閱讀教材第88、89頁內(nèi)容,思考︰(1)"新四大發(fā)明"出現(xiàn)的主要原因是什么?(2)科技創(chuàng)新與國家發(fā)展、人民生活有什么關(guān)系?(3)改革創(chuàng)新對(duì)于一個(gè)國家和民族有什么重要作用?提示︰(1)改革創(chuàng)新的實(shí)踐以及"科教興國"戰(zhàn)略的落實(shí)。(2)促進(jìn)了經(jīng)濟(jì)領(lǐng)域的飛速發(fā)展,也促使科技、文化、生活等各個(gè)領(lǐng)域取得輝煌成就,不斷推動(dòng)社會(huì)的進(jìn)步和國家的富強(qiáng)。只有在不斷改革創(chuàng)新中,一個(gè)民族的凝聚力才能不斷增強(qiáng),一個(gè)國家的生機(jī)活力才能不斷煥發(fā)。弘揚(yáng)以改革創(chuàng)新為核心的時(shí)代精神,努力投身創(chuàng)新實(shí)踐,發(fā)展才會(huì)有新思路,改革才會(huì)有新突破,我們才能開創(chuàng)更加美好的未來。第三個(gè)環(huán)節(jié):課堂小結(jié)改革創(chuàng)新是時(shí)代的最強(qiáng)音。只有在不斷改革創(chuàng)新中,一個(gè)民族的凝聚力才能不斷增強(qiáng),一個(gè)國家的生機(jī)活力才能不斷煥發(fā)。
1.師要注意區(qū)別教學(xué)內(nèi)容是否適合進(jìn)行小組合作探究。這種學(xué)習(xí)是否每節(jié)課都需要。學(xué)生的小組學(xué)習(xí)是否在走過場,或者說流于形式。教師要注意營造自由自在的學(xué)習(xí)氛圍,控制討論的局面,如討論中是否有人進(jìn)行人身攻擊,是否有人壟斷發(fā)言權(quán)而有的人卻一言不發(fā),是否有人竊竊私語,教師要在巡視及參與中“察言觀色”,及時(shí)調(diào)控。2.教師要充分注意精心設(shè)計(jì)的問題。教師的教學(xué)設(shè)計(jì)是否合適,是做秀還是教學(xué)的需要。這不僅需要教師的認(rèn)同,還需要課程的認(rèn)同,學(xué)生的認(rèn)同。因此,對(duì)于適合采用小組合作探究方式的教學(xué)內(nèi)容,我們一定要根據(jù)課程標(biāo)準(zhǔn)的三維目標(biāo)學(xué)生現(xiàn)有的認(rèn)知程度和興趣以及本課要解決的問題和教學(xué)任務(wù)來精心設(shè)計(jì)問題。3.要注重小組合作探究的組織,進(jìn)行適當(dāng)有效的指導(dǎo)。教師要轉(zhuǎn)換自己的角色,從傳授者變成指導(dǎo)者、參與者、監(jiān)控者和幫助者,并切實(shí)注意自身行為的方法和效果,及時(shí)進(jìn)行調(diào)整。
討論交流:正是靠著這種民族精神,我國建成了一個(gè)個(gè)大油田。到1965年,中國的石油基本實(shí)現(xiàn)自給。5、補(bǔ)充資料1964年10月16日和1967年6月17日,中國西北羅布泊大漠中,升起了蘑菇狀的煙云。我國相繼成功爆炸了第一顆原子彈和第一顆氫彈,成為繼美國、蘇聯(lián)、英國之后第四個(gè)同時(shí)擁有原子彈和核彈的國家。中國從此擁有了保家衛(wèi)國、捍衛(wèi)和平的核力量。交流鄧稼先故事1950年8月,鄧稼先在美國獲得博士學(xué)位九天后,便謝絕了恩師和同校好友的挽留,毅然決定回國。同年10月,鄧稼先來到中國科學(xué)院近代物理研究所任研究員。在北京外事部門的招待會(huì)上,有人問他帶了什么回來。他說:“帶了幾雙眼下中國還不能生產(chǎn)的尼龍襪子送給父親,還帶了一腦袋關(guān)于原子核的知識(shí)?!贝撕蟮陌四觊g,他進(jìn)行了中國原子核理論的研究。
二、教學(xué) 1a,1b.1.First the teacher asks the students what kind of fruit food and drink you like the best and writes down on the blackboard.教師問學(xué)生最喜歡什么水果和飲料并把它們寫在黑板上。比如:potato chips,ice cream,tea,lemon,chocolate,oranges,salad,popcorn,pickle and so on.2.接著叫學(xué)生表達(dá)以上食物的味道,引出新單詞——sweet,crispy,salty,sour,delicious,hot,awful,nice…并且完成lb教學(xué)內(nèi)容通過此活動(dòng),以舊帶新引入新單詞。其目的是讓學(xué)生自主學(xué)習(xí)新知識(shí)。 三、教學(xué) 2a,2b1.首先,聽力前的brainstormFirst,Let students describe how potato chips taste and describe how helpful the potato chips.Then,ask:When and where were potato chips invented?Who were potato chips invented by?How were potato chips invented?(Let students guess according to the following key words.)Key words:by accident,customer,restaurant,by mistake.(說明:通過問題讓學(xué)生對(duì)對(duì)話內(nèi)容有整體了解,為聽力練習(xí)做好準(zhǔn)備;又培養(yǎng)學(xué)生的注意力,想像力,觀察力。)
教學(xué)目標(biāo):1.學(xué)習(xí)現(xiàn)在完成時(shí)。2.學(xué)already和yet用法。3. 能夠運(yùn)用所學(xué)知識(shí),談?wù)摶蛟儐栕罱呀?jīng)發(fā)生的事情語言功能:能夠運(yùn)用所學(xué)知識(shí),談?wù)摶蛟儐栕罱呀?jīng)發(fā)生的語言結(jié)構(gòu):現(xiàn)在完成時(shí)態(tài)、一般現(xiàn)在時(shí)、一般過去時(shí)、一般將來時(shí)語言目標(biāo):Have you watered the plants yet?No, I haven’t.Have you fed the cat?No, I haven’t fed her yet.I have to do my homework. I started about an hour ago, but I haven’t finished. I will visit Hong Kong next year.重點(diǎn)詞匯及短語:water, wood, farm, ocean, hit, appear, turn, government, thousands of, southern, villager, strongly, step, clean out, some day, be off, so far, go for walks, thanks to, look forward to學(xué)習(xí)策略與思維技巧:引導(dǎo)、合作跨學(xué)科學(xué)習(xí):歷史知識(shí)、文化學(xué)習(xí)教學(xué)重點(diǎn):現(xiàn)在完成時(shí)態(tài)的構(gòu)成及應(yīng)用教學(xué)難點(diǎn):現(xiàn)在完成時(shí)與一般過去時(shí)的區(qū)別 學(xué)習(xí)方式:自主、合作學(xué)習(xí) 情感目標(biāo): 教育學(xué)生做事情要有條理,養(yǎng)成“今日事,今日畢”的好習(xí)慣。培養(yǎng)學(xué)生養(yǎng)成反省的好習(xí)慣。增強(qiáng)學(xué)生做事的條理性及計(jì)劃性。課前任務(wù):記錄和查找自己和別人已做過或仍沒做的事情。
已知一水壩的橫斷面是梯形ABCD,下底BC長14m,斜坡AB的坡度為3∶3,另一腰CD與下底的夾角為45°,且長為46m,求它的上底的長(精確到0.1m,參考數(shù)據(jù):2≈1.414,3≈1.732).解析:過點(diǎn)A作AE⊥BC于E,過點(diǎn)D作DF⊥BC于F,根據(jù)已知條件求出AE=DF的值,再根據(jù)坡度求出BE,最后根據(jù)EF=BC-BE-FC求出AD.解:過點(diǎn)A作AE⊥BC,過點(diǎn)D作DF⊥BC,垂足分別為E、F.∵CD與BC的夾角為45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度為3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的長約為3.1m.方法總結(jié):考查對(duì)坡度的理解及梯形的性質(zhì)的掌握情況.解決問題的關(guān)鍵是添加輔助線構(gòu)造直角三角形.
方法總結(jié):垂徑定理雖是圓的知識(shí),但也不是孤立的,它常和三角形等知識(shí)綜合來解決問題,我們一定要把知識(shí)融會(huì)貫通,在解決問題時(shí)才能得心應(yīng)手.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第2題【類型三】 動(dòng)點(diǎn)問題如圖,⊙O的直徑為10cm,弦AB=8cm,P是弦AB上的一個(gè)動(dòng)點(diǎn),求OP的長度范圍.解析:當(dāng)點(diǎn)P處于弦AB的端點(diǎn)時(shí),OP最長,此時(shí)OP為半徑的長;當(dāng)OP⊥AB時(shí),OP最短,利用垂徑定理及勾股定理可求得此時(shí)OP的長.解:作直徑MN⊥弦AB,交AB于點(diǎn)D,由垂徑定理,得AD=DB=12AB=4cm.又∵⊙O的直徑為10cm,連接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂線段最短,半徑最長,∴OP的長度范圍是3cm≤OP≤5cm.方法總結(jié):解題的關(guān)鍵是明確OP最長、最短時(shí)的情況,靈活利用垂徑定理求解.容易出錯(cuò)的地方是不能確定最值時(shí)的情況.
(2)由題意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,該產(chǎn)品的質(zhì)量檔次為第6檔.方法總結(jié):解決此類問題的關(guān)鍵是要吃透題意,確定變量,建立函數(shù)模型.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第8題三、板書設(shè)計(jì)二次函數(shù)1.二次函數(shù)的概念2.從實(shí)際問題中抽象出二次函數(shù)解析式二次函數(shù)是一種常見的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實(shí)世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型.許多實(shí)際問題往往可以歸結(jié)為二次函數(shù)加以研究.本節(jié)課是學(xué)習(xí)二次函數(shù)的第一節(jié)課,通過實(shí)例引入二次函數(shù)的概念,并學(xué)習(xí)求一些簡單的實(shí)際問題中二次函數(shù)的解析式.在教學(xué)中要重視二次函數(shù)概念的形成和建構(gòu),在概念的學(xué)習(xí)過程中,讓學(xué)生體驗(yàn)從問題出發(fā)到列二次函數(shù)解析式的過程,體驗(yàn)用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義.
4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設(shè)該商品每天的利潤為y元,求y與x的函數(shù)關(guān)系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出問題讓學(xué)生思考回答;(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個(gè)? (各有1個(gè))(2)多項(xiàng)式-2x2+20和-100x2+100x+200分別是幾次多項(xiàng)式?(分別是二次多項(xiàng)式)(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點(diǎn)? (都是用自變量的二次多項(xiàng)式來表示的)(4)本章導(dǎo)圖中的問題以及P1頁的問題2有什么共同特點(diǎn)?讓學(xué)生討論、歸結(jié)為:自變量x為何值時(shí),函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項(xiàng)的系數(shù),c叫作常數(shù)項(xiàng).
(3)若要滿足結(jié)論,則∠BFO=∠GFC,根據(jù)切線長定理得∠BFO=∠EFO,從而得到這三個(gè)角應(yīng)是60°,然后結(jié)合已知的正方形的邊長,也是圓的直徑,利用30°的直角三角形的知識(shí)進(jìn)行計(jì)算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設(shè)存在點(diǎn)P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問題的結(jié)論有兩種可能,所以具有開放的特征,在假設(shè)存在性以后進(jìn)行的推理或計(jì)算.一般思路是:假設(shè)存在——推理論證——得出結(jié)論.若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,若導(dǎo)出矛盾,就做出“不存在”的判斷.
解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點(diǎn)P在⊙O′的外部;QO′=1<2,則點(diǎn)Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點(diǎn)R在圓上.方法總結(jié):注意運(yùn)用平面內(nèi)兩點(diǎn)之間的距離公式,設(shè)平面內(nèi)任意兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點(diǎn)與圓的位置關(guān)系的實(shí)際應(yīng)用如圖,城市A的正北方向50千米的B處,有一無線電信號(hào)發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號(hào)的有效半徑為100千米,AC是一條直達(dá)C城的公路,從A城發(fā)往C城的客車車速為60千米/時(shí).(1)當(dāng)客車從A城出發(fā)開往C城時(shí),某人立即打開無線電收音機(jī),客車行駛了0.5小時(shí)的時(shí)候,接收信號(hào)最強(qiáng).此時(shí),客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號(hào)越強(qiáng))?(2)客車從A城到C城共行駛2小時(shí),請你判斷到C城后還能接收到信號(hào)嗎?請說明理由.
我們知道圓是一個(gè)旋轉(zhuǎn)對(duì)稱圖形,無論繞圓心旋轉(zhuǎn)多少度,它都能與自身重合,對(duì)稱中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)某個(gè)角度,畫出旋轉(zhuǎn)之后的圖形,比較前后兩個(gè)圖形,你能發(fā)現(xiàn)什么?二、合作探究探究點(diǎn):圓心角、弧、弦之間的關(guān)系【類型一】 利用圓心角、弧、弦之間的關(guān)系證明線段相等如圖,M為⊙O上一點(diǎn),MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據(jù)等弧對(duì)等圓心角,則∠MOD=∠MOE,再由角平分線的性質(zhì),得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵M(jìn)D⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結(jié):圓心角、弧、弦之間相等關(guān)系的定理可以用來證明線段相等.本題考查了等弧對(duì)等圓心角,以及角平分線的性質(zhì).
教學(xué)目標(biāo):1、理解并掌握正切的含義,會(huì)在直角三角形中求出某個(gè)銳角的正切值。2、了解計(jì)算一個(gè)銳角的正切值的方法。教學(xué)重點(diǎn):理解并掌握正切的含義,會(huì)在直角三角形中求出某個(gè)銳角的正切值。教學(xué)難點(diǎn):計(jì)算一個(gè)銳角的正切值的方法。教學(xué)過程:一、觀察回答:如圖某體育館,為了方便不同需求的觀眾設(shè)計(jì)了多種形式的臺(tái)階。下列圖中的兩個(gè)臺(tái)階哪個(gè)更陡?你是怎么判斷的?圖(1) 圖(2)[點(diǎn)撥]可將這兩個(gè)臺(tái)階抽象地看成兩個(gè)三角形答:圖 的臺(tái)階更陡,理由 二、探索活動(dòng)1、思考與探索一:除了用臺(tái)階的傾斜角度大小外,還可以如何描述臺(tái)階的傾斜程度呢?① 可通過測量BC與AC的長度,② 再算出它們的比,來說明臺(tái)階的傾斜程度。(思考:BC與AC長度的比與臺(tái)階的傾斜程度有何關(guān)系?)答:_________________.③ 討論:你還可以用其它什么方法?能說出你的理由嗎?答:________________________.2、思考與探索二:
解析:根據(jù)銳角三角函數(shù)的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結(jié):當(dāng)角度在0°cosA>0.當(dāng)角度在45°<∠A<90°間變化時(shí),tanA>1.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第10題【類型四】 與三角函數(shù)有關(guān)的探究性問題在Rt△ABC中,∠C=90°,D為BC邊(除端點(diǎn)外)上的一點(diǎn),設(shè)∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關(guān)系;(2)試證明你的結(jié)論.解析:(1)因?yàn)樵凇鰽BD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數(shù)的定義可求出sinα,sinβ的關(guān)系式即可得出結(jié)論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結(jié):利用三角函數(shù)的定義把兩角的正弦值表示成線段的比,然后進(jìn)行比較是解題的關(guān)鍵.
[教學(xué)目標(biāo)]1、 理解并掌握正弦、余弦的含義,會(huì)在直角三角形中求出某個(gè)銳角的正弦和余弦值。2、能用函數(shù)的觀點(diǎn)理解正弦、余弦和正切。[教學(xué)重點(diǎn)與難點(diǎn)] 在直角三角形中求出某個(gè)銳角的正弦和余弦值。[教學(xué)過程] 一、情景創(chuàng)設(shè)1、問題1:如圖,小明沿著某斜坡向上行走了13m后,他的相對(duì)位置升高了5m,如果他沿著該斜坡行走了20m,那么他的相對(duì)位置升高了多少?行走了a m呢?2、問題2:在上述問題中,他在水平方向又分別前進(jìn)了多遠(yuǎn)?二、探索活動(dòng)1、思考:從上面的兩個(gè)問題可以看出:當(dāng)直角三角形的一個(gè)銳角的大小已確定時(shí),它的對(duì)邊與斜邊的比值________;它的鄰邊與斜邊的比值________。(根據(jù)是__________________。)2、正弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的對(duì)邊a與斜邊c的比叫做∠A的______,記作________,即:sinA=________=________.3、余弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的鄰邊b與斜邊c的比叫做∠A的______,記作=_________,即:cosA=______=_____。(你能寫出∠B的正弦、余弦的表達(dá)式嗎?)試試看.___________.
1、 談話引入新課六一快到了。小朋友們在老師的帶領(lǐng)下忙著布置自己的教室呢!可是他們遇到了一些數(shù)學(xué)上的問題,你能幫他們一快解決嗎?2、教學(xué)例1。(1)、投影出示主題圖引導(dǎo)學(xué)生仔細(xì)觀察。說說他們遇到了什么問題?(2)、引導(dǎo)學(xué)生解決問題并列出算式。板書:56÷8(3)、引導(dǎo)學(xué)生得出算式的商。問:你是怎么計(jì)算的?(想乘算除)(4)、學(xué)生獨(dú)立解決:要是掛7行呢?你能夠解決嗎?學(xué)生說出自己的計(jì)算結(jié)果,并把求商的過程跟大家說一說。2、 小結(jié):在今天的學(xué)習(xí)中我們不僅幫小朋友們解決了數(shù)學(xué)問題,而且還進(jìn)一步學(xué)會(huì)了利用乘法口訣來求商。在以后的除法中只要大家能夠熟記口訣,就能很快算出除法的商了。
一、游戲活動(dòng)激趣,認(rèn)識(shí)對(duì)稱物體1、游戲“猜一猜”:課件依次出示“剪刀、掃帚、飛機(jī)、梳子”的一部分,分男、女生猜。2、認(rèn)識(shí)對(duì)稱物體:1)師質(zhì)疑:為什么女生猜得又快又準(zhǔn)呢?2)小結(jié):像這樣兩邊形狀、大小都完全相同的物體,我們就說它是對(duì)稱物體。(板書:對(duì)稱)二、猜想驗(yàn)證新知,認(rèn)識(shí)軸對(duì)稱圖形(一)初步感知對(duì)稱圖形1、將“剪刀、飛機(jī)、扇子”等對(duì)稱物體抽象出平面圖形,讓學(xué)生觀察,這些平面圖形還是不是對(duì)稱的。2、師小結(jié):像這樣的圖形,叫做對(duì)稱圖形。(板書:圖形)(二)猜想驗(yàn)證對(duì)稱圖形1、猜一猜:出示“梯形、平行四邊形、圓形、燕尾箭頭”等平面圖形,讓學(xué)生觀察。師:這些平面圖形是不是對(duì)稱圖形?怎樣證明它們是不是對(duì)稱圖形?
一、復(fù)習(xí)導(dǎo)入1、口答:最大的一位數(shù)是幾?最小的兩位數(shù)是多少?這兩個(gè)數(shù)相差多少?2、數(shù)數(shù):10個(gè)10個(gè)地?cái)?shù),從10數(shù)到100; 1個(gè)1個(gè)地?cái)?shù),從91數(shù)到99; 問:99加1是多少?3、導(dǎo)入:你會(huì)從100開始接著往后數(shù)嗎?今天開始我們將要學(xué)習(xí)更大的數(shù),下面請你們觀察這幅圖。二、講授新課1、出示主題圖。(1)觀察這幅圖,說一說畫面上正在發(fā)生什么事情?(2)看著畫面你想知道什么問題?引導(dǎo)學(xué)生估算畫面上的體育館大約能坐多少人?2、板書課題:1000以內(nèi)數(shù)的認(rèn)識(shí)。3、教學(xué)例1。(1)數(shù)一數(shù)。每人數(shù)出10個(gè)小方塊,說說你是怎么數(shù)的?板書:一個(gè)一個(gè)地?cái)?shù),10個(gè)一是十。
1、教學(xué)主題圖。(1)讓學(xué)生獨(dú)立觀察教材情境圖。思考問題:[1]這幅畫面是什么地方?[2]你發(fā)現(xiàn)了畫面中有什么活動(dòng)內(nèi)容?(按順序)(2)在小組中互相說一說自己觀察到了什么內(nèi)容。你想到了什么?(3)各組代表匯報(bào)。(4)教師板書學(xué)生匯報(bào)的數(shù)據(jù)。[1]這是某個(gè)校園里的活動(dòng)情景圖。從圖中發(fā)現(xiàn)了教學(xué)大樓前面的兩樹之間都插著4面不同顏色的旗子,升旗臺(tái)上也飄著一面國旗。[2]運(yùn)動(dòng)場上每4人一組小朋友在跳繩。[3]籃球場上每5人一組準(zhǔn)備打籃球比賽。[4]板報(bào)下面擺的花是每3盆擺一組,旁邊還有很多盆花。(5)根據(jù)上面的信息(條件),想一想能提出用除法計(jì)算的問題嗎?大家在小組議一議。
一、創(chuàng)設(shè)情境,導(dǎo)入新課 1、老師有一個(gè)好消息要告訴大家,在動(dòng)物學(xué)校的旁邊開了一家超市,森林里的小動(dòng)物們都去那兒購物。今天,小熊哥倆正在商店里購物呢!你想看看嗎? 2、教師出示情境圖,教師板書課題:小熊購物二、自主探究新知 1、解決第(1)個(gè)問題“小熊該付多少錢?” 1)“仔細(xì)觀察情境圖,你能發(fā)現(xiàn)哪些數(shù)學(xué)信息?”,教師總結(jié)重要數(shù)學(xué)信息?! ?2)“ 大家看小熊說的話,你能提出什么問題?” 引出“小熊該付多少錢?”這個(gè)問題。 3),教師巡視搜集學(xué)生出現(xiàn)的不同做法 4)展示學(xué)生作業(yè),并引導(dǎo)其他學(xué)生質(zhì)疑“第二個(gè)算式是什么意思?”若學(xué)生中不出現(xiàn)第二個(gè)算式,教師引導(dǎo)學(xué)生將兩個(gè)算式合在一起?! ?5)脫式計(jì)算:根據(jù)學(xué)生列出的算式,教師結(jié)合算式指導(dǎo)學(xué)生進(jìn)行脫式計(jì)算,規(guī)范學(xué)生的書寫格式。