提供各類精美PPT模板下載
當(dāng)前位置:首頁(yè) > Word文檔 >

【高教版】中職數(shù)學(xué)拓展模塊:1.3《正弦定理與余弦定理》教案設(shè)計(jì)

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):6.1《數(shù)列的概念》教案設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):6.1《數(shù)列的概念》教案設(shè)計(jì)

    【教學(xué)目標(biāo)】1. 理解數(shù)列的通項(xiàng)公式的意義,能根據(jù)通項(xiàng)公式寫出數(shù)列的任意一項(xiàng),以及根據(jù)其前幾項(xiàng)寫出它的一個(gè)通項(xiàng)公式.2. 了解數(shù)列的遞推公式,會(huì)根據(jù)數(shù)列的遞推公式寫出前幾項(xiàng).3.培養(yǎng)學(xué)生積極參與、大膽探索的精神,培養(yǎng)學(xué)生的觀察、分析、歸納的能力.教學(xué)重點(diǎn) 數(shù)列的通項(xiàng)公式及其應(yīng)用.教學(xué)難點(diǎn) 根據(jù)數(shù)列的前幾項(xiàng)寫出滿足條件的數(shù)列的一個(gè)通項(xiàng)公式.教學(xué)方法 本節(jié)課主要采用例題解決法.通過(guò)列舉實(shí)例,進(jìn)一步研究數(shù)列的項(xiàng)與序號(hào)之間的關(guān)系.通過(guò)三類題目,使學(xué)生深刻理解數(shù)列通項(xiàng)公式的意義,為以后學(xué)習(xí)等差數(shù)列與等比數(shù)列打下基礎(chǔ).【教學(xué)過(guò)程】 環(huán)節(jié)教學(xué)內(nèi)容師生互動(dòng)設(shè)計(jì)意圖導(dǎo) 入⒈數(shù)列的定義 按一定次序排列的一列數(shù)叫做數(shù)列. 注意:(1)數(shù)列中的數(shù)是按一定次序排列的; (2)同一個(gè)數(shù)在數(shù)列中可以重復(fù)出現(xiàn). 2. 數(shù)列的一般形式 數(shù)列a1,a2,a3,…,an,…,可記作{ an }. 3. 數(shù)列的通項(xiàng)公式: 如果數(shù)列{ an }的第n項(xiàng)an與n之間的關(guān)系可以用一個(gè)公式來(lái)表示,那么這個(gè)公式就叫做這個(gè)數(shù)列的通項(xiàng)公式. 教師引導(dǎo)學(xué)生復(fù)習(xí). 為學(xué)生進(jìn)一步理解通項(xiàng)公式,應(yīng)用通項(xiàng)公式解決實(shí)際問(wèn)題做好準(zhǔn)備.

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):6.3《等比數(shù)列》優(yōu)秀教案設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):6.3《等比數(shù)列》優(yōu)秀教案設(shè)計(jì)

    授課 日期 班級(jí)16高造價(jià) 課題: §6.3等比數(shù)列 教學(xué)目的要求: 1.理解等比數(shù)列的概念,能根據(jù)定義判斷或證明一個(gè)數(shù)列是等比數(shù)列;2.探索并掌握等比數(shù)列的通項(xiàng)公式; 3.掌握等比數(shù)列前 n 項(xiàng)和公式及推導(dǎo)過(guò)程,能用公式求相關(guān)參數(shù); 教學(xué)重點(diǎn)、難點(diǎn):運(yùn)用等比數(shù)列的通項(xiàng)公式求相關(guān)參數(shù) 授課方法: 任務(wù)驅(qū)動(dòng)法 小組合作學(xué)習(xí)法 教學(xué)參考及教具(含多媒體教學(xué)設(shè)備): 《單招教學(xué)大綱》 授課執(zhí)行情況及分析: 板書設(shè)計(jì)或授課提綱 §6.3等比數(shù)列 1.等比數(shù)列的概念 (學(xué)生板書區(qū)) 2. 等比數(shù)列的通項(xiàng)公式 3.等比數(shù)列的求和公式

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):8.3《兩條直線的位置關(guān)系》教案設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):8.3《兩條直線的位置關(guān)系》教案設(shè)計(jì)

    教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖 *揭示課題 8.3 兩條直線的位置關(guān)系(二) *創(chuàng)設(shè)情境 興趣導(dǎo)入 【問(wèn)題】 平面內(nèi)兩條既不重合又不平行的直線肯定相交.如何求交點(diǎn)的坐標(biāo)呢? 圖8-12 介紹 質(zhì)疑 引導(dǎo) 分析 了解 思考 啟發(fā) 學(xué)生思考 *動(dòng)腦思考 探索新知 如圖8-12所示,兩條相交直線的交點(diǎn),既在上,又在上.所以的坐標(biāo)是兩條直線的方程的公共解.因此解兩條直線的方程所組成的方程組,就可以得到兩條直線交點(diǎn)的坐標(biāo). 觀察圖8-13,直線、相交于點(diǎn)P,如果不研究終邊相同的角,共形成四個(gè)正角,分別為、、、,其中與,與為對(duì)頂角,而且. 圖8-13 我們把兩條直線相交所成的最小正角叫做這兩條直線的夾角,記作. 規(guī)定,當(dāng)兩條直線平行或重合時(shí),兩條直線的夾角為零角,因此,兩條直線夾角的取值范圍為. 顯然,在圖8-13中,(或)是直線、的夾角,即. 當(dāng)直線與直線的夾角為直角時(shí)稱直線與直線垂直,記做.觀察圖8-14,顯然,平行于軸的直線與平行于軸的直線垂直,即斜率為零的直線與斜率不存在的直線垂直. 圖8-14 講解 說(shuō)明 講解 說(shuō)明 引領(lǐng) 分析 仔細(xì) 分析 講解 關(guān)鍵 詞語(yǔ) 思考 思考 理解 思考 理解 記憶 帶領(lǐng) 學(xué)生 分析 帶領(lǐng) 學(xué)生 分析 引導(dǎo) 式啟 發(fā)學(xué) 生得 出結(jié) 果

  • 【高教版】中職數(shù)學(xué)拓展模塊:3.3《離散型隨機(jī)變量及其分布》教學(xué)設(shè)計(jì)

    【高教版】中職數(shù)學(xué)拓展模塊:3.3《離散型隨機(jī)變量及其分布》教學(xué)設(shè)計(jì)

    重點(diǎn)分析:本節(jié)課的重點(diǎn)是離散型隨機(jī)變量的概率分布,難點(diǎn)是理解離散型隨機(jī)變量的概念. 離散型隨機(jī)變量 突破難點(diǎn)的方法: 函數(shù)的自變量 隨機(jī)變量 連續(xù)型隨機(jī)變量 函數(shù)可以列表 X123456p 2 4 6 8 10 12

  • 人教A版高中數(shù)學(xué)必修一正弦函數(shù)、余弦函數(shù)的圖像教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一正弦函數(shù)、余弦函數(shù)的圖像教學(xué)設(shè)計(jì)(2)

    由于三角函數(shù)是刻畫周期變化現(xiàn)象的數(shù)學(xué)模型,這也是三角函數(shù)不同于其他類型函數(shù)的最重要的地方,而且對(duì)于周期函數(shù),我們只要認(rèn)識(shí)清楚它在一個(gè)周期的區(qū)間上的性質(zhì),那么它的性質(zhì)也就完全清楚了,因此本節(jié)課利用單位圓中的三角函數(shù)的定義、三角函數(shù)值之間的內(nèi)在聯(lián)系性等來(lái)作圖,從畫出的圖形中觀察得出五個(gè)關(guān)鍵點(diǎn),得到“五點(diǎn)法”畫正弦函數(shù)、余弦函數(shù)的簡(jiǎn)圖.課程目標(biāo)1.掌握“五點(diǎn)法”畫正弦曲線和余弦曲線的步驟和方法,能用“五點(diǎn)法”作出簡(jiǎn)單的正弦、余弦曲線.2.理解正弦曲線與余弦曲線之間的聯(lián)系. 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:正弦曲線與余弦曲線的概念; 2.邏輯推理:正弦曲線與余弦曲線的聯(lián)系; 3.直觀想象:正弦函數(shù)余弦函數(shù)的圖像; 4.數(shù)學(xué)運(yùn)算:五點(diǎn)作圖; 5.數(shù)學(xué)建模:通過(guò)正弦、余弦圖象圖像,解決不等式問(wèn)題及零點(diǎn)問(wèn)題,這正是數(shù)形結(jié)合思想方法的應(yīng)用.

  • 人教A版高中數(shù)學(xué)必修一正弦函數(shù)、余弦函數(shù)的性質(zhì)教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一正弦函數(shù)、余弦函數(shù)的性質(zhì)教學(xué)設(shè)計(jì)(2)

    本節(jié)課是正弦函數(shù)、余弦函數(shù)圖像的繼續(xù),本課是正弦曲線、余弦曲線這兩種曲線的特點(diǎn)得出正弦函數(shù)、余弦函數(shù)的性質(zhì). 課程目標(biāo)1.了解周期函數(shù)與最小正周期的意義;2.了解三角函數(shù)的周期性和奇偶性;3.會(huì)利用周期性定義和誘導(dǎo)公式求簡(jiǎn)單三角函數(shù)的周期;4.借助圖象直觀理解正、余弦函數(shù)在[0,2π]上的性質(zhì)(單調(diào)性、最值、圖象與x軸的交點(diǎn)等);5.能利用性質(zhì)解決一些簡(jiǎn)單問(wèn)題. 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:理解周期函數(shù)、周期、最小正周期等的含義; 2.邏輯推理: 求正弦、余弦形函數(shù)的單調(diào)區(qū)間;3.數(shù)學(xué)運(yùn)算:利用性質(zhì)求周期、比較大小、最值、值域及判斷奇偶性.4.數(shù)學(xué)建模:讓學(xué)生借助數(shù)形結(jié)合的思想,通過(guò)圖像探究正、余弦函數(shù)的性質(zhì).重點(diǎn):通過(guò)正弦曲線、余弦曲線這兩種曲線探究正弦函數(shù)、余弦函數(shù)的性質(zhì); 難點(diǎn):應(yīng)用正、余弦函數(shù)的性質(zhì)來(lái)求含有cosx,sinx的函數(shù)的單調(diào)性、最值、值域及對(duì)稱性.

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):10.3《總體、樣本與抽樣方法》優(yōu)秀教案設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):10.3《總體、樣本與抽樣方法》優(yōu)秀教案設(shè)計(jì)

    教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖時(shí)間 *揭示課題 10.3總體、樣本與抽樣方法(二) *創(chuàng)設(shè)情境 興趣導(dǎo)入 【問(wèn)題】 用樣本估計(jì)總體時(shí),樣本抽取得是否恰當(dāng),直接關(guān)系到總體特性估計(jì)的準(zhǔn)確程度.那么,應(yīng)該如何抽取樣本呢? 介紹 質(zhì)疑 了解 思考 啟發(fā) 學(xué)生思考 0 5*動(dòng)腦思考 探索新知 【新知識(shí)】 下面介紹幾種常用的抽樣方法. 1.簡(jiǎn)單隨機(jī)抽樣 從一批蘋果中選取10個(gè),每個(gè)蘋果被選中的可能性一般是不相等的,放在上面的蘋果更容易被選中.實(shí)際過(guò)程又不允許將整箱蘋果倒出來(lái),攪拌均勻.因此,10個(gè)蘋果做樣本的代表意義就會(huì)打折扣. 我們采用抽簽的方法,將蘋果按照某種順序(比如箱、層、行、列順序)編號(hào),寫在小紙片上.將小紙片揉成小團(tuán),放到一個(gè)不透明的袋子中,充分?jǐn)嚢韬螅購(gòu)闹兄饌€(gè)抽出10個(gè)小紙團(tuán).最后根據(jù)編號(hào)找到蘋果. 這種抽樣叫做簡(jiǎn)單隨機(jī)抽樣. 簡(jiǎn)單隨機(jī)抽樣必須保證總體的每個(gè)個(gè)體被抽到的機(jī)會(huì)是相同的.也就是說(shuō),簡(jiǎn)單隨機(jī)抽樣是等概率抽樣. 抽簽法(俗稱抓鬮法)是最常用的簡(jiǎn)單隨機(jī)抽樣方法.其主要步驟為 (1)編號(hào)做簽:將總體中的N個(gè)個(gè)體編上號(hào),并把號(hào)碼寫到簽上; (2)抽簽得樣本:將做好的簽放到容器中,攪拌均勻后,從中逐個(gè)抽出n個(gè)簽,得到一個(gè)容量為n的樣本. 當(dāng)總體中所含的個(gè)體較少時(shí),通常采用簡(jiǎn)單隨機(jī)抽樣.例如,從某班抽取10位同學(xué)去參加義務(wù)勞動(dòng),就可采用抽簽的方法來(lái)抽取樣本. 當(dāng)總體中的個(gè)體較多時(shí),“攪拌均勻”不容易做到,這樣抽出的樣本的代表性就會(huì)打折扣.此時(shí)可以采用“隨機(jī)數(shù)法”抽樣. 產(chǎn)生隨機(jī)數(shù)的方法很多,利用計(jì)算器(或計(jì)算機(jī))可以方便地產(chǎn)生隨機(jī)數(shù). CASIO fx 82ESPLUS函數(shù)型計(jì)算器(如圖10-3),利用 · 鍵的第二功能產(chǎn)生隨機(jī)數(shù).操作方法是:首先設(shè)置精確度并將計(jì)算器顯示設(shè)置為小數(shù)狀態(tài),依次按鍵SHIFT 、 MODE、 2 ,然后連續(xù)按鍵 SHIFT 、 RAN# ,以后每按鍵一次 = 鍵,就能隨機(jī)得到0~1之間的一個(gè)純小數(shù). 采用“隨機(jī)數(shù)法”抽樣的步驟為: (1)編號(hào):將總體中的N個(gè)個(gè)體編上號(hào); (2)選號(hào):指定隨機(jī)號(hào)的范圍,利用計(jì)算器產(chǎn)生n個(gè)有效的隨機(jī)號(hào)(范圍之外或重復(fù)的號(hào)無(wú)效),得到一個(gè)容量為n的樣本. 講解 說(shuō)明 引領(lǐng) 分析 仔細(xì) 分析 關(guān)鍵 語(yǔ)句 觀察 理解 記憶 帶領(lǐng) 學(xué)生 分析 20

  • 高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):8.3《兩條直線的位置關(guān)系》優(yōu)秀教案設(shè)計(jì)

    高教版中職數(shù)學(xué)基礎(chǔ)模塊下冊(cè):8.3《兩條直線的位置關(guān)系》優(yōu)秀教案設(shè)計(jì)

    教 學(xué) 過(guò) 程教師 行為學(xué)生 行為教學(xué) 意圖 *揭示課題 8.3 兩條直線的位置關(guān)系(一) *創(chuàng)設(shè)情境 興趣導(dǎo)入 【知識(shí)回顧】 我們知道,平面內(nèi)兩條直線的位置關(guān)系有三種:平行、相交、重合.并且知道,兩條直線都與第三條直線相交時(shí),“同位角相等”是“這兩條直線平行”的充要條件. 【問(wèn)題】 兩條直線平行,它們的斜率之間存在什么聯(lián)系呢? 介紹 質(zhì)疑 引導(dǎo) 分析 了解 思考 啟發(fā) 學(xué)生思考*動(dòng)腦思考 探索新知 【新知識(shí)】 當(dāng)兩條直線、的斜率都存在且都不為0時(shí)(如圖8-11(1)),如果直線平行于直線,那么這兩條直線與x軸相交的同位角相等,即直線的傾角相等,故兩條直線的斜率相等;反過(guò)來(lái),如果直線的斜率相等,那么這兩條直線的傾角相等,即兩條直線與x軸相交的同位角相等,故兩直線平行. 當(dāng)直線、的斜率都是0時(shí)(如圖8-11(2)),兩條直線都與x軸平行,所以//. 當(dāng)兩條直線、的斜率都不存在時(shí)(如圖8-11(3)),直線與直線都與x軸垂直,所以直線// 直線. 顯然,當(dāng)直線、的斜率都存在但不相等或一條直線的斜率存在而另一條直線的斜率不存在時(shí),兩條直線相交. 由上面的討論知,當(dāng)直線、的斜率都存在時(shí),設(shè),,則 兩個(gè)方程的系數(shù)關(guān)系兩條直線的位置關(guān)系相交平行重合 當(dāng)兩條直線的斜率都存在時(shí),就可以利用兩條直線的斜率及直線在y軸上的截距,來(lái)判斷兩直線的位置關(guān)系. 判斷兩條直線平行的一般步驟是: (1) 判斷兩條直線的斜率是否存在,若都不存在,則平行;若只有一個(gè)不存在,則相交. (2) 若兩條直線的斜率都存在,將它們都化成斜截式方程,若斜率不相等,則相交; (3) 若斜率相等,比較兩條直線的縱截距,相等則重合,不相等則平行. 講解 說(shuō)明 引領(lǐng) 分析 仔細(xì) 分析 講解 關(guān)鍵 詞語(yǔ) 思考 理解 思考 理解 帶領(lǐng) 學(xué)生 分析 引導(dǎo) 式啟 發(fā)學(xué) 生得 出結(jié) 果

  • 人教A版高中數(shù)學(xué)必修一兩角和與差的正弦、余弦和正切公式教學(xué)設(shè)計(jì)(1)

    人教A版高中數(shù)學(xué)必修一兩角和與差的正弦、余弦和正切公式教學(xué)設(shè)計(jì)(1)

    本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修1本(A版)》第五章的5.5.1 兩角和與差的正弦、余弦和正切公式。本節(jié)的主要內(nèi)容是由兩角差的余弦公式的推導(dǎo),運(yùn)用誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系和代數(shù)變形,得到其它的和差角公式。讓學(xué)生感受數(shù)形結(jié)合及轉(zhuǎn)化的思想方法。發(fā)展學(xué)生數(shù)學(xué)直觀、數(shù)學(xué)抽象、邏輯推理、數(shù)學(xué)建模的核心素養(yǎng)。課程目標(biāo) 學(xué)科素養(yǎng)1.了解兩角差的余弦公式的推導(dǎo)過(guò)程.2.掌握由兩角差的余弦公式推導(dǎo)出兩角和的余弦公式及兩角和與差的正弦、正切公式.3.熟悉兩角和與差的正弦、余弦、正切公式的靈活運(yùn)用,了解公式的正用、逆用以及角的變換的常用方法.4.通過(guò)正切函數(shù)圖像與性質(zhì)的探究,培養(yǎng)學(xué)生數(shù)形結(jié)合和類比的思想方法。 a.數(shù)學(xué)抽象:公式的推導(dǎo);b.邏輯推理:公式之間的聯(lián)系;c.數(shù)學(xué)運(yùn)算:運(yùn)用和差角角公式求值;d.直觀想象:兩角差的余弦公式的推導(dǎo);e.數(shù)學(xué)建模:公式的靈活運(yùn)用;

  • 人教A版高中數(shù)學(xué)必修一兩角和與差的正弦、余弦和正切公式教學(xué)設(shè)計(jì)(2)

    人教A版高中數(shù)學(xué)必修一兩角和與差的正弦、余弦和正切公式教學(xué)設(shè)計(jì)(2)

    本節(jié)內(nèi)容是三角恒等變形的基礎(chǔ),是正弦線、余弦線和誘導(dǎo)公式等知識(shí)的延伸,同時(shí),它又是兩角和、差、倍、半角等公式的“源頭”。兩角和與差的正弦、余弦、正切是本章的重要內(nèi)容,對(duì)于三角變換、三角恒等式的證明和三角函數(shù)式的化簡(jiǎn)、求值等三角問(wèn)題的解決有著重要的支撐作用。 課程目標(biāo)1、能夠推導(dǎo)出兩角和與差的正弦、余弦、正切公式并能應(yīng)用; 2、掌握二倍角公式及變形公式,能靈活運(yùn)用二倍角公式解決有關(guān)的化簡(jiǎn)、求值、證明問(wèn)題.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:兩角和與差的正弦、余弦和正切公式; 2.邏輯推理: 運(yùn)用公式解決基本三角函數(shù)式的化簡(jiǎn)、證明等問(wèn)題;3.數(shù)學(xué)運(yùn)算:運(yùn)用公式解決基本三角函數(shù)式求值問(wèn)題.4.數(shù)學(xué)建模:學(xué)生體會(huì)到一般與特殊,換元等數(shù)學(xué)思想在三角恒等變換中的作用。.

  • 平行線的性質(zhì)定理和判定定理教案教學(xué)設(shè)計(jì)

    平行線的性質(zhì)定理和判定定理教案教學(xué)設(shè)計(jì)

    1、互逆命題:在兩個(gè)命題中,如果第一個(gè)命題的條件是第二個(gè)命題的 ,而第一個(gè)命題的結(jié)論是第二個(gè)命題的 ,那么這兩個(gè)命題互逆命題,如果把其中一個(gè)命題叫做原命題,那么另一個(gè)命題叫做它的 .2、互逆定理:如果一個(gè)定理的逆命題也是 ,那么這個(gè)逆命題就是原來(lái)定理的逆定理.注意(1):逆命題、互逆命題不一定是真命題,但逆定理、互逆定理,一定是真命題.(2):不是所有的定理都有逆定理.自主學(xué)習(xí)診斷:如圖所示:(1)若∠A= ,則AC∥ED,( ).(2)若∠EDB= ,則AC∥ED,( ).(3)若∠A+ =1800,則AB∥FD,( ).(4)若∠A+ =1800,則AC∥ED,( ).

  • 北師大初中數(shù)學(xué)八年級(jí)上冊(cè)定理與證明2教案

    北師大初中數(shù)學(xué)八年級(jí)上冊(cè)定理與證明2教案

    第一環(huán)節(jié):回顧引入活動(dòng)內(nèi)容:①什么叫做定義?舉例說(shuō)明.②什么叫命題?舉例說(shuō)明. 活動(dòng)目的:回顧上節(jié)知識(shí),為本節(jié)課的展開打好基礎(chǔ).教學(xué)效果:學(xué)生舉手發(fā)言,提問(wèn)個(gè)別學(xué)生.第二環(huán)節(jié):探索命題的結(jié)構(gòu)活動(dòng)內(nèi)容:① 探討命題的結(jié)構(gòu)特征觀察下列命題,發(fā)現(xiàn)它們的結(jié)構(gòu)有什么共同特征?(1)如果兩個(gè)三角形的三條邊對(duì)應(yīng)相等,那么這兩個(gè)三角形全等.(2)如果一個(gè)三角形是等腰三角形,那么這個(gè)三角形的兩個(gè)底角相等.(3)如果一個(gè)四邊形的一組對(duì)邊平行且相等,那么這個(gè)四邊形是平行四邊形.(4)如果一個(gè)四邊的對(duì)角線相等,那么這個(gè)四邊形是矩形.(5)如果一個(gè)四邊形的兩條對(duì)角線互相垂直,那么這個(gè)四邊形是菱形.② 總結(jié)命題的結(jié)構(gòu)特征(1)上述命題都是“如果……,那么……”的形式.(2)“如果……”是已知的事項(xiàng),“那么……”是由已知事項(xiàng)推斷出的結(jié)論.

  • 北師大初中數(shù)學(xué)八年級(jí)上冊(cè)定理與證明1教案

    北師大初中數(shù)學(xué)八年級(jí)上冊(cè)定理與證明1教案

    求證:直角三角形的兩個(gè)銳角互余.解析:分析這個(gè)命題的條件和結(jié)論,根據(jù)已知條件和結(jié)論畫出圖形,寫出已知、求證,并寫出證明過(guò)程.已知:如圖所示,在△ABC中,∠C=90°.求證:∠A與∠B互余.證明:∵∠A+∠B+∠C=180°(三角形內(nèi)角和等于180°),又∠C=90°,∴∠A+∠B=180°-∠C=90°.∴∠A與∠B互余.方法總結(jié):解此類題首先根據(jù)題意將文字語(yǔ)言變成符號(hào)語(yǔ)言,畫出圖形,最后再經(jīng)過(guò)分析論證,并寫出證明的過(guò)程.三、板書設(shè)計(jì)命題分類公理:公認(rèn)的真命題定理:經(jīng)過(guò)證明的真命題證明:推理的過(guò)程經(jīng)歷實(shí)際情境,初步體會(huì)公理化思想和方法,了解本教材所采用的公理,讓學(xué)生對(duì)真假命題有一個(gè)清楚的認(rèn)識(shí),從而進(jìn)一步了解定理、公理的概念.培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力.

  • 人教版高中數(shù)學(xué)選修3二項(xiàng)式定理教學(xué)設(shè)計(jì)

    人教版高中數(shù)學(xué)選修3二項(xiàng)式定理教學(xué)設(shè)計(jì)

    二項(xiàng)式定理形式上的特點(diǎn)(1)二項(xiàng)展開式有n+1項(xiàng),而不是n項(xiàng).(2)二項(xiàng)式系數(shù)都是C_n^k(k=0,1,2,…,n),它與二項(xiàng)展開式中某一項(xiàng)的系數(shù)不一定相等.(3)二項(xiàng)展開式中的二項(xiàng)式系數(shù)的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降冪排列,從第一項(xiàng)起,次數(shù)由n次逐項(xiàng)減少1次直到0次,同時(shí)字母b按升冪排列,次數(shù)由0次逐項(xiàng)增加1次直到n次.1.判斷(正確的打“√”,錯(cuò)誤的打“×”)(1)(a+b)n展開式中共有n項(xiàng). ( )(2)在公式中,交換a,b的順序?qū)Ω黜?xiàng)沒有影響. ( )(3)Cknan-kbk是(a+b)n展開式中的第k項(xiàng). ( )(4)(a-b)n與(a+b)n的二項(xiàng)式展開式的二項(xiàng)式系數(shù)相同. ( )[解析] (1)× 因?yàn)?a+b)n展開式中共有n+1項(xiàng).(2)× 因?yàn)槎?xiàng)式的第k+1項(xiàng)Cknan-kbk和(b+a)n的展開式的第k+1項(xiàng)Cknbn-kak是不同的,其中的a,b是不能隨便交換的.(3)× 因?yàn)镃knan-kbk是(a+b)n展開式中的第k+1項(xiàng).(4)√ 因?yàn)?a-b)n與(a+b)n的二項(xiàng)式展開式的二項(xiàng)式系數(shù)都是Crn.[答案] (1)× (2)× (3)× (4)√

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)切線長(zhǎng)定理教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)切線長(zhǎng)定理教案

    (3)若要滿足結(jié)論,則∠BFO=∠GFC,根據(jù)切線長(zhǎng)定理得∠BFO=∠EFO,從而得到這三個(gè)角應(yīng)是60°,然后結(jié)合已知的正方形的邊長(zhǎng),也是圓的直徑,利用30°的直角三角形的知識(shí)進(jìn)行計(jì)算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長(zhǎng)為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設(shè)存在點(diǎn)P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問(wèn)題的結(jié)論有兩種可能,所以具有開放的特征,在假設(shè)存在性以后進(jìn)行的推理或計(jì)算.一般思路是:假設(shè)存在——推理論證——得出結(jié)論.若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,若導(dǎo)出矛盾,就做出“不存在”的判斷.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)垂徑定理教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)垂徑定理教案

    方法總結(jié):垂徑定理雖是圓的知識(shí),但也不是孤立的,它常和三角形等知識(shí)綜合來(lái)解決問(wèn)題,我們一定要把知識(shí)融會(huì)貫通,在解決問(wèn)題時(shí)才能得心應(yīng)手.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第2題【類型三】 動(dòng)點(diǎn)問(wèn)題如圖,⊙O的直徑為10cm,弦AB=8cm,P是弦AB上的一個(gè)動(dòng)點(diǎn),求OP的長(zhǎng)度范圍.解析:當(dāng)點(diǎn)P處于弦AB的端點(diǎn)時(shí),OP最長(zhǎng),此時(shí)OP為半徑的長(zhǎng);當(dāng)OP⊥AB時(shí),OP最短,利用垂徑定理及勾股定理可求得此時(shí)OP的長(zhǎng).解:作直徑MN⊥弦AB,交AB于點(diǎn)D,由垂徑定理,得AD=DB=12AB=4cm.又∵⊙O的直徑為10cm,連接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂線段最短,半徑最長(zhǎng),∴OP的長(zhǎng)度范圍是3cm≤OP≤5cm.方法總結(jié):解題的關(guān)鍵是明確OP最長(zhǎng)、最短時(shí)的情況,靈活利用垂徑定理求解.容易出錯(cuò)的地方是不能確定最值時(shí)的情況.

  • 平行線的判定定理教案教學(xué)設(shè)計(jì)

    平行線的判定定理教案教學(xué)設(shè)計(jì)

    問(wèn)題1:你能證明“兩條直線被第三條直線所截,如果內(nèi)錯(cuò)角相等,那么這兩條直線平行”這個(gè)命題的正確性嗎?已知:如圖,∠1和∠2是直線a,b被直線c截出的內(nèi)錯(cuò)角,且∠1=∠2.求證:a∥b. 問(wèn)題2:你能證明“兩條直線被第三條直線所截,如果同旁內(nèi)角互補(bǔ),那么這兩條直線平行”這個(gè)命題的正確性嗎?已知:如圖,∠1和∠2是直線a、b被直線c截出的同旁內(nèi)角,且∠1與∠2互補(bǔ).求證:a∥b

  • 三角形內(nèi)角和定理教案教學(xué)設(shè)計(jì)

    三角形內(nèi)角和定理教案教學(xué)設(shè)計(jì)

    活動(dòng)內(nèi)容:① 已知,如圖,在三角形ABC中,AD平分外角∠EAC,∠B=∠C.求證:AD∥BC分析:要證明AD∥BC,只需證明“同位角相等”,即需證明∠DAE=∠B.證明:∵∠EAC=∠B+∠C(三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和)∠B=∠C(已知)∴∠B=∠EAC(等式的性質(zhì))∵AD平分∠EAC(已知)∴∠DAE=∠EAC(角平分線的定義)∴∠DAE=∠B(等量代換)∴AD∥BC(同位角相等,兩直線平行)想一想,還有沒有其他的證明方法呢?這個(gè)題還可以用“內(nèi)錯(cuò)角相等,兩直線平行”來(lái)證.

  • 【高教版】中職數(shù)學(xué)基礎(chǔ)模塊上冊(cè):4.3《對(duì)數(shù)》優(yōu)秀教案

    【高教版】中職數(shù)學(xué)基礎(chǔ)模塊上冊(cè):4.3《對(duì)數(shù)》優(yōu)秀教案

    課程名稱數(shù)學(xué)授課教師趙娜授課章節(jié)第四章第四節(jié)對(duì)數(shù)授課時(shí)間2015—2016年第一學(xué)期 第2周第1次課授課班級(jí)15級(jí)一班,15級(jí)二班,15級(jí)三班,15級(jí)四班,15級(jí)五班,15級(jí)六班,15級(jí)七班教學(xué)目的⑴ 理解對(duì)數(shù)的概念,理解常用對(duì)數(shù)和自然對(duì)數(shù)的概念; ⑵ 掌握利用計(jì)算器求對(duì)數(shù)值的方法; ⑶了解積、商、冪的對(duì)數(shù).教學(xué)重點(diǎn) 和難點(diǎn)【教學(xué)重點(diǎn)】 指數(shù)式與對(duì)數(shù)式的關(guān)系. 【教學(xué)難點(diǎn)】 對(duì)數(shù)的概念.復(fù)習(xí)提問(wèn)(1) 指數(shù)函數(shù)圖像的性質(zhì)本課小結(jié)⑴ 理解對(duì)數(shù)的概念,理解常用對(duì)數(shù)和自然對(duì)數(shù)的概念; ⑵ 掌握利用計(jì)算器求對(duì)數(shù)值的方法; ⑶了解積、商、冪的對(duì)數(shù).布置作業(yè)練習(xí)冊(cè)p7頁(yè)1-4題檢查簽字 檢查日期

  • 【高教版】中職數(shù)學(xué)基礎(chǔ)模塊上冊(cè):2.2《區(qū)間》優(yōu)秀教案

    【高教版】中職數(shù)學(xué)基礎(chǔ)模塊上冊(cè):2.2《區(qū)間》優(yōu)秀教案

    【教學(xué)目標(biāo)】1、掌握區(qū)間的概念;2、用區(qū)間表示相關(guān)的集合;3、通過(guò)數(shù)形結(jié)合的學(xué)習(xí)過(guò)程,培養(yǎng)學(xué)生的觀察能力和數(shù)學(xué)思維能力?!窘虒W(xué)重點(diǎn)】區(qū)間的概念【教學(xué)難點(diǎn)】 區(qū)間端點(diǎn)的取舍【教學(xué)設(shè)計(jì)】 1、實(shí)例引入知識(shí),提升學(xué)生的求知欲;2、數(shù)形結(jié)合,提升認(rèn)識(shí);3、通過(guò)知識(shí)的鞏固與練習(xí),培養(yǎng)學(xué)生的思維能力【課時(shí)安排】 1課時(shí)(45分鐘)【教學(xué)過(guò)程】² 創(chuàng)設(shè)情景 興趣導(dǎo)入問(wèn)題:資料顯示:隨著科學(xué)技術(shù)的發(fā)展,列車運(yùn)行速度不斷提高.運(yùn)行時(shí)速達(dá)200公里以上的旅客列車稱為新時(shí)速旅客列車.在北京與天津兩個(gè)直轄市之間運(yùn)行的,設(shè)計(jì)運(yùn)行時(shí)速達(dá)350公里的京津城際列車呈現(xiàn)出超越世界的“中國(guó)速度”,使得新時(shí)速旅客列車的運(yùn)行速度值界定在200公里/小時(shí)與350 公里/小時(shí)之間.如何表示列車的運(yùn)行速度的范圍??解決:不等式:200<v<350;集合:;數(shù)軸:位于200與3之間的一段不包括端點(diǎn)的線段;還有其他簡(jiǎn)便方法嗎?

上一頁(yè)12345678910111213下一頁(yè)
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫,PPT模板免費(fèi)下載,專注素材下載!