這是本節(jié)課的重點。讓同學(xué)們將∠aob對折,再折出一個直角三角形(使第一條折痕為斜邊),然后展開,請同學(xué)們觀察并思考:后折疊的二條折痕的交點在什么地方?這兩條折痕與角的兩邊有什么位置關(guān)系?這兩條折痕在數(shù)量上有什么關(guān)系?這時有的同學(xué)會說:“角的平分線上的點到角的兩邊的距離相等”.即得到了角平分線的性質(zhì)定理的猜想。接著我會讓同學(xué)們理論證明,并轉(zhuǎn)化為符號語言,注意分清題設(shè)和結(jié)論。有的同學(xué)會用全等三角形的判定定理aas證明,從而證明了猜想得到了角平分線的性質(zhì)定理。
問題1:你能證明“兩條直線被第三條直線所截,如果內(nèi)錯角相等,那么這兩條直線平行”這個命題的正確性嗎?已知:如圖,∠1和∠2是直線a,b被直線c截出的內(nèi)錯角,且∠1=∠2.求證:a∥b. 問題2:你能證明“兩條直線被第三條直線所截,如果同旁內(nèi)角互補,那么這兩條直線平行”這個命題的正確性嗎?已知:如圖,∠1和∠2是直線a、b被直線c截出的同旁內(nèi)角,且∠1與∠2互補.求證:a∥b
(2)依托各方力量,辦好家長學(xué)?! W(xué)校要重視家長學(xué)校這塊教育主陣地的建設(shè)。首先成立家長學(xué)校領(lǐng)導(dǎo)機構(gòu)——家長委員會,做到定期召開家長委員會會議,通報學(xué)校工作計劃及取得的成績、聽取家長委員會成員的合理化建議等。依托家長委員會,組織專題研討,為家校溝通、親子溝通提供平臺。同時從家庭教育的視角,與家長們一起思考如何提高教育的有效性。 為加強教育的效果,一方面學(xué)校要求教師訪問學(xué)生家庭,作好了解、協(xié)調(diào)工作,防微杜漸。另一方面,還要通過家長學(xué)校這種組織機構(gòu)治標(biāo)治本,對學(xué)生家長有針對、有系統(tǒng)、分層次地進(jìn)行家庭教育的輔導(dǎo),通過家長會、輔導(dǎo)講座、交流會、家長信、??蟮榷喾N途徑和手段,幫助家長樹立正確、新型的家庭教育觀念,傳授家長科學(xué)、合理的育人常識和技巧,提高家庭教育水平。
方法總結(jié):當(dāng)某一事件A發(fā)生的可能性大小與相關(guān)圖形的面積大小有關(guān)時,概率的計算方法是事件A所有可能結(jié)果所組成的圖形的面積與所有可能結(jié)果組成的總圖形面積之比,即P(A)=事件A所占圖形面積總圖形面積.概率的求法關(guān)鍵是要找準(zhǔn)兩點:(1)全部情況的總數(shù);(2)符合條件的情況數(shù)目.二者的比值就是其發(fā)生的概率.探究點二:與面積有關(guān)的概率的應(yīng)用如圖,把一個圓形轉(zhuǎn)盤按1∶2∶3∶4的比例分成A、B、C、D四個扇形區(qū)域,自由轉(zhuǎn)動轉(zhuǎn)盤,停止后指針落在B區(qū)域的概率為________.解析:∵一個圓形轉(zhuǎn)盤按1∶2∶3∶4的比例分成A、B、C、D四個扇形區(qū)域,∴圓形轉(zhuǎn)盤被等分成10份,其中B區(qū)域占2份,∴P(落在B區(qū)域)=210=15.故答案為15.三、板書設(shè)計1.與面積有關(guān)的等可能事件的概率P(A)= 2.與面積有關(guān)的概率的應(yīng)用本課時所學(xué)習(xí)的內(nèi)容多與實際相結(jié)合,因此教學(xué)過程中要引導(dǎo)學(xué)生展開豐富的聯(lián)想,在日常生活中發(fā)現(xiàn)問題,并進(jìn)行合理的整合歸納,選擇適宜的數(shù)學(xué)方法來解決問題
1.進(jìn)一步理解概率的意義并掌握計算事件發(fā)生概率的方法;(重點)2.了解事件發(fā)生的等可能性及游戲規(guī)則的公平性.(難點)一、情境導(dǎo)入一個箱子中放有紅、黃、黑三個小球,三個人先后去摸球,一人摸一次,一次摸出一個小球,摸出后放回,摸出黑色小球為贏,那么這個游戲是否公平?二、合作探究探究點一:與摸球有關(guān)的等可能事件的概率【類型一】 摸球問題一個不透明的盒子中放有4個白色乒乓球和2個黃色乒乓球,所有乒乓球除顏色外完全相同,從中隨機摸出1個乒乓球,摸出黃色乒乓球的概率為()A.23 B.12 C.13 D.16解析:根據(jù)題意可得不透明的袋子里裝有6個乒乓球,其中2個黃色的,任意摸出1個,則P(摸到黃色乒乓球)=26=13.故選C.方法總結(jié):概率的求法關(guān)鍵是找準(zhǔn)兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目.二者的比值就是其發(fā)生的概率.【類型二】 與代數(shù)知識相關(guān)的問題已知m為-9,-6,-5,-3,-2,2,3,5,6,9中隨機取的一個數(shù),則m4>100的概率為()A.15 B.310 C.12 D.35
證明:過點A作AF∥DE,交BC于點F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法總結(jié):利用等腰三角形“三線合一”得出結(jié)論時,先必須已知一個條件,這個條件可以是等腰三角形底邊上的高,可以是底邊上的中線,也可以是頂角的平分線.解題時,一般要用到其中的兩條線互相重合.三、板書設(shè)計1.全等三角形的判定和性質(zhì)2.等腰三角形的性質(zhì):等邊對等角3.三線合一:在等腰三角形的底邊上的高、中線、頂角的平分線中,只要知道其中一個條件,就能得出另外的兩個結(jié)論.本節(jié)課由于采用了動手操作以及討論交流等教學(xué)方法,有效地增強了學(xué)生的感性認(rèn)識,提高了學(xué)生對新知識的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對所學(xué)的新知識掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對等腰三角形的“三線合一”性質(zhì)理解不透徹,還需要在今后的教學(xué)和作業(yè)中進(jìn)一步鞏固和提高
方程有兩個不相等的實數(shù)根.綜上所述,m=3.易錯提醒:本題由根與系數(shù)的關(guān)系求出字母m的值,但一定要代入判別式驗算,字母m的取值必須使判別式大于0,這一點很容易被忽略.三、板書設(shè)計一元二次方程的根與系數(shù)的關(guān)系關(guān)系:如果方程ax2+bx+c=0(a≠0) 有兩個實數(shù)根x1,x2,那么x1+x2 =-ba,x1x2=ca應(yīng)用利用根與系數(shù)的關(guān)系求代數(shù)式的值已知方程一根,利用根與系數(shù)的關(guān)系求方程的另一根判別式及根與系數(shù)的關(guān)系的綜合應(yīng)用讓學(xué)生經(jīng)歷探索,嘗試發(fā)現(xiàn)韋達(dá)定理,感受不完全的歸納驗證以及演繹證明.通過觀察、實踐、討論等活動,經(jīng)歷發(fā)現(xiàn)問題、發(fā)現(xiàn)關(guān)系的過程,養(yǎng)成獨立思考的習(xí)慣,培養(yǎng)學(xué)生觀察、分析和綜合判斷的能力,激發(fā)學(xué)生發(fā)現(xiàn)規(guī)律的積極性,激勵學(xué)生勇于探索的精神.通過交流互動,逐步養(yǎng)成合作的意識及嚴(yán)謹(jǐn)?shù)闹螌W(xué)精神.
3、一般地,對于關(guān)于 方程 為已知常數(shù), ,試用求根公式求出它的兩個解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結(jié)果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致?!局R應(yīng)用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個根是2,求它的另一個根及 的值。(3)不解方程,求一 元二次方程 兩個根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個根是 ?!練w納小結(jié)】【作業(yè)】1、已知方程 的一個根是1,求它的另一個根及 的值。2、設(shè) 是方程 的兩個根,不解方程,求下列各式的值。① ;② 3、求一個一元次方程,使它的兩 個根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;
2、猜想 一元二次方程的兩個根 的和與積和原來的方程有什么聯(lián)系?小組交流。3、一般地,對于關(guān)于 方程 為已知常數(shù), ,試用求根公式求出它的兩個解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結(jié)果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致?!局R應(yīng)用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個根是2,求它的另一個根及 的值。(3)不解方程,求一 元二次方程 兩個根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個根是 。【歸納小結(jié)】【作業(yè)】1、已知方程 的一個根是1,求它的另一個根及 的值。2、設(shè) 是方程 的兩個根,不解方程,求下列各式的值。① ;② 3、求一個一元次方程,使它的兩 個根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;
解析:(1)連接BI,根據(jù)I是△ABC的內(nèi)心,得出∠1=∠2,∠3=∠4,再根據(jù)∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內(nèi)心,得到角平分線,根據(jù)等腰三角形的性質(zhì)得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內(nèi)心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內(nèi)心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結(jié):解決本題要掌握三角形的內(nèi)心的性質(zhì),以及圓周角定理.
解析:(1)由切線的性質(zhì)得AB⊥BF,因為CD⊥AB,所以CD∥BF,由平行線的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對的圓周角是直角得∠ADB=90°,因為∠ABF=90°,然后運用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運用切線的性質(zhì)來進(jìn)行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構(gòu)造直角三角形解決有關(guān)問題.
1、現(xiàn)在每天生產(chǎn)的比原來多百分之幾?2、原來每天生產(chǎn)的比現(xiàn)在少百分之幾?3、現(xiàn)在每天生產(chǎn)的是原來的百分之幾?第三層次請你為你的同桌出一道求“一個數(shù)比另一個數(shù)多(或少)百分之幾”的應(yīng)用題。第一組是基本練習(xí),通過練習(xí)及兩個答案的對比,讓學(xué)生對單位“1”不同導(dǎo)致結(jié)果的不同印象深刻。第二組習(xí)題的情境設(shè)計為災(zāi)區(qū)人民急需的藥品,在問題的設(shè)計上難度加大了,需要學(xué)生仔細(xì)思考,真正理解問題的含義后才能做對,鍛煉了學(xué)生的思維能力。第三組請學(xué)生互相出題的目的是要檢驗學(xué)生對本課例題的理解程度,不僅深化了對知識的理解,而且還通過判斷別人出題是否正確的同時鍛煉了辨析的能力??傊鳛閿?shù)學(xué)教師,本節(jié)課我力求數(shù)字簡單化,讓學(xué)生在情境中學(xué)習(xí),在探究中提高,在合作中發(fā)展,體現(xiàn)數(shù)學(xué)活動是師生交往、共同發(fā)展的過程。
一、設(shè)計思路《數(shù)學(xué)課程標(biāo)準(zhǔn)》倡導(dǎo)尊重學(xué)生的主觀能動性,以自主探究、合作交流為主要學(xué)習(xí)方式。因此,在本節(jié)課中我們充分體現(xiàn)了以學(xué)生為主體的設(shè)計理念,采用具有我校特色的高效課堂模式“三學(xué)五環(huán)”教學(xué)法,學(xué)生以“自主學(xué)習(xí)-合作探究”的方式進(jìn)行學(xué)習(xí),從而展示三學(xué)“獨學(xué)、對學(xué)、群學(xué)”。在教學(xué)流程上以:“情境導(dǎo)入,引入示標(biāo);自主嘗試;交流展示;精講點撥;當(dāng)堂檢測”這五大環(huán)節(jié)來引領(lǐng)學(xué)生進(jìn)入知識的殿堂。二、說教材充分領(lǐng)略教材編排意圖,科學(xué)精當(dāng)?shù)胤治鑫谋?,是采用“以學(xué)定教”,實現(xiàn)“有效教學(xué)”的第一步?!队糜杏鄶?shù)除法解決問題》是人教版小學(xué)數(shù)學(xué)二年級下冊第67頁的內(nèi)容,它屬于數(shù)與代數(shù)領(lǐng)域。本節(jié)課是在學(xué)生已經(jīng)學(xué)習(xí)了表內(nèi)除法、用豎式計算除法、有余數(shù)除法的基礎(chǔ)上進(jìn)行教學(xué)的。同時,本課為今后學(xué)習(xí)近似數(shù)、估算進(jìn)行了初步的鋪墊。
一、說教材1、教學(xué)內(nèi)容小學(xué)義務(wù)教育課程標(biāo)準(zhǔn)實驗教材三年級上冊第86—87的內(nèi)容。2、教材分析這節(jié)課是教學(xué)多位數(shù)乘一位數(shù)的筆算乘法,主要是解決筆算過程中從哪一位乘起,怎么進(jìn)位和豎式的書寫格式問題。這部分內(nèi)容是學(xué)生學(xué)習(xí)筆算乘法的開始,是在學(xué)生會做表內(nèi)乘法、整十、整百的數(shù)乘一位數(shù)的口算,乘、加兩步混合運算和萬以內(nèi)數(shù)的組成的基礎(chǔ)上進(jìn)行教學(xué)的。3、教學(xué)重點、難點重點:理解、掌握多位數(shù)乘一位數(shù)的計算方法。難點:正確地計算連續(xù)進(jìn)位的乘法和一個因數(shù)末尾有0的乘法。4、教學(xué)目標(biāo):使學(xué)生掌握三位數(shù)乘一位數(shù)乘法的計算方法,能正確地進(jìn)行計算。二、說教法和學(xué)法重視創(chuàng)設(shè)聯(lián)系實際生活的問題情境,組織好學(xué)生自主探索和合作交流的學(xué)習(xí)方式,啟發(fā)學(xué)生探索多樣的計算方法,讓學(xué)生切實經(jīng)歷學(xué)習(xí)計算方法的過程。通過多層次的練習(xí),來幫助學(xué)生鞏固新知識,形成技能技巧,促使知識內(nèi)化,構(gòu)建完善的認(rèn)識結(jié)構(gòu)。
二、說教學(xué)目標(biāo)1.通過分草莓的操作活動,使學(xué)生理解余數(shù)及有余數(shù)的除法的含義,并會用除法算式表示出來,培養(yǎng)學(xué)生觀察、分析、比較的能力。2.借助用小棒擺正方形的操作,使學(xué)生鞏固有余數(shù)的除法的含義,并通過觀察、比較探索余數(shù)和除數(shù)的關(guān)系,理解余數(shù)比除數(shù)小的道理。3.滲透借助直觀研究問題的意識和方法,使學(xué)生經(jīng)歷發(fā)現(xiàn)知識的過程,感受學(xué)數(shù)學(xué),用數(shù)學(xué)的快樂。三、說學(xué)情分析學(xué)生在前一階段剛剛學(xué)會表內(nèi)除法,已經(jīng)接觸過許多正好全部分完的事例,但二年級學(xué)生的思維還是以具體形象思維為主,想較好完成由形象思維向抽象邏輯思維轉(zhuǎn)變,就要借助動手操作,讓學(xué)生親自去實驗,去體驗知識的形成過程。本節(jié)課我將安排學(xué)生大量的動手?jǐn)[、圈、分的活動。通過動手操作,直觀感受余數(shù)的產(chǎn)生及意義。根據(jù)學(xué)生喜歡動手的特點,安排了動手?jǐn)[小棒的活動,讓學(xué)生在操作的過程中體會有余數(shù)的除法,初步感受余數(shù)一定要比除數(shù)小的道理。
8、小結(jié):不管因數(shù)中間是否有0,都要用這個一位數(shù)去乘多位數(shù)里每一個數(shù)位上的數(shù),即使十位上是0也要乘。這就是今天我們學(xué)習(xí)的新知識,因數(shù)中間有0的乘法。(板題:因數(shù)中間有0的乘法)[設(shè)計意圖:通過學(xué)生的自主探索,獲得對“0和一個數(shù)相乘得0”的理性認(rèn)識的基礎(chǔ)上,進(jìn)一步運用估算、口算以及學(xué)過的筆算方法上算法上進(jìn)行探索,中間有0的三位數(shù)都是接近整百的數(shù),這為學(xué)生運用估算提供了很好的機會。通過估算,能使學(xué)生對筆算結(jié)果有一個大致的把握,從而可以在很大程度上減少筆算中錯誤的發(fā)生,通過教學(xué),努力使學(xué)生感受到:把估算和筆算結(jié)合起來,可以提高計算的正確率。逐步培養(yǎng)學(xué)生在筆算時自覺進(jìn)行估算的意識。]三.鞏固練習(xí)談話:現(xiàn)在正是小朋友們長身體的時候,所以我們一定要參加體育鍛煉呦!今天,我們一起去參加一個智力長跑,好嗎?
二、教學(xué)目標(biāo) ★知識與技能目標(biāo): 1、能正確指認(rèn)綠色開花植物的六大器官; 2、能說出綠色開花植物的相同點和不同點; 3、能用圖畫或文字描述并記錄所觀察的植物。 ★過程與方法: 學(xué)生在自主探究解決問題的過程中獲取認(rèn)識新知的方法。 ★情感態(tài)度與價值觀: 在進(jìn)行探究活動的過程中激發(fā)學(xué)生研究植物的興趣,培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神。 三、教學(xué)重難點 重點:認(rèn)識綠色開花植物的六大器官。 難點:能用圖畫或文字描述并記錄所觀察的植物。
分析:(1)(2)用乘法的交換、結(jié)合律;(3)(4)用分配律,4.99寫成5-0.01學(xué)生板書完成,并說明根據(jù)什么?略例3、某校體育器材室共有60個籃球。一天課外活動,有3個班級分別計劃借籃球總數(shù)的 , 和 。請你算一算,這60個籃球夠借嗎?如果夠了,還多幾個籃球?如果不夠,還缺幾個?解:=60-30-20-15 =-5答:不夠借,還缺5個籃球。練習(xí)鞏固:第41頁1、2、7、探究活動 (1)如果2個數(shù)的積為負(fù)數(shù),那么這2個數(shù)中有幾個負(fù)數(shù)?如果3個數(shù)的積為負(fù)數(shù),那么這3個數(shù)中有幾個負(fù)數(shù)?4個數(shù)呢?5個數(shù)呢?6個數(shù)呢?有什么規(guī)律? (2)逆用分配律 第42頁 5、用簡便方法計算(三)課堂小結(jié)通過本節(jié)課的學(xué)習(xí),大家學(xué)會了什么?本節(jié)課我們探討了有理數(shù)乘法的運算律及其應(yīng)用.乘法的運算律有:乘法交換律:a×b=b×a;乘法結(jié)合律:(a×b)×c=a×(b×c);分配律:a×(b+c)=a×b+a×c.在有理數(shù)的運算中,靈活運用運算律可以簡化運算.(四)作業(yè):課本42頁作業(yè)題
二.思考:(-2) 可以寫成-2 嗎?( ) 可以寫成 嗎?(指名學(xué)生回答,師生共同總結(jié):負(fù)數(shù)和分?jǐn)?shù)的乘方書寫時,一定要把整個負(fù)數(shù)和分?jǐn)?shù)用小括號括起來)三.計算:①(-2) ,②-2 ,③(- ) ,④ (叫4個學(xué)生上臺板演,其他練習(xí)本上完成,教師巡視,確保人人學(xué)得緊張高效).(四)討論更正,合作探究1.學(xué)生自由更正,或?qū)懗霾煌夥ǎ?.評講思考:將三題①③中將底數(shù)換成為正數(shù)或0,結(jié)果有什么規(guī)律?學(xué)生總結(jié):負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù),正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都為0。有理數(shù)的乘方就是幾個相同因數(shù)積的運算,可以運用有理數(shù)乘方法則進(jìn)行符號的確定和冪的求值.乘方的含義:①表示一種運算;②表示運算的結(jié)果.
解:由題意得a+b=0,cd=1,|m|=6,m=±6;∴(1)當(dāng)m=6時,原式=06-1+6=5;(2)當(dāng)m=-6時,原式=0-6-1+6=5.故a+bm-cd+|m|的值為5.方法總結(jié):解答此題的關(guān)鍵是先根據(jù)題意得出a+b=0,cd=1及m=±6,再代入所求代數(shù)式進(jìn)行計算.探究點三:有理數(shù)乘法的應(yīng)用性問題小紅家春天粉刷房間,雇用了5個工人,干了3天完成;用了某種涂料150升,費用為4800元,粉刷的面積是150m2.最后結(jié)算工錢時,有以下幾種方案:方案一:按工算,每個工100元;(1個工人干1天是一個工);方案二:按涂料費用算,涂料費用的30%作為工錢;方案三:按粉刷面積算,每平方米付工錢12元.請你幫小紅家出主意,選擇哪種方案付錢最合算(最省)?解析:根據(jù)有理數(shù)的乘法的意義列式計算.解:第一種方案的工錢為100×3×5=1500(元);第二種方案的工錢為4800×30%=1440(元);第三種方案的工錢為150×12=1800(元).答:選擇方案二付錢最合算(最省).方法總結(jié):解此題的關(guān)鍵是根據(jù)題意列出算式,計算出結(jié)果,比較得出最省的付錢方案.
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。