一、情境導(dǎo)入上一節(jié)課我們做過:由兩個邊長為1的小正方形,通過剪一剪,拼一拼,得到一個邊長為a的大正方形,那么有a2=2,a=________,2是有理數(shù),而a是無理數(shù).在前面我們學(xué)過若x2=a,則a叫做x的平方,反過來x叫做a的什么呢?二、合作探究探究點一:算術(shù)平方根的概念【類型一】 求一個數(shù)的算術(shù)平方根求下列各數(shù)的算術(shù)平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根據(jù)算術(shù)平方根的定義求非負(fù)數(shù)的算術(shù)平方根,只要找到一個非負(fù)數(shù)的平方等于這個非負(fù)數(shù)即可.解:(1)∵82=64,∴64的算術(shù)平方根是8;(2)∵(32)2=94=214,∴214的算術(shù)平方根是32;(3)∵0.62=0.36,∴0.36的算術(shù)平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算術(shù)平方根是3.方法總結(jié):(1)求一個數(shù)的算術(shù)平方根時,首先要弄清是求哪個數(shù)的算術(shù)平方根,分清求81與81的算術(shù)平方根的不同意義,不要被表面現(xiàn)象迷惑.(2)求一個非負(fù)數(shù)的算術(shù)平方根常借助平方運算,因此熟記常用平方數(shù)對求一個數(shù)的算術(shù)平方根十分有用.
求證:直角三角形的兩個銳角互余.解析:分析這個命題的條件和結(jié)論,根據(jù)已知條件和結(jié)論畫出圖形,寫出已知、求證,并寫出證明過程.已知:如圖所示,在△ABC中,∠C=90°.求證:∠A與∠B互余.證明:∵∠A+∠B+∠C=180°(三角形內(nèi)角和等于180°),又∠C=90°,∴∠A+∠B=180°-∠C=90°.∴∠A與∠B互余.方法總結(jié):解此類題首先根據(jù)題意將文字語言變成符號語言,畫出圖形,最后再經(jīng)過分析論證,并寫出證明的過程.三、板書設(shè)計命題分類公理:公認(rèn)的真命題定理:經(jīng)過證明的真命題證明:推理的過程經(jīng)歷實際情境,初步體會公理化思想和方法,了解本教材所采用的公理,讓學(xué)生對真假命題有一個清楚的認(rèn)識,從而進一步了解定理、公理的概念.培養(yǎng)學(xué)生的語言表達能力.
2.法解二元一次方程組,是提升學(xué)生求解二元一次方程的基本技能課,在例題的設(shè)置上充分體現(xiàn)化歸思想.2.在學(xué)習(xí)二元一次方程組的解法中,關(guān)鍵是領(lǐng)會其本質(zhì)思想——消元,體會“化未知為已知”的化歸思想.因而在教學(xué)過程中教師通過對問題的創(chuàng)設(shè),鼓勵學(xué)生去觀察方程的特點,在過手訓(xùn)練中提高學(xué)生的解答正確率和表達規(guī)范性,提升學(xué)生學(xué)會數(shù)學(xué)的信心,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣.3.通過精心設(shè)計的問題,引導(dǎo)學(xué)生在已有知識的基礎(chǔ)上,自己比較、分析得出二元一次方程組的解法,在鞏固訓(xùn)練活動中,加深學(xué)生對“化未知為已知”的化歸思想的理解.特別是如何由代入消元法到加減消元法,過渡自然。讓學(xué)生深刻的體會到二元一次方程是一元一次方程的拓展,二元一次方程組又要通過“消元”,轉(zhuǎn)化為一元一次方程求解,這樣的轉(zhuǎn)化,不僅有助于學(xué)生掌握知識、技能和方法,提高學(xué)習(xí)效率,而且還加深了對數(shù)學(xué)中通性和通法的認(rèn)識,體會學(xué)習(xí)數(shù)學(xué)和研究數(shù)學(xué)的規(guī)律,提升數(shù)學(xué)思維能力.
探究點三:函數(shù)的圖象洗衣機在洗滌衣服時,每漿洗一遍都經(jīng)歷了注水、清洗、排水三個連續(xù)過程(工作前洗衣機內(nèi)無水).在這三個過程中,洗衣機內(nèi)的水量y(升)與漿洗一遍的時間x(分)之間函數(shù)關(guān)系的圖象大致為()解析:∵洗衣機工作前洗衣機內(nèi)無水,∴A,B兩選項不正確,淘汰;又∵洗衣機最后排完水,∴D選項不正確,淘汰,所以選項C正確,故選C.方法總結(jié):本題考查了對函數(shù)圖象的理解能力,看函數(shù)圖象要理解兩個變量的變化情況.三、板書設(shè)計函數(shù)定義:自變量、因變量、常量函數(shù)的關(guān)系式三種表示方法函數(shù)值函數(shù)的圖象在教學(xué)過程中,注意通過對以前學(xué)過的“變量之間的關(guān)系”的回顧與思考,力求提供生動有趣的問題情境,激發(fā)學(xué)生的學(xué)習(xí)興趣,并通過層層深入的問題設(shè)計,引導(dǎo)學(xué)生進行觀察、操作、交流、歸納等數(shù)學(xué)活動.在活動中歸納、概括出函數(shù)的概念,并通過師生交流、生生交流、辨析識別等加深學(xué)生對函數(shù)概念的理解.
1.細講概念、強化訓(xùn)練要想讓學(xué)生正確、牢固地樹立起算術(shù)平方根的概念,需要由淺入深、不斷深化的過程.概念是由具體到抽象、由特殊到一般,經(jīng)過分析、綜合去掉非本質(zhì)特征,保持本質(zhì)屬性而形成的.概念的形成過程也是思維過程,加強概念形成過程的教學(xué),對提高學(xué)生的思維水平是很有必要的.概念教學(xué)過程中要做到:講清概念,加強訓(xùn)練,逐步深化.“講清概念”就是通過具體實例揭露算術(shù)平方根的本質(zhì)特征.算術(shù)平方根的本質(zhì)特征就是定義中指出的:“如果一個正數(shù) 的平方等于 ,即 ,那么這個正數(shù) 就叫做 的算術(shù)平方根,”的“正數(shù) ”,即被開方數(shù)是正的,由平方的意義, 也是正數(shù),因此算術(shù)平方根也必須是正的.當(dāng)然零的算術(shù)平方根是零.
解析:要在地球儀上確定南昌市的位置,需要知道它的經(jīng)緯度,故選D.方法總結(jié):本題考查了坐標(biāo)確定位置,熟記位置的確定需要橫向與縱向的兩個數(shù)據(jù)是解題的關(guān)鍵.【類型二】 用“區(qū)域定位法”確定位置如圖所示是某市區(qū)的部分簡圖,文化宮在D2區(qū),體育場在C4區(qū),據(jù)此說明醫(yī)院在________區(qū),陽光中學(xué)在________區(qū).解析:本題首先給出的是表示文化宮和體育場的位置,即D2區(qū)和C4區(qū),這就確定了本題中表示建筑物位置的方法,即字母表示列數(shù),數(shù)字表示行數(shù).故填A(yù)3,D5.方法總結(jié):解此類題先要弄清區(qū)域定位法中字母及數(shù)字各自表示的含義,再用已知的表示方法來確定相關(guān)位置.三、板書設(shè)計確定位置有序?qū)崝?shù)對方位法經(jīng)緯度區(qū)域定位法將現(xiàn)實生活中常用的定位方法呈現(xiàn)給學(xué)生,進一步豐富學(xué)生的數(shù)學(xué)活動經(jīng)驗,培養(yǎng)學(xué)生觀察、分析、歸納、概括的能力.教學(xué)過程中創(chuàng)設(shè)生動活潑、直觀形象、且貼近他們生活的問題情境;另一方面,為學(xué)生創(chuàng)造自主學(xué)習(xí)、合作交流的機會,促使他們主動參與、積極探究.
本節(jié)課中教師首先用拼圖游戲引發(fā)學(xué)生學(xué)習(xí)的欲望,把課程內(nèi)容通過學(xué)生的生活經(jīng)驗呈現(xiàn)出來,然后進行大膽置疑,生活中的數(shù)并不都是有理數(shù),那它們究竟是什么數(shù)呢?從而引發(fā)了學(xué)生的好奇心,為獲取新知,創(chuàng)設(shè)了積極的氛圍.在教學(xué)中,不要盲目的搶時間,讓學(xué)生能夠充分的思考與操作.(二)化抽象為具體常言道:“數(shù)學(xué)是鍛煉思維的體操”,數(shù)學(xué)教師應(yīng)通過一系列數(shù)學(xué)活動開啟學(xué)生的思維,因此對新數(shù)的學(xué)習(xí)不能僅僅停留于感性認(rèn)識,還應(yīng)要求學(xué)生充分理解,并能用恰當(dāng)數(shù)學(xué)語言進行解釋.正是基于這個原因,在教學(xué)過程中,刻意安排了一些環(huán)節(jié),加深對新數(shù)的理解,充分感受新數(shù)的客觀存在,讓學(xué)生覺得新數(shù)并不抽象.(三)強化知識間聯(lián)系,注意糾錯既然稱之為“新數(shù)”,那它當(dāng)然不是有理數(shù),亦即不是整數(shù),也不是分?jǐn)?shù),所以“新數(shù)”不可以用分?jǐn)?shù)來表示,這為進一步學(xué)習(xí)“新數(shù)”,即第二課時教學(xué)埋下了伏筆,在教學(xué)中,要著重強調(diào)這一點:“新數(shù)”不能表示成分?jǐn)?shù),為無理數(shù)的教學(xué)奠好基.
解:有理數(shù):3.14,-53,0.58··,-0.125,0.35,227;無理數(shù):-5π,5.3131131113…(相鄰兩個3之間1的個數(shù)逐次加1).方法總結(jié):有理數(shù)與無理數(shù)的主要區(qū)別.(1)無理數(shù)是無限不循環(huán)小數(shù),而有理數(shù)可以用有限小數(shù)或無限循環(huán)小數(shù)表示.(2)任何一個有理數(shù)都可以化為分?jǐn)?shù)形式,而無理數(shù)則不能.探究點二:借助計算器用“夾逼法”求無理數(shù)的近似值正數(shù)x滿足x2=17,則x精確到十分位的值是________.解析:已知x2=17,所以417,所以4.117,所以4.120)中的正數(shù)x各位上的數(shù)字的方法:(1)估計x的整數(shù)部分,看它在哪兩個連續(xù)整數(shù)之間,較小數(shù)即為整數(shù)部分;(2)確定x的十分位上的數(shù),同樣尋找它在哪兩個連續(xù)整數(shù)之間;(3)按照上述方法可以依次確定x的百分位、千分位、…上的數(shù),從而確定x的值.
解析:想要看起來更美,則鞋底到肚臍的長度與身高之比應(yīng)為黃金比,此題應(yīng)根據(jù)已知條件求出肚臍到腳底的距離,再求高跟鞋的高度.解:設(shè)肚臍到腳底的距離為x m,根據(jù)題意,得x1.60=0.60,解得x=0.96.設(shè)穿上y m高的高跟鞋看起來會更美,則y+0.961.60+y=0.618.解得y≈0.075,而0.075m=7.5cm.故她應(yīng)該穿約為7.5cm高的高跟鞋看起來會更美.易錯提醒:要準(zhǔn)確理解黃金分割的概念,較長線段的長是全段長的0.618.注意此題中全段長是身高與高跟鞋鞋高之和.三、板書設(shè)計黃金分割定義:一般地,點C把線段AB分成兩條線段AC 和BC,如果ACAB=BCAC,那么稱線段AB被點 C黃金分割黃金分割點:一條線段有兩個黃金分割點黃金比:較長線段:原線段=5-12:1 經(jīng)歷黃金分割的引入以及黃金分割點的探究過程,通過問題情境的創(chuàng)設(shè)和解決過程,體會黃金分割的文化價值,在應(yīng)用中進一步理解相關(guān)內(nèi)容,在實際操作、思考、交流等過程中增強學(xué)生的實踐意識和自信心.感受數(shù)學(xué)與生活的緊密聯(lián)系,體會數(shù)學(xué)的思維方式,增進數(shù)學(xué)學(xué)習(xí)的興趣.
2.如何找一條線段的黃金分割點,以及會畫黃金矩形.3.能根據(jù)定義判斷某一點是否為一條線段的黃金分割點.Ⅳ.課后作業(yè)習(xí)題4.8Ⅴ.活動與探究要配制一種新農(nóng)藥,需要兌水稀釋,兌多少才好呢?太濃太稀都不行.什么比例最合適,要通過試驗來確定.如果知道稀釋的倍數(shù)在1000和2000之間,那么,可以把1000和2000看作線段的兩個端點,選擇AB的黃金分割點C作為第一個試驗點,C點的數(shù)值可以算是1000+(2000-1000)×0.618= 1618.試驗的結(jié)果,如果按1618倍,水兌得過多,稀釋效果不理想,可以進行第二次試 驗.這次的試驗點應(yīng)該選AC的黃金分割點D,D的位置是1000+(1618-1000)×0.618,約等于1382,如果D點還不理想,可以按黃金分割的方法繼續(xù)試驗下去.如果太濃,可以選DC之間的黃金分割 點 ;如果太稀,可以選AD之間的黃金分割點,用這樣的方法,可以較快地找到合適的濃度數(shù)據(jù).這種方法叫做“黃金分割法”.用這樣的方法進行科學(xué)試驗,可以用最少的試驗次數(shù)找到最佳的數(shù)據(jù),既節(jié)省了時間,也節(jié)約了原材料.●板書設(shè)計
若a,b,c都是不等于零的數(shù),且a+bc=b+ca=c+ab=k,求k的值.解:當(dāng)a+b+c≠0時,由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,則k=2(a+b+c)a+b+c=2;當(dāng)a+b+c=0時,則有a+b=-c.此時k=a+bc=-cc=-1.綜上所述,k的值是2或-1.易錯提醒:運用等比性質(zhì)的條件是分母之和不等于0,往往忽視這一隱含條件而出錯.本題題目中并沒有交代a+b+c≠0,所以應(yīng)分兩種情況討論,容易出現(xiàn)的錯誤是忽略討論a+b+c=0這種情況.三、板書設(shè)計比例的性質(zhì)基本性質(zhì):如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性質(zhì):如果ab=cd=…=mn(b+d+…+n≠0), 那么a+c+…+mb+d+…+n=ab經(jīng)歷比例的性質(zhì)的探索過程,體會類比的思想,提高學(xué)生探究、歸納的能力.通過問題情境的創(chuàng)設(shè)和解決過程進一步體會數(shù)學(xué)與生活的緊密聯(lián)系,體會數(shù)學(xué)的思維方式,增強學(xué)習(xí)數(shù)學(xué)的興趣.
2.已知:如圖 ,在△ABC中,∠C=90°, CD為中線,延長CD到點E,使得 DE=CD.連結(jié)AE,BE,則四邊形ACBE為矩形嗎?說明理由。答案:四邊形ACBE是矩形.因為CD是Rt△ACB斜邊上的中線,所以DA=DC=DB,又因為DE=CD,所以DA=DC=DB=DE,所以四邊形ABCD是矩形(對角線相等且互相平分的四邊形是矩形)。四、課堂檢測:1.下列說法正確的是( )A.有一組對角是直角的四邊形一定是矩形 B.有一組鄰角是直角的四邊形一定是矩形C.對角線互相平分的四邊形是矩形 D.對角互補的平行四邊形是矩形2. 矩形各角平分線圍成的四邊形是( )A.平行四邊形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的說法是否正確(1)有一個角是直角的四邊形是矩形 ( )(2)四個角都是直角的四邊形是矩形 ( )(3)四個角都相等的四邊形是矩形 ( ) (4)對角線相等的四邊形是矩形 ( )(5)對角線相等且互相垂直的四邊形是矩形 ( )(6)對角線相等且互相平分的四邊形是矩形 ( )4. 在四邊形ABCD中,AB=DC,AD=BC.請再添加一個條件,使四邊形ABCD是矩形.你添加的條件是 .(寫出一種即可)
(1)求證:四邊形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.(1)證明:∵D、E分別是AB、AC的中點,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四邊形BCFE是平行四邊形.又∵EF=BE,∴四邊形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等邊三角形,∴菱形的邊長為4,高為23,∴菱形的面積為4×23=83.方法總結(jié):判定一個四邊形是菱形時,要結(jié)合條件靈活選擇方法.如果可以證明四條邊相等,可直接證出菱形;如果只能證出一組鄰邊相等或?qū)蔷€互相垂直,可以嘗試證出這個四邊形是平行四邊形,然后用定義法或判定定理1來證明菱形.三、板書設(shè)計菱形的判 定有一組鄰邊相等的平行四邊形是菱形(定義)四邊相等的四邊形是菱形對角線互相垂直的平行四邊形是菱形對角線互相垂直平分的四邊形是菱形 經(jīng)歷菱形的證明、猜想的過程,進一步提高學(xué)生的推理論證能力,體會證明過程中所運用的歸納概括以及轉(zhuǎn)化等數(shù)學(xué)方法.在菱形的判定方法的探索與綜合應(yīng)用中,培養(yǎng)學(xué)生的觀察能力、動手能力及邏輯思維能力.
(2)如果對應(yīng)著的兩條小路的寬均相等,如圖②,試問小路的寬x與y的比值是多少時,能使小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根據(jù)兩矩形的對應(yīng)邊是否成比例來判斷兩矩形是否相似;(2)根據(jù)矩形相似的條件列出等量關(guān)系式,從而求出x與y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假設(shè)兩個矩形相似,不妨設(shè)小路寬為xm,則30+2x30=20+2x20,解得x=0.∵由題意可知,小路寬不可能為0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)當(dāng)x與y的比值為3:2時,小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,則30+2x30=20+2y20,所以xy=32.∴當(dāng)x與y的比值為3:2時,小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.方法總結(jié):因為矩形的四個角均是直角,所以在有關(guān)矩形相似的問題中,只需看對應(yīng)邊是否成比例,若成比例,則相似,否則不相似.
目標(biāo)導(dǎo)學(xué)一:了解作者,了解作品吳敬梓,字敏軒,號粒民,晚年又號文木老人,安徽全椒人,清代小說家。吳敬梓出生于一個科甲鼎盛的縉紳世家,其曾祖父和祖父兩代人中,共出了六名進士。受家族的影響,他少時熱衷科舉,早年入學(xué)為秀才,二十九歲時參加鄉(xiāng)試,卻因“文章大好人大怪”而遭黜落。不過,讀書生活使他顯露出孤標(biāo)脫俗的叛逆?zhèn)€性。特別是在他的父親去世后,近房中不少人覬覦遺產(chǎn),使他得以認(rèn)清科甲世家的虛偽和卑劣。吳敬梓性情豁達,不善治家,不上十年,就將遺產(chǎn)消耗一空。經(jīng)歷了由富到貧之變后,他飽嘗了世態(tài)炎涼,體察到士大夫階層的種種墮落與無恥,看清了清王朝統(tǒng)治下政治的腐敗與社會的污濁。正因為其個人經(jīng)歷,使他對當(dāng)時儒生的生活和精神狀態(tài)之弊病有了深刻的了解,寫下了著名的諷刺小說《儒林外史》。
目標(biāo)導(dǎo)學(xué)四:賞析作品,把握詩歌藝術(shù)特色1.這首詩在結(jié)構(gòu)上共分兩節(jié),請簡要說說兩節(jié)詩歌各有什么特點及它們之間的內(nèi)在聯(lián)系。明確:詩的第一節(jié)是從虛擬的視角,即從鳥兒的視角去想象,去表現(xiàn)鳥兒對土地的忠誠與摯愛,顯得形象含蓄;第二節(jié)卻換成實寫的視角,即從作者自我的視角去實寫自己“常含淚水的眼睛”,傾訴自己對土地的“深沉”之愛,是直抒胸臆。這樣,虛境和實境的結(jié)合與對應(yīng),構(gòu)筑了全詩內(nèi)在完整的藝術(shù)空間;結(jié)果與原因的關(guān)聯(lián)與對照,又構(gòu)成了支撐全詩的內(nèi)在邏輯結(jié)構(gòu)。此外,從手法特點上看,第一節(jié)用的是比,是想象的境界;第二節(jié)則是直抒胸臆的寫實。全詩由前面蒙太奇鏡頭式的畫面暗示轉(zhuǎn)到了后面作者的直接指點,以一個強有力的情感抒發(fā)結(jié)束了全篇,從而把注意力引到一個濃郁的情感氛圍中,再一次感受到作者對土地的忠貞與摯愛。
1.學(xué)習(xí)運用具體事例及理論論據(jù)駁斥錯誤觀點,從而得出正確觀點的駁論方法。2.品味文章語言的精妙,關(guān)注文本中哲理性的語句。3.重視創(chuàng)造的力量,培養(yǎng)自主、自信的創(chuàng)造能力。一、導(dǎo)入新課創(chuàng)造能為我們帶來什么?帶來豐收的成果,帶來奮斗的喜悅,帶來生存的信念。泰戈爾曾經(jīng)說:“生命是永恒不斷的創(chuàng)造,因為在它內(nèi)部蘊含著過剩的精力,它不斷流溢,越出時間和空間的界限,它不停地追求,以形形色色的自我表現(xiàn)的形式表現(xiàn)出來?!闭l忽視了人生中的創(chuàng)造,無疑也是對人生的懈怠,今天就讓我們一起學(xué)習(xí)著名教育家陶行知的《創(chuàng)造宣言》,從此敢于創(chuàng)造,勇于創(chuàng)造。【教學(xué)提示】也可請學(xué)生說說自己具有“創(chuàng)造性”的代表事例,并以此談?wù)剬Α皠?chuàng)造”一詞的理解,引導(dǎo)學(xué)生對文本主題的關(guān)注。二、教學(xué)新課目標(biāo)導(dǎo)學(xué)一:初讀課文,整體感知1.教師簡介作者及寫作背景。
(一)常識簡介1.作者簡介王灣,唐代詩人。生卒年、字號均不詳。洛陽(今屬河南)人。2.寫作背景次北固山下,意思是泊舟停宿于北固山下。作者家住洛陽,旅于江南,在這座山下停泊,被這里開闊秀麗的景色所吸引,寫下了這首詩。3.文章體裁《次北固山下》是五言律詩。律詩共八句,一二兩句為首聯(lián),三四兩句為頷聯(lián),五六兩句為頸聯(lián),七八兩句為尾聯(lián);每句有五個字,叫五言。(二)朗讀指導(dǎo)1.學(xué)生聽讀,把握五言詩的誦讀節(jié)奏。2.教師正音解詞,學(xué)生自讀。(可以播放課文朗讀的視頻或音頻文件。)3.理解大意翻譯:旅途在青山外,在碧綠的江水前行舟。潮水漲滿,兩岸之間水面寬闊,順風(fēng)行船恰好把帆兒高懸。夜幕還沒有褪盡,旭日已在江上冉冉升起,還在舊年時分,江南已有了春天的氣息。寄出去的家信不知何時才能到達,希望北歸的大雁捎到洛陽去。
(1)重點詞語解釋靜以修身(修養(yǎng)身心)非寧靜無致遠(實現(xiàn)遠大目標(biāo))無以廣才(擴展);淫慢則不能勵精(過度怠慢)年與時馳(消失、逝去)遂成枯落(形容人韶華逝去)(2)重點句子翻譯①非澹泊無以明志,非寧靜無以致遠……非學(xué)無以廣才,非志無以成學(xué);翻譯:不恬靜寡欲無法明確志向,不排除外來干擾無法達到遠大目標(biāo)。②年與時馳,意與日去,遂成枯萎,多不接世。翻譯:年華隨時光消失,意志隨歲月流逝,最終枯敗零落,對社會沒有任何貢獻。3.生譯全文。品德高尚、德才兼?zhèn)涞娜?,(?yīng)該)用靜來修善自身,用儉樸來淳養(yǎng)品德。不看輕世俗的名利就不能表明自己的志向,不靜心思考就不能實現(xiàn)遠大的目標(biāo)。學(xué)習(xí)必須靜心,才識需要學(xué)習(xí),不學(xué)習(xí)無從拓廣才識,不立志不能學(xué)習(xí)成功。沉迷懈怠就不能勵精求進,偏狹暴躁激進就不能冶煉性情。年齡隨著光陰飛逝,志向隨著年齡消退,最后精力衰竭學(xué)識無成,大多以不能承接先世的志向不為社會所用,可悲地守著貧寒的居舍。那時候再學(xué)習(xí)哪來得及!
2.在新知與舊知、知識與實踐的關(guān)系上,在學(xué)與思、學(xué)與問的關(guān)系上,孔子是怎么看的?新知與舊知的關(guān)系上,孔子認(rèn)為“溫故”可以“知新”。也只有“溫故”“知新”的人才能當(dāng)老師。這里,孔子強調(diào)的是“新知”,是那種開拓、創(chuàng)新的精神。在知識與實踐的關(guān)系上,孔子認(rèn)為“學(xué)而時習(xí)之”。學(xué)了知識要按時去實習(xí),把所學(xué)的東西運用到行動上,在實踐中提高對知識的掌握程度。在學(xué)與思的關(guān)系上,孔子認(rèn)為學(xué)習(xí)與思考必須結(jié)合,二者缺一不可。只讀書而不通過自己的頭腦加以思考,就會感到迷惑;只是一味空想而不讀書,就會精神疲憊。在學(xué)與問的關(guān)系上,孔子主張既學(xué)又問,不僅問知識才能比自己高的人,即使是知識才能比自己低的人,只要他們在某一方面有一技之長、一得之見,就應(yīng)該虛心向他們求教,不以為羞恥。