《函數(shù)的單調(diào)性與最大(?。┲祡》系人教A版高中數(shù)學(xué)必修第一冊第三章第二節(jié)的內(nèi)容,本節(jié)包括函數(shù)的單調(diào)性的定義與判斷及其證明、函數(shù)最大(?。┲档那蠓?。在初中學(xué)習(xí)函數(shù)時,借助圖像的直觀性研究了一些函數(shù)的增減性,這節(jié)內(nèi)容是初中有關(guān)內(nèi)容的深化、延伸和提高函數(shù)的單調(diào)性是函數(shù)眾多性質(zhì)中的重要性質(zhì)之一,函數(shù)的單調(diào)性一節(jié)中的知識是前一節(jié)內(nèi)容函數(shù)的概念和圖像知識的延續(xù),它和后面的函數(shù)奇偶性,合稱為函數(shù)的簡單性質(zhì),是今后研究指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)及其他函數(shù)單調(diào)性的理論基礎(chǔ);在解決函數(shù)值域、定義域、不等式、比較兩數(shù)大小等具體問需用到函數(shù)的單調(diào)性;同時在這一節(jié)中利用函數(shù)圖象來研究函數(shù)性質(zhì)的救開結(jié)合思想將貫穿于我們整個高中數(shù)學(xué)教學(xué)。
《函數(shù)的單調(diào)性與最大(小)值》是高中數(shù)學(xué)新教材第一冊第三章第2節(jié)的內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了函數(shù)的概念、定義域、值域及表示法,這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。學(xué)生在初中已經(jīng)學(xué)習(xí)了一次函數(shù)、二次函數(shù)、反比例函數(shù)的圖象,在此基礎(chǔ)上學(xué)生對增減性有一個初步的感性認(rèn)識,所以本節(jié)課是學(xué)生數(shù)學(xué)思想的一次重要提高。函數(shù)單調(diào)性是函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)等內(nèi)容的基礎(chǔ),對進(jìn)一步研究閉區(qū)間上的連續(xù)函數(shù)最大值和最小值的求法和實(shí)際應(yīng)用,對解決各種數(shù)學(xué)問題有著廣泛作用。課程目標(biāo)1、理解增函數(shù)、減函數(shù) 的概念及函數(shù)單調(diào)性的定義;2、會根據(jù)單調(diào)定義證明函數(shù)單調(diào)性;3、理解函數(shù)的最大(?。┲导捌鋷缀我饬x;4、學(xué)會運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì).數(shù)學(xué)學(xué)科素養(yǎng)
1.判斷正誤(正確的打“√”,錯誤的打“×”)(1)函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數(shù)f (x)在這個區(qū)間上單調(diào)遞減. ( )(2)函數(shù)在某一點(diǎn)的導(dǎo)數(shù)越大,函數(shù)在該點(diǎn)處的切線越“陡峭”. ( )(3)函數(shù)在某個區(qū)間上變化越快,函數(shù)在這個區(qū)間上導(dǎo)數(shù)的絕對值越大.( )(4)判斷函數(shù)單調(diào)性時,在區(qū)間內(nèi)的個別點(diǎn)f ′(x)=0,不影響函數(shù)在此區(qū)間的單調(diào)性.( )[解析] (1)√ 函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數(shù)f (x)在這個區(qū)間上單調(diào)遞減,故正確.(2)× 切線的“陡峭”程度與|f ′(x)|的大小有關(guān),故錯誤.(3)√ 函數(shù)在某個區(qū)間上變化的快慢,和函數(shù)導(dǎo)數(shù)的絕對值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數(shù)f (x)在區(qū)間內(nèi)單調(diào)遞增(減),故f ′(x)=0不影響函數(shù)單調(diào)性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因?yàn)閒(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數(shù)在R上單調(diào)遞增,如圖(1)所示
【教學(xué)程序】(一)導(dǎo)入:1.聽《烏鴉喝水》的小故事。2.揭題:師:你知道烏鴉是通過什么方法喝到水的嗎?這蘊(yùn)涵了什么道理?這就是今天我們要學(xué)習(xí)的新課題《體積單位》。(出示課題)(二)教學(xué)“體積單位”。師出示圖,請生比一比誰的體積大?[說明:教師通過兩個長方體體積大小的比較,學(xué)生發(fā)現(xiàn)不好比較,從而指出計(jì)量物體的體積要用統(tǒng)一的體積單位。從而引入“體積單位”的教學(xué)]師:為了更準(zhǔn)確的比較圖中這兩個長方體體積的大小,我們可以把它們切成若干個同樣大小的正方體,只要數(shù)一數(shù),每個長方體包含有幾個這樣的小正方體,就能準(zhǔn)確地比出它們的大小。請生數(shù)一數(shù),告訴老師誰的體積比較大?學(xué)生匯報(注意讓學(xué)生說出數(shù)的方法)。師:像計(jì)量長度需要長度單位,計(jì)量面積需要面積單位,我們計(jì)量體積也需要有“體積單位”。為了更準(zhǔn)確地計(jì)量出物體體積的大小,我們可以像圖中這樣用同樣大小的正方體作為體積單位。
1.要有充分的直觀操作。學(xué)生思維的特點(diǎn)一般的是從感性認(rèn)識開始,然后形成表象,通過一系列的思維活動,上升到理性認(rèn)識。本課的教學(xué)采用直觀操作法,是一個重要的環(huán)節(jié)。2.啟發(fā)學(xué)生獨(dú)立思考。學(xué)生是學(xué)習(xí)的主體,只有引導(dǎo)學(xué)生獨(dú)立地發(fā)現(xiàn)問題、思考問題、解決問題,才能收到事半功倍的教學(xué)效果。3.講練結(jié)合。4.充分運(yùn)用知識的遷移規(guī)律,引導(dǎo)學(xué)生掌握新知識。教學(xué)過程:三、說教學(xué)過程:(一)、創(chuàng)設(shè)情境上課前,教師先給大家講一個與今天的學(xué)習(xí)內(nèi)容有關(guān)的故事,希望同學(xué)們認(rèn)真地聽、認(rèn)真地想。故事是這樣的:大象過生日啦!那天來了很多的朋友,有小兔、小猴等等等等,可熱鬧啦!在眾多的朋友中只數(shù)小兔最高興,它樂什么呢?原來它知道了蛋糕的分配方案,認(rèn)為自己分的蛋糕比小猴的大。蛋糕是這樣分配的:分給小兔的蛋糕是棱長10厘米的正方體,分給小猴的蛋糕是棱長1分米的方體。(分別出示兩塊同樣大小的正方體,用10厘米和1分米表示它們的棱長)
一、情境導(dǎo)入1.計(jì)算:(1)-6x3y4z2÷(-23x2y2);(2)9mn÷(-6mn)2·(13n2);(3)6(a-b)3c5÷[-35(a-b)2c]·[-2(a-b)3c4].2.m(a+b+c)=am+bm+cm,(am+bm+cm)÷m=am÷m+bm÷m+cm÷m=a+b+c.你能根據(jù)多項(xiàng)式乘以單項(xiàng)式的運(yùn)算歸納出多項(xiàng)式除以單項(xiàng)式的運(yùn)算法則嗎?二、合作探究探究點(diǎn):多項(xiàng)式除以單項(xiàng)式【類型一】 直接利用多項(xiàng)式除以單項(xiàng)式進(jìn)行計(jì)算計(jì)算:(72x3y4-36x2y3+9xy2)÷(-9xy2).解析:根據(jù)多項(xiàng)式除以單項(xiàng)式,先用多項(xiàng)式的每一項(xiàng)分別除以這個單項(xiàng)式,然后再把所得的商相加.解:原式=72x3y4÷(-9xy2)+(-36x2y3)÷(-9xy2)+9xy2÷(-9xy2)=-8x2y2+4xy-1.方法總結(jié):多項(xiàng)式除以單項(xiàng)式,先把多項(xiàng)式的每一項(xiàng)都分別除以這個單項(xiàng)式,然后再把所得的商相加.
(1)用簡潔明快的語言概括大意,不能超過200字;(2)圖表中能確定的數(shù)值,在故事敘述中不得少于3個,且要分別涉及時間、路和速度這三個量.意圖:旨在檢測學(xué)生的識圖能力,可根據(jù)學(xué)生情況和上課情況適當(dāng)調(diào)整。說明:練習(xí)注意了問題的梯度,由淺入深,一步步引導(dǎo)學(xué)生從不同的圖象中獲取信息,對同學(xué)的回答,教師給予點(diǎn)評,對回答問題暫時有困難的同學(xué),教師應(yīng)幫助他們樹立信心。第四環(huán)節(jié):課時小結(jié)內(nèi)容:本節(jié)課我們學(xué)習(xí)了一次函數(shù)圖象的應(yīng)用,在運(yùn)用一次函數(shù)解決實(shí)際問題時,可以直接從函數(shù)圖象上獲取信息解決問題,當(dāng)然也可以設(shè)法得出各自對應(yīng)的函數(shù)關(guān)系式,然后借助關(guān)系式完全通過計(jì)算解決問題。通過列出關(guān)系式解決問題時,一般首先判斷關(guān)系式的特征,如兩個變量之間是不是一次函數(shù)關(guān)系?當(dāng)確定是一次函數(shù)關(guān)系時,可求出函數(shù)解析式,并運(yùn)用一次函數(shù)的圖象和性質(zhì)進(jìn)一步求得我們所需要的結(jié)果.
方法總結(jié):要認(rèn)真觀察圖象,結(jié)合題意,弄清各點(diǎn)所表示的意義.探究點(diǎn)二:一次函數(shù)與一元一次方程一次函數(shù)y=kx+b(k,b為常數(shù),且k≠0)的圖象如圖所示,根據(jù)圖象信息可求得關(guān)于x的方程kx+b=0的解為()A.x=-1B.x=2C.x=0D.x=3解析:首先由函數(shù)經(jīng)過點(diǎn)(0,1)可得b=1,再將點(diǎn)(2,3)代入y=kx+1,可求出k的值為1,從而可得出一次函數(shù)的表達(dá)式為y=x+1,再求出方程x+1=0的解為x=-1,故選A.方法總結(jié):此題主要考查了一次函數(shù)與一元一次方程的關(guān)系,關(guān)鍵是正確利用待定系數(shù)法求出一次函數(shù)的關(guān)系式.三、板書設(shè)計(jì)一次函數(shù)的應(yīng)用單個一次函數(shù)圖象的應(yīng)用一次函數(shù)與一元一次方程的關(guān)系探究的過程由淺入深,并利用了豐富的實(shí)際情景,增加了學(xué)生的學(xué)習(xí)興趣.教學(xué)中要注意層層遞進(jìn),逐步讓學(xué)生掌握求一次函數(shù)與一元一次方程的關(guān)系.教學(xué)中還應(yīng)注意尊重學(xué)生的個體差異,使每個學(xué)生都學(xué)有所獲.
第三十一條有下列情形之一的,甲方解除本合同,應(yīng)根據(jù)乙方在甲方工作年限,每滿1年支付乙方相當(dāng)于甲方上年月平均工資1個月工資的經(jīng)濟(jì)補(bǔ)償金,不滿1年的按1年計(jì)算,如乙方解除本合同前12個月的平均工資高于甲方上年月平均工資,按本人月平均工資計(jì)發(fā):(一)乙方患病或者非因工負(fù)傷,不能從事原工作也不能從事甲方另行安排的工作的;(二)本合同訂立時所依據(jù)的客觀情況發(fā)生重大變化,致使合同無法履行,經(jīng)甲乙雙方協(xié)商不能就變更本合同達(dá)成協(xié)議的;(三)甲方裁減人員的。第三十二條甲方向乙方支付的經(jīng)濟(jì)補(bǔ)償金的計(jì)發(fā)標(biāo)準(zhǔn)不得低于北京市最低工資。
負(fù)責(zé)對合同標(biāo)的物進(jìn)行定期檢查。租賃有效期內(nèi)由不歸責(zé)于乙方的原因?qū)е挛菝媛┧⒎课萘芽p由甲方負(fù)責(zé)維修并承擔(dān)相關(guān)費(fèi)用,以保障乙方安全和正常使用;由此對乙方造成的損壞和損失,甲方不負(fù)有修繕和賠償?shù)牧x務(wù)。
一 說教材運(yùn)算定律和簡便計(jì)算的單元復(fù)習(xí)是人教版第八冊第三單元內(nèi)容,屬于“數(shù)與代數(shù)”領(lǐng)域。本節(jié)內(nèi)容是在學(xué)生學(xué)習(xí)了運(yùn)算定律(加法交換律、加法結(jié)合律、乘法交換律、乘法結(jié)合律和乘法分配律)以及基本的簡便計(jì)算方法(連減、連除)基礎(chǔ)上進(jìn)行的整理復(fù)習(xí)課。二、說教學(xué)目標(biāo)及重難點(diǎn)1、通過復(fù)習(xí)、梳理,學(xué)生能熟練掌握加法、乘法等運(yùn)算定律,能運(yùn)用運(yùn)算定律進(jìn)行簡便計(jì)算。2、培養(yǎng)學(xué)生根據(jù)實(shí)際情況,選擇算法的能力,能靈活地解決現(xiàn)實(shí)生活中的簡單實(shí)際問題。教學(xué)重點(diǎn):理解并熟練掌握運(yùn)算定律,正確進(jìn)行簡便計(jì)算。教學(xué)難點(diǎn):根據(jù)實(shí)際,靈活計(jì)算。三、說教法學(xué)法根據(jù)教學(xué)目標(biāo)及重難點(diǎn),采用小組合作、自主探究、動手操作的學(xué)習(xí)方式。四、說教學(xué)過程
問題導(dǎo)學(xué)類比橢圓幾何性質(zhì)的研究,你認(rèn)為應(yīng)該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點(diǎn)的坐標(biāo)( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點(diǎn)都是對稱。x軸、y軸是雙曲線的對稱軸,原點(diǎn)是對稱中心,又叫做雙曲線的中心。3、頂點(diǎn)(1)雙曲線與對稱軸的交點(diǎn),叫做雙曲線的頂點(diǎn) .頂點(diǎn)是A_1 (-a,0)、A_2 (a,0),只有兩個。(2)如圖,線段A_1 A_2 叫做雙曲線的實(shí)軸,它的長為2a,a叫做實(shí)半軸長;線段B_1 B_2 叫做雙曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長。(3)實(shí)軸與虛軸等長的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準(zhǔn)確的畫出雙曲線的草圖
問題導(dǎo)學(xué)類比用方程研究橢圓雙曲線幾何性質(zhì)的過程與方法,y2 = 2px (p>0)你認(rèn)為應(yīng)研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開口向右,這條拋物線上的任意一點(diǎn)M 的坐標(biāo) (x, y) 的橫坐標(biāo)滿足不等式 x ≥ 0;當(dāng)x 的值增大時,|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對稱,我們把拋物線的對稱軸叫做拋物線的軸.拋物線只有一條對稱軸. 3. 頂點(diǎn)拋物線和它軸的交點(diǎn)叫做拋物線的頂點(diǎn).拋物線的頂點(diǎn)坐標(biāo)是坐標(biāo)原點(diǎn) (0, 0) .4. 離心率拋物線上的點(diǎn)M 到焦點(diǎn)的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標(biāo)準(zhǔn)方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時,直線與拋物線相交,有兩個交點(diǎn);當(dāng)Δ=0時,直線與拋物線相切,有一個切點(diǎn);當(dāng)Δ<0時,直線與拋物線相離,沒有公共點(diǎn).(2)若k=0,直線與拋物線有一個交點(diǎn),此時直線平行于拋物線的對稱軸或與對稱軸重合.因此直線與拋物線有一個公共點(diǎn)是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),通過點(diǎn)A和拋物線頂點(diǎn)的直線交拋物線的準(zhǔn)線于點(diǎn)D,求證:直線DB平行于拋物線的對稱軸.【分析】設(shè)拋物線的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,
二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點(diǎn) 到定點(diǎn) 的距離和它到定直線l: 的距離的比是 ,則點(diǎn) 的軌跡方程為?解:設(shè)點(diǎn) ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點(diǎn)F2,傾斜角為30度的直線交雙曲線于A,B兩點(diǎn),求|AB|.分析:求弦長問題有兩種方法:法一:如果交點(diǎn)坐標(biāo)易求,可直接用兩點(diǎn)間距離公式代入求弦長;法二:但有時為了簡化計(jì)算,常設(shè)而不求,運(yùn)用韋達(dá)定理來處理.解:由雙曲線的方程得,兩焦點(diǎn)分別為F1(-3,0),F2(3,0).因?yàn)橹本€AB的傾斜角是30°,且直線經(jīng)過右焦點(diǎn)F2,所以,直線AB的方程為
1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對稱軸為坐標(biāo)軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個焦點(diǎn),M為其上任一點(diǎn),則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個焦點(diǎn)為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點(diǎn)在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點(diǎn)坐標(biāo)及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點(diǎn)坐標(biāo)為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對稱性:關(guān)于x軸、y軸、原點(diǎn)對稱;③頂點(diǎn):長軸端點(diǎn)(0,10),(0,-10),短軸端點(diǎn)(-8,0),(8,0);④焦點(diǎn):(0,6),(0,-6);⑤離心率:e=3/5.
二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過對稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個焦點(diǎn)F_1上,片門位另一個焦點(diǎn)F_2上,由橢圓一個焦點(diǎn)F_1 發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個橢圓焦點(diǎn)F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標(biāo)系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標(biāo)準(zhǔn)方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程時,通常采用待定系數(shù)法,其步驟是:(1)確定焦點(diǎn)位置;(2)設(shè)出相應(yīng)橢圓的標(biāo)準(zhǔn)方程(對于焦點(diǎn)位置不確定的橢圓可能有兩種標(biāo)準(zhǔn)方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時常用的關(guān)系式有b2=a2-c2等.
全國文明單位每三年評選表彰一次,是中央文明委授予創(chuàng)建單位的最高榮譽(yù),是一個單位綜合實(shí)力、整體形象的集中體現(xiàn),也是加強(qiáng)機(jī)關(guān)建設(shè)、提升服務(wù)保障水平的強(qiáng)大動力。我們市人大常委會創(chuàng)建省級文明單位xx年來的實(shí)踐充分證明,深入開展文明單位創(chuàng)建活動,對于提高干部素質(zhì)、改進(jìn)工作作風(fēng)、推動工作落實(shí)、樹立良好形象,具有顯著的促進(jìn)作用。在成功創(chuàng)建省級文明單位的基礎(chǔ)上,市人大常委會堅(jiān)持著眼長遠(yuǎn)、高點(diǎn)定位,把創(chuàng)建目標(biāo)瞄向全國文明單位,這是自加壓力、爭創(chuàng)一流工作作風(fēng)的具體體現(xiàn)。我們要充分認(rèn)識創(chuàng)建全國文明單位的重大意義,切實(shí)把這項(xiàng)工作抓實(shí)抓細(xì)、抓到位抓成功。
第六條勞動報酬1、甲方按照本市最低工資結(jié)合本單位工資制度支付乙方工資報酬。具體標(biāo)準(zhǔn)工資為元/月。,乙方試用期工資為元/月。2.甲方每月日支付乙方(當(dāng)月/上月)工資。如遇法定休假日或休息日,則提前到最近的工作日支付。3、甲方安排乙方加班加點(diǎn)工作,應(yīng)按國家規(guī)定的標(biāo)準(zhǔn)安排補(bǔ)休或支付加班加點(diǎn)工資。加班加點(diǎn)工資的發(fā)放時間為。第七條保險福利1、甲方必須依照國家和地方有關(guān)規(guī)定,參加社會保險,按時足額繳納和代扣代繳乙方的社會保險費(fèi)(包括養(yǎng)老、失業(yè)、醫(yī)療、工傷、女工生育等保險)。2、甲方可以根據(jù)本企業(yè)的具體情況,依法制定內(nèi)部職工福利待遇實(shí)施細(xì)則。乙方有權(quán)依此享受甲方規(guī)定的福利待遇。
1、結(jié)合學(xué)校的評選方案,制定中教部方案?! 脑u選內(nèi)容上:一是教育教學(xué)及專業(yè)理論測試,包括教育教學(xué)理論通識部分和學(xué)科專業(yè)理論知識部分;二是課堂教學(xué);三是業(yè)績及獎勵;四是其它,包括教案書寫、成績統(tǒng)計(jì)與質(zhì)量分析、作業(yè)批改與教學(xué)隨筆與反思等?! ?、具體實(shí)施?! ∩习肽晔菍W(xué)校自評階段,這時候我們按部計(jì)劃繼續(xù)開展工作。下半年是縣級評選階段,我們的教研工作以學(xué)科帶頭人工作為主,同時兼顧部里的其它工作。
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。