提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

人教版高中政治必修1全面建設小康社會的經濟目標教案

  • 人教A版高中數(shù)學必修一集合的基本運算教學設計(2)

    人教A版高中數(shù)學必修一集合的基本運算教學設計(2)

    集合的基本運算是人教版普通高中課程標準實驗教科書,數(shù)學必修1第一章第三節(jié)的內容. 在此之前,學生已學習了集合的含義以及集合與集合之間的基本關系,這為學習本節(jié)內容打下了基礎. 本節(jié)內容是函數(shù)、方程、不等式的基礎,在教材中起著承上啟下的作用. 本節(jié)內容是高中數(shù)學的主要內容,也是高考的對象,在實踐中應用廣泛,是高中學生必須掌握的重點.課程目標1. 理解兩個集合的并集與交集的含義,能求兩個集合的并集與交集;2. 理解全集和補集的含義,能求給定集合的補集; 3. 能使用Venn圖表達集合的基本關系與基本運算.數(shù)學學科素養(yǎng)1.數(shù)學抽象:并集、交集、全集、補集含義的理解;2.邏輯推理:并集、交集及補集的性質的推導;3.數(shù)學運算:求 兩個集合的并集、交集及補集,已知并集、交集及補集的性質求參數(shù)(參數(shù)的范圍);4.數(shù)據(jù)分析:通過并集、交集及補集的性質列不等式組,此過程中重點關注端點是否含“=”及?問題;

  • 人教A版高中數(shù)學必修一簡單的三角恒等變換教學設計(2)

    人教A版高中數(shù)學必修一簡單的三角恒等變換教學設計(2)

    它位于三角函數(shù)與數(shù)學變換的結合點上,能較好反應三角函數(shù)及變換之間的內在聯(lián)系和相互轉換,本節(jié)課內容的地位體現(xiàn)在它的基礎性上。作用體現(xiàn)在它的工具性上。前面學生已經掌握了兩角和與差的正弦、余弦、正切公式以及二倍角公式,并能通過這些公式進行求值、化簡、證明,雖然學生已經具備了一定的推理、運算能力,但在數(shù)學的應用意識與應用能力方面尚需進一步培養(yǎng).課程目標1.能用二倍角公式推導出半角公式,體會三角恒等變換的基本思想方法,以及進行簡單的應用. 2.了解三角恒等變換的特點、變換技巧,掌握三角恒等變換的基本思想方法. 3.能利用三角恒等變換的技巧進行三角函數(shù)式的化簡、求值以及證明,進而進行簡單的應用. 數(shù)學學科素養(yǎng)1.邏輯推理: 三角恒等式的證明; 2.數(shù)據(jù)分析:三角函數(shù)式的化簡; 3.數(shù)學運算:三角函數(shù)式的求值.

  • 人教A版高中數(shù)學必修一正弦函數(shù)、余弦函數(shù)的性質教學設計(2)

    人教A版高中數(shù)學必修一正弦函數(shù)、余弦函數(shù)的性質教學設計(2)

    本節(jié)課是正弦函數(shù)、余弦函數(shù)圖像的繼續(xù),本課是正弦曲線、余弦曲線這兩種曲線的特點得出正弦函數(shù)、余弦函數(shù)的性質. 課程目標1.了解周期函數(shù)與最小正周期的意義;2.了解三角函數(shù)的周期性和奇偶性;3.會利用周期性定義和誘導公式求簡單三角函數(shù)的周期;4.借助圖象直觀理解正、余弦函數(shù)在[0,2π]上的性質(單調性、最值、圖象與x軸的交點等);5.能利用性質解決一些簡單問題. 數(shù)學學科素養(yǎng)1.數(shù)學抽象:理解周期函數(shù)、周期、最小正周期等的含義; 2.邏輯推理: 求正弦、余弦形函數(shù)的單調區(qū)間;3.數(shù)學運算:利用性質求周期、比較大小、最值、值域及判斷奇偶性.4.數(shù)學建模:讓學生借助數(shù)形結合的思想,通過圖像探究正、余弦函數(shù)的性質.重點:通過正弦曲線、余弦曲線這兩種曲線探究正弦函數(shù)、余弦函數(shù)的性質; 難點:應用正、余弦函數(shù)的性質來求含有cosx,sinx的函數(shù)的單調性、最值、值域及對稱性.

  • 人教A版高中數(shù)學必修二事件的相互獨立性教學設計

    人教A版高中數(shù)學必修二事件的相互獨立性教學設計

    問題導入:問題一:試驗1:分別拋擲兩枚質地均勻的硬幣,A=“第一枚硬幣正面朝上”,B=“第二枚硬幣正面朝上”。事件A的發(fā)生是否影響事件B的概率?因為兩枚硬幣分別拋擲,第一枚硬幣的拋擲結果與第二枚硬幣的拋擲結果互相不受影響,所以事件A發(fā)生與否不影響事件B發(fā)生的概率。問題二:計算試驗1中的P(A),P(B),P(AB),你有什么發(fā)現(xiàn)?在該試驗中,用1表示硬幣“正面朝上”,用0表示“反面朝上”,則樣本空間Ω={(1,1),(1,0),(0,1),(0,0)},包含4個等可能的樣本點。而A={(1,1),(1,0)},B={(1,0),(0,0)}所以AB={(1,0)}由古典概率模型概率計算公式,得P(A)=P(B)=0.5,P(AB)=0.25, 于是 P(AB)=P(A)P(B)積事件AB的概率恰好等于事件A、B概率的乘積。問題三:試驗2:一個袋子中裝有標號分別是1,2,3,4的4個球,除標號外沒有其他差異。

  • 人教A版高中數(shù)學必修二復數(shù)的三角表示教學設計

    人教A版高中數(shù)學必修二復數(shù)的三角表示教學設計

    本節(jié)內容是復數(shù)的三角表示,是復數(shù)與三角函數(shù)的結合,是對復數(shù)的拓展延伸,這樣更有利于我們對復數(shù)的研究。1.數(shù)學抽象:利用復數(shù)的三角形式解決實際問題;2.邏輯推理:通過課堂探究逐步培養(yǎng)學生的邏輯思維能力;3.數(shù)學建模:掌握復數(shù)的三角形式;4.直觀想象:利用復數(shù)三角形式解決一系列實際問題;5.數(shù)學運算:能夠正確運用復數(shù)三角形式計算復數(shù)的乘法、除法;6.數(shù)據(jù)分析:通過經歷提出問題—推導過程—得出結論—例題講解—練習鞏固的過程,讓學生認識到數(shù)學知識的邏輯性和嚴密性。復數(shù)的三角形式、復數(shù)三角形式乘法、除法法則及其幾何意義舊知導入:問題一:你還記得復數(shù)的幾何意義嗎?問題二:我們知道,向量也可以由它的大小和方向唯一確定,那么能否借助向量的大小和方向這兩個要素來表示復數(shù)呢?如何表示?

  • 人教A版高中數(shù)學必修一對數(shù)函數(shù)的概念教學設計(2)

    人教A版高中數(shù)學必修一對數(shù)函數(shù)的概念教學設計(2)

    對數(shù)函數(shù)與指數(shù)函數(shù)是相通的,本節(jié)在已經學習指數(shù)函數(shù)的基礎上通過實例總結歸納對數(shù)函數(shù)的概念,通過函數(shù)的形式與特征解決一些與對數(shù)函數(shù)有關的問題.課程目標1、通過實際問題了解對數(shù)函數(shù)的實際背景;2、掌握對數(shù)函數(shù)的概念,并會判斷一些函數(shù)是否是對數(shù)函數(shù). 數(shù)學學科素養(yǎng)1.數(shù)學抽象:對數(shù)函數(shù)的概念;2.邏輯推理:用待定系數(shù)法求函數(shù)解析式及解析值;3.數(shù)學運算:利用對數(shù)函數(shù)的概念求參數(shù);4.數(shù)學建模:通過由抽象到具體,由具體到一般的思想總結對數(shù)函數(shù)概念.重點:理解對數(shù)函數(shù)的概念和意義;難點:理解對數(shù)函數(shù)的概念.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導入我們已經研究了死亡生物體內碳14的含量y隨死亡時間x的變化而衰減的規(guī)律.反過來,已知死亡生物體內碳14的含量,如何得知死亡了多長時間呢?進一步地,死亡時間t是碳14的含量y的函數(shù)嗎?

  • 人教A版高中數(shù)學必修一正切函數(shù)的圖像與性質教學設計(2)

    人教A版高中數(shù)學必修一正切函數(shù)的圖像與性質教學設計(2)

    本節(jié)課是三角函數(shù)的繼續(xù),三角函數(shù)包含正弦函數(shù)、余弦函數(shù)、正切函數(shù).而本課內容是正切函數(shù)的性質與圖像.首先根據(jù)單位圓中正切函數(shù)的定義探究其圖像,然后通過圖像研究正切函數(shù)的性質. 課程目標1、掌握利用單位圓中正切函數(shù)定義得到圖象的方法;2、能夠利用正切函數(shù)圖象準確歸納其性質并能簡單地應用.數(shù)學學科素養(yǎng)1.數(shù)學抽象:借助單位圓理解正切函數(shù)的圖像; 2.邏輯推理: 求正切函數(shù)的單調區(qū)間;3.數(shù)學運算:利用性質求周期、比較大小及判斷奇偶性.4.直觀想象:正切函數(shù)的圖像; 5.數(shù)學建模:讓學生借助數(shù)形結合的思想,通過圖像探究正切函數(shù)的性質. 重點:能夠利用正切函數(shù)圖象準確歸納其性質并能簡單地應用; 難點:掌握利用單位圓中正切函數(shù)定義得到其圖象.

  • 人教A版高中數(shù)學必修一正弦函數(shù)、余弦函數(shù)的圖像教學設計(2)

    人教A版高中數(shù)學必修一正弦函數(shù)、余弦函數(shù)的圖像教學設計(2)

    由于三角函數(shù)是刻畫周期變化現(xiàn)象的數(shù)學模型,這也是三角函數(shù)不同于其他類型函數(shù)的最重要的地方,而且對于周期函數(shù),我們只要認識清楚它在一個周期的區(qū)間上的性質,那么它的性質也就完全清楚了,因此本節(jié)課利用單位圓中的三角函數(shù)的定義、三角函數(shù)值之間的內在聯(lián)系性等來作圖,從畫出的圖形中觀察得出五個關鍵點,得到“五點法”畫正弦函數(shù)、余弦函數(shù)的簡圖.課程目標1.掌握“五點法”畫正弦曲線和余弦曲線的步驟和方法,能用“五點法”作出簡單的正弦、余弦曲線.2.理解正弦曲線與余弦曲線之間的聯(lián)系. 數(shù)學學科素養(yǎng)1.數(shù)學抽象:正弦曲線與余弦曲線的概念; 2.邏輯推理:正弦曲線與余弦曲線的聯(lián)系; 3.直觀想象:正弦函數(shù)余弦函數(shù)的圖像; 4.數(shù)學運算:五點作圖; 5.數(shù)學建模:通過正弦、余弦圖象圖像,解決不等式問題及零點問題,這正是數(shù)形結合思想方法的應用.

  • 人教A版高中數(shù)學必修一指數(shù)函數(shù)的概念教學設計(2)

    人教A版高中數(shù)學必修一指數(shù)函數(shù)的概念教學設計(2)

    指數(shù)函數(shù)與冪函數(shù)是相通的,本節(jié)在已經學習冪函數(shù)的基礎上通過實例總結歸納指數(shù)函數(shù)的概念,通過函數(shù)的三個特征解決一些與函數(shù)概念有關的問題.課程目標1、通過實際問題了解指數(shù)函數(shù)的實際背景;2、理解指數(shù)函數(shù)的概念和意義.數(shù)學學科素養(yǎng)1.數(shù)學抽象:指數(shù)函數(shù)的概念;2.邏輯推理:用待定系數(shù)法求函數(shù)解析式及解析值;3.數(shù)學運算:利用指數(shù)函數(shù)的概念求參數(shù);4.數(shù)學建模:通過由抽象到具體,由具體到一般的思想總結指數(shù)函數(shù)概念.重點:理解指數(shù)函數(shù)的概念和意義;難點:理解指數(shù)函數(shù)的概念.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導入在本章的開頭,問題(1)中時間 與GDP值中的 ,請問這兩個函數(shù)有什么共同特征.要求:讓學生自由發(fā)言,教師不做判斷。而是引導學生進一步觀察.研探.

  • 人教A版高中數(shù)學必修二向量的減法運算教學設計

    人教A版高中數(shù)學必修二向量的減法運算教學設計

    新知探究:向量的減法運算定義問題四:你能根據(jù)實數(shù)的減法運算定義向量的減法運算嗎?由兩個向量和的定義已知 即任意向量與其相反向量的和是零向量。求兩個向量差的運算叫做向量的減法。我們看到,向量的減法可以轉化為向量的加法來進行:減去一個向量相當于加上這個向量的相反向量。即新知探究(二):向量減法的作圖方法知識探究(三):向量減法的幾何意義問題六:根據(jù)問題五,思考一下向量減法的幾何意義是什么?問題七:非零共線向量怎樣做減法運算? 問題八:非零共線向量怎樣做減法運算?1.共線同向2.共線反向小試牛刀判一判(正確的打“√”,錯誤的打“×”)(1)兩個向量的差仍是一個向量。 (√ )(2)向量的減法實質上是向量的加法的逆運算. ( √ )(3)向量a與向量b的差與向量b與向量a的差互為相反向量。 ( √ )(4)相反向量是共線向量。 ( √ )

  • 高中歷史人教版必修一《第2課秦朝中央集權制度的形成》說課稿

    高中歷史人教版必修一《第2課秦朝中央集權制度的形成》說課稿

    【課件展示】《秦朝中央集權制度的建立》《教材簡析》《教學目標》《教法簡介》《教學過程設計及特色簡述》【師】本節(jié)內容以秦代政治體制和官僚系統(tǒng)的建立為核心內容,主要包括秦朝中央集權制的建立的背景、建立過程及影響。本節(jié)內容在整個單元中起到承前啟后的作用,在整個模塊中也有相當重要的地位。讓學生了解中國古代中央集權政治體制的初建對于理解我國古代政治制度的發(fā)展乃至我們今天的政治體制是十分必要的。 本堂課我采用多媒體和講授法及歷史辯論法相結合,通過巧妙設計問題情境,調動學生的學習積極性,使學生主動學習,探究思考。教師引導和組織學生采取小組討論、情景體驗等方式,達到教學目標。 本節(jié)內容分三個部分,下面首先看秦朝中央集權制度建立的前提即秦的統(tǒng)一

  • 高中歷史人教版必修二《第2課古代手工業(yè)的進步》說課稿

    高中歷史人教版必修二《第2課古代手工業(yè)的進步》說課稿

    二、教學目標:1、知識與能力(1)了解我國古代冶金、制瓷、絲織業(yè)發(fā)展的基本情況;(2)了解中國古代手工業(yè)享譽世界的史實,培養(yǎng)學生的民族自信心。2、過程與方法(1)通過大量的歷史圖片,指導學生欣賞一些精湛的手工業(yè)藝術品,提高學生探究古代手工業(yè)的興趣;(2)運用歷史材料引導學生歸納古代手工業(yè)產品的基本特征。3、情感態(tài)度與價值觀:通過本課教學,使學生充分地感受到我國古代人民的聰明與才智,認識到古代許多手工業(yè)品具有較高的藝術價值,以及在世界上的領先地位和對世界文明的影響,增強民族自豪感。

  • 用空間向量研究直線、平面的位置關系(2)教學設計人教A版高中數(shù)學選擇性必修第一冊

    用空間向量研究直線、平面的位置關系(2)教學設計人教A版高中數(shù)學選擇性必修第一冊

    跟蹤訓練1在正方體ABCD-A1B1C1D1中,E為AC的中點.求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系.設正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點.求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內的兩個不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結論;另一種思路是建立空間直角坐標系,通過坐標運算證明(D_1 M) ?與平面EFB1內的兩個不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結論.證明:(方法1)因為E,F,M分別為棱AB,BC,B1B的中點,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因為(B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.

  • 雙曲線的簡單幾何性質(1)教學設計人教A版高中數(shù)學選擇性必修第一冊

    雙曲線的簡單幾何性質(1)教學設計人教A版高中數(shù)學選擇性必修第一冊

    問題導學類比橢圓幾何性質的研究,你認為應該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質,如何研究這些性質1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點的坐標( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關于x軸、y軸和原點都是對稱。x軸、y軸是雙曲線的對稱軸,原點是對稱中心,又叫做雙曲線的中心。3、頂點(1)雙曲線與對稱軸的交點,叫做雙曲線的頂點 .頂點是A_1 (-a,0)、A_2 (a,0),只有兩個。(2)如圖,線段A_1 A_2 叫做雙曲線的實軸,它的長為2a,a叫做實半軸長;線段B_1 B_2 叫做雙曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長。(3)實軸與虛軸等長的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準確的畫出雙曲線的草圖

  • 橢圓的簡單幾何性質(1)教學設計人教A版高中數(shù)學選擇性必修第一冊

    橢圓的簡單幾何性質(1)教學設計人教A版高中數(shù)學選擇性必修第一冊

    1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對稱軸為坐標軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個焦點,M為其上任一點,則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個焦點為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點坐標及離心率;(2)寫出橢圓C2的方程,并研究其性質.解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點坐標為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質如下:①范圍:-8≤x≤8且-10≤y≤10;②對稱性:關于x軸、y軸、原點對稱;③頂點:長軸端點(0,10),(0,-10),短軸端點(-8,0),(8,0);④焦點:(0,6),(0,-6);⑤離心率:e=3/5.

  • 拋物線的簡單幾何性質(1)教學設計人教A版高中數(shù)學選擇性必修第一冊

    拋物線的簡單幾何性質(1)教學設計人教A版高中數(shù)學選擇性必修第一冊

    問題導學類比用方程研究橢圓雙曲線幾何性質的過程與方法,y2 = 2px (p>0)你認為應研究拋物線的哪些幾何性質,如何研究這些性質?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側,開口向右,這條拋物線上的任意一點M 的坐標 (x, y) 的橫坐標滿足不等式 x ≥ 0;當x 的值增大時,|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關于 x 軸對稱,我們把拋物線的對稱軸叫做拋物線的軸.拋物線只有一條對稱軸. 3. 頂點拋物線和它軸的交點叫做拋物線的頂點.拋物線的頂點坐標是坐標原點 (0, 0) .4. 離心率拋物線上的點M 到焦點的距離和它到準線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標準方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

  • 空間向量及其運算的坐標表示教學設計人教A版高中數(shù)學選擇性必修第一冊

    空間向量及其運算的坐標表示教學設計人教A版高中數(shù)學選擇性必修第一冊

    一、情境導學我國著名數(shù)學家吳文俊先生在《數(shù)學教育現(xiàn)代化問題》中指出:“數(shù)學研究數(shù)量關系與空間形式,簡單講就是形與數(shù),歐幾里得幾何體系的特點是排除了數(shù)量關系,對于研究空間形式,你要真正的‘騰飛’,不通過數(shù)量關系,我想不出有什么好的辦法…….”吳文俊先生明確地指出中學幾何的“騰飛”是“數(shù)量化”,也就是坐標系的引入,使得幾何問題“代數(shù)化”,為了使得空間幾何“代數(shù)化”,我們引入了坐標及其運算.二、探究新知一、空間直角坐標系與坐標表示1.空間直角坐標系在空間選定一點O和一個單位正交基底{i,j,k},以點O為原點,分別以i,j,k的方向為正方向、以它們的長為單位長度建立三條數(shù)軸:x軸、y軸、z軸,它們都叫做坐標軸.這時我們就建立了一個空間直角坐標系Oxyz,O叫做原點,i,j,k都叫做坐標向量,通過每兩個坐標軸的平面叫做坐標平面,分別稱為Oxy平面,Oyz平面,Ozx平面.

  • 人教A版高中數(shù)學必修二平面與平面垂直教學設計

    人教A版高中數(shù)學必修二平面與平面垂直教學設計

    6. 例二:如圖,AB是⊙O的直徑,PA垂直于⊙O所在的平面,C是圓周上的一點,且PA=AC,求二面角P-BC-A的大?。?解:由已知PA⊥平面ABC,BC在平面ABC內∴PA⊥BC∵AB是⊙O的直徑,且點C在圓周上,∴AC⊥BC又∵PA∩AC=A,PA,AC在平面PAC內,∴BC⊥平面PAC又PC在平面PAC內,∴PC⊥BC又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角由PA=AC知△PAC是等腰直角三角形∴∠PCA=45°,即二面角P-BC-A的大小是45°7.面面垂直定義一般地,兩個平面相交,如果它們所成的二面角是直二面角,就說這兩個平面互相垂直,平面α與β垂直,記作α⊥β8. 探究:建筑工人在砌墻時,常用鉛錘來檢測所砌的墻面與地面是否垂直,如果系有鉛錘的細繩緊貼墻面,工人師傅被認為墻面垂直于地面,否則他就認為墻面不垂直于地面,這種方法說明了什么道理?

  • 人教A版高中數(shù)學必修二平面與平面平行教學設計

    人教A版高中數(shù)學必修二平面與平面平行教學設計

    1.探究:根據(jù)基本事實的推論2,3,過兩條平行直線或兩條相交直線,有且只有一個平面,由此可以想到,如果一個平面內有兩條相交或平行直線都與另一個平面平行,是否就能使這兩個平面平行?如圖(1),a和b分別是矩形硬紙板的兩條對邊所在直線,它們都和桌面平行,那么硬紙板和桌面平行嗎?如圖(2),c和d分別是三角尺相鄰兩邊所在直線,它們都和桌面平行,那么三角尺與桌面平行嗎?2.如果一個平面內有兩條平行直線與另一個平面平行,這兩個平面不一定平行。我們借助長方體模型來說明。如圖,在平面A’ADD’內畫一條與AA’平行的直線EF,顯然AA’與EF都平行于平面DD’CC’,但這兩條平行直線所在平面AA’DD’與平面DD’CC’相交。3.如果一個平面內有兩條相交直線與另一個平面平行,這兩個平面是平行的,如圖,平面ABCD內兩條相交直線A’C’,B’D’平行。

  • 第二周國旗下講話-給自己一個目標

    第二周國旗下講話-給自己一個目標

    第二周國旗下講話-給自己一個目標各位老師、各位同學:大家好,今天我講話的題目是:給自己一個目標。度過一個愉快的暑假,我們在初秋的氣息中迎來了新的學期。積蓄了一個假期的自信與激情,踏入濃濃書香氣息的校園,我們可曾想過:這學期,我的奮斗目標是什么?這學期,我想獲得的進步是什么?這學期,我會為此做出哪些努力?這學期,我準備怎樣讓自己更快樂?1993年,一個14歲的孩子在上海青年籃球隊里打球,當時球隊里的隊員都穿著帆布面的籃球鞋。有一次,他在觀看一場國外球隊的比賽時發(fā)現(xiàn),那些國外的球員竟然都穿著皮制的籃球鞋。這種球鞋不但美觀,而且穿著舒適。于是,這個孩子夢想能穿上一雙皮制的籃球鞋。 一天,當他把這個夢想告訴教練后,教練笑著說:“努力吧,孩子,如果你能進入國家青年隊,你就能穿這樣的鞋。”從這一刻起,這個孩子就把進入國家青年隊作為自己奮斗的目標。終于在17歲那年,他憑借自己超凡的球技被選入國家青年隊。穿上了夢想已久的皮制籃球鞋,他倍加珍惜。一位隊友發(fā)現(xiàn)此事后告訴他:“不用在意一雙球鞋,如果你能進入國家隊,這樣的籃球鞋你想有多少就有多少?!边@句極具誘惑力的話深深震撼著他,于是,他又有了新的奮斗目標:中國國家籃球隊。

上一頁123...545556575859606162636465下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!