(shù)去乘方程的兩邊時,不要漏掉等號兩邊不含分母的項。(3)去掉分母后,分數(shù)線也同時去掉,分子上的多項式用括號括起來。回顧解以上方程的全過程,表示了一元一次方程解法的一般步驟,通過去分母—去括號—移項—合并同類項—系數(shù)化為1等步驟,就可以使一元一次方程逐步向著 =a的形式轉(zhuǎn)化。
判斷下面抽樣調(diào)查選取樣本的方法是否合適:(1)檢查某啤酒廠即將出廠的啤酒質(zhì)量情況,先隨機抽取若干箱(捆),再在抽取的每箱(捆)中,隨機抽取1~2瓶檢查;(2)通過網(wǎng)上問卷調(diào)查方式,了解百姓對央視春節(jié)晚會的評價;(3)調(diào)查某市中小學生學習負擔的狀況,在該市每所小學的每個班級選取一名學生,進行問卷調(diào)查;(4)教育部為了調(diào)查中小學亂收費情況,調(diào)查了某市所有中小學生.解析:本題應看樣本是否為簡單隨機樣本,是否具有代表性.解:(1)合適,這是一種隨機抽樣的方法,樣本為簡單隨機樣本.(2)不合適,我國農(nóng)村人口眾多,多數(shù)農(nóng)民是不上網(wǎng)的,所以調(diào)查的對象在總體中不具有代表性.(3)不合適,選取的樣本中個體太少.(4)不合適,樣本雖然足夠大,但遺漏了其他城市里的這些群體,應在全國范圍內(nèi)分層選取樣本,除了上述原因外,每班的學生全部作為樣本是沒有必要的.
解析:當截面與軸截面平行時,得到的截面的形狀為長方形;當截面與軸截面斜交時,得到的截面的形狀是橢圓;當截面與軸截面垂直時,得到的截面的形狀是圓,所以截面的形狀不可能是三角形.故選A.方法總結(jié):用平面去截圓柱時,常見的截面有圓、橢圓、長方形、類似于梯形、類似于拱形等.探究點三:截圓錐問題一豎直平面經(jīng)過圓錐的頂點截圓錐,所得到的截面形狀與下圖中相同的是()解析:經(jīng)過圓錐頂點的平面與圓錐的側(cè)面和底面截得的都是一條線.如圖,由圖可知得到的截面是一個等腰三角形.故選B.方法總結(jié):用平面去截圓錐,截面的形狀可能是三角形、圓、橢圓等.三、板書設(shè)計教學過程中,強調(diào)學生自主探索和合作交流,經(jīng)歷操作、抽象、歸納、積累等思維過程,從中獲得數(shù)學知識與技能,發(fā)展空間觀念和動手操作能力,同時升華學生的情感態(tài)度和價值觀.
[例3]、用一個平面去截一個幾何體,截面形狀有圓、三角形,那么這個幾何體可能是_________。四、鞏固強化:1、一個正方體的截面不可能是( )A、三角形 B、梯形 C、五邊形 D、七邊形2、用一個平面去截五棱柱,邊數(shù)最多的截面是_______形.3*、用一個平面去截幾何體,若截面是三角形,這個幾何體可能是__________________________________________________.4*、用一個平面截一個幾何體,如果截面是圓,你能想象出原來的幾何體可能是什么嗎?如虹截面是三角形呢?5*、如果用一個平面截一個正方體的一個角,剩下的幾何體有幾個頂點、幾條棱、幾個面?6*、幾何體中的圓臺、棱錐都是課外介紹的,所以我們就在這個欄目里繼續(xù)為大家介紹這兩種幾何體的截面.(1)圓臺用平面截圓臺,截面形狀會有_____和_______這兩種較特殊圖形,截法如下:
小明說:“我姐姐今年的年齡是我去年的年齡的2倍少6,”已知姐姐今年20歲,問小明今年幾歲?若取小明今年為x歲,則依據(jù)下面的等量關(guān)系式列方程:姐姐今年的年齡=小明去年年齡的2倍-6.得2(x-1)-6=20.例5解方程-3(x+1)=9總結(jié):根據(jù)乘法分配律和去括號法則(括號前面是“+”號,把“+”號和括號去掉,括號內(nèi)各項都不改變符號;括號前面是“-”號,把“-”號和括號去掉,括號內(nèi)各項都改變符號)去括號時要注意:1、 不要漏乘括號內(nèi)的任何一項;2、若括號前面是“-”號,記住去括號后括號內(nèi)各項都變號.習題訓練:解方程,如課本P122練一練1,P113練一練2等.思維拓展,解簡單的應用題,如課本P123練一練3或補充一些題,如含小括號、中括號、大括號的方程(這方面課本安排幾乎沒有,只限淺顯問題,教師不必深究)