證法二:(1)延長BD交AC于E(或延長CD交AB于E),如圖.則∠BDC是△CDE的一個外角.∴∠BDC>∠DEC.(三角形的一個外角大于任何一個和它不相鄰的內(nèi)角)∵∠DEC是△ABE的一個外角(已作)∴∠DEC>∠A(三角形的一個外角大于任何一個和它不相鄰的內(nèi)角)∴∠BDC>∠A(不等式的性質(zhì))(2)延長BD交AC于E,則∠BDC是△DCE的一個外角.∴∠BDC=∠C+∠DEC(三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和)∵∠DEC是△ABE的一個外角∴∠DEC=∠A+∠B(三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和)∴∠BDC=∠B+∠C+∠BAC(等量代換)活動目的:讓學(xué)生接觸各種類型的幾何證明題,提高邏輯推理能力,培養(yǎng)學(xué)生的證明思路,特別是不等關(guān)系的證明題,因為學(xué)生接觸較少,因此更需要加強練習(xí).注意事項:學(xué)生對于幾何圖形中的不等關(guān)系的證明比較陌生,因此有必要在證明第2小題中,要引導(dǎo)學(xué)生找到一個過渡角∠ACB,由∠1>∠ACB,∠ACB>∠2,再由不等關(guān)系的傳遞性得出∠1>∠2。
(4)從平均分看,兩隊的平均分相同,實力大體相當(dāng);從折線的走勢看,甲隊比賽成績呈上升趨勢,而乙隊比賽成績呈下降趨勢;從獲勝場數(shù)看,甲隊勝三場,乙隊勝兩場,甲隊成績較好;從方差看,甲隊比賽成績比乙隊比賽成績波動小,甲隊成績較穩(wěn)定.綜上所述,選派甲隊參賽更能取得好成績.方法總結(jié):本題是反映數(shù)據(jù)集中程度與離散程度的綜合題.從圖形中得到兩隊的成績,然后從平均數(shù)、方差的角度來考慮,在平均數(shù)相同的情況下,方差越小的越穩(wěn)定.三、板書設(shè)計數(shù)據(jù)的離散程度極差:一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差方差:各個數(shù)據(jù)與平均數(shù)差的平方的平均數(shù) s2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2]標準差:方差的算術(shù)平方根 公式:s=s2經(jīng)歷表示數(shù)據(jù)離散程度的幾個量的探索過程,通過實例體會用樣本估計總體的統(tǒng)計思想,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用能力.通過小組合作,培養(yǎng)學(xué)生的合作意識;通過解決實際問題,讓學(xué)生體會數(shù)學(xué)與生活的密切聯(lián)系.
意圖:(1)介紹與勾股定理有關(guān)的歷史,激發(fā)學(xué)生的愛國熱情;(2)學(xué)生加強了對數(shù)學(xué)史的了解,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣;(3)通過讓部分學(xué)生搜集材料,展示材料,既讓學(xué)生得到充分的鍛煉,同時也活躍了課堂氣氛.效果:學(xué)生熱情高漲,對勾股定理的歷史充滿了濃厚的興趣,同時也為中國古代數(shù)學(xué)的成就感到自豪.也有同學(xué)提出:當(dāng)代中國數(shù)學(xué)成就不夠強,還應(yīng)發(fā)奮努力.有同學(xué)能意識這一點,這讓我喜出望外.第六環(huán)節(jié): 回顧反思 提煉升華內(nèi)容:教師提問:通過這節(jié)課的學(xué)習(xí),你有什么樣的收獲?師生共同暢談收獲.目的:(1)歸納出本節(jié)課的知識要點,數(shù)形結(jié)合的思想方法;(2)教師了解學(xué)生對本節(jié)課的感受并進行總結(jié);(3)培養(yǎng)學(xué)生的歸納概括能力.效果:由于這節(jié)課自始至終都注意了調(diào)動學(xué)生學(xué)習(xí)的積極性,所以學(xué)生談的收獲很多,包括利用拼圖驗證勾股定理中蘊含的數(shù)形結(jié)合思想,學(xué)生對勾股定理的歷史的感悟及對勾股定理應(yīng)用的認識等等.
8.一束光線從點A(3,3)出發(fā),經(jīng)過y軸上點C反射后經(jīng)過點B(1,0)則光線從A點到B點經(jīng)過的路線長是( )A.4 B.5 C.6 D.7第四環(huán)節(jié)課堂小結(jié)1、關(guān)于y軸對稱的兩個圖形上點的坐標特征:(x , y)——(- x , y)2、關(guān)于x軸對稱的兩個圖形上點的坐標特征:(x , y)——(x , - y)3、關(guān)于原點對稱的兩個圖形上點的坐標特征:(x , y)——(- x , -y)第五環(huán)節(jié)布置作業(yè)習(xí)題3.5 1,2,3四、 教學(xué)反思通過“坐標與軸對稱”,經(jīng)歷圖形坐標變化與圖形的軸對稱之間的關(guān)系的探索過程, 掌握空間與圖形的基礎(chǔ)知識和基本技能,豐富對現(xiàn)實空間及圖形的認識,建立初步的空間觀念,發(fā)展形象思維,激發(fā)學(xué)生對數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲,學(xué)生能積極參與數(shù)學(xué)學(xué)習(xí)活動;積極交流合作,體驗數(shù)學(xué)活動充滿著探索與創(chuàng)造。教學(xué)中務(wù)必給學(xué)生創(chuàng)造自主學(xué)習(xí)與合作交流的機會,留給學(xué)生充足的動手機會和思考空間,教師不要急于下結(jié)論。事先一定要準備好坐標紙等,提高課堂效率。
1.會用計算器求平方根和立方根;(重點)2.運用計算器探究數(shù)字規(guī)律,提高推理能力.一、情境導(dǎo)入前面我們通過平方和立方運算求出一些特殊數(shù)的平方根和立方根,如4的平方根是±2,116的平方根是±14,0.064的立方根是0.4,-8的立方根是-2等.那么如何求3,189,-39,311的值呢?二、合作探究探究點一:利用計算器進行開方運算 用計算器求6+7的值.解:按鍵順序為■6+7=SD,顯示結(jié)果為:9.449489743.方法總結(jié):當(dāng)被開方數(shù)不是一個數(shù)時,輸入時一定要按鍵.解本題時常出現(xiàn)的錯誤是:■6+7=SD,錯的原因是被開方數(shù)是6,而不是6與7的和,這樣在輸入時,對“6+7”進行開方,使得計算的是6+7而不是6+7,從而導(dǎo)致錯誤.K探究點二:利用科學(xué)計算器比較數(shù)的大小利用計算器,比較下列各組數(shù)的大小:(1)2,35;(2)5+12,15+2.解:(1)按鍵順序:■2=SD,顯示結(jié)果為1.414213562.按鍵順序:SHIFT■5=,顯示結(jié)果為1.709975947.所以2<35.
解析:從各點的位置可以發(fā)現(xiàn)A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2),A9(3,-2),A10(3,3),A11(-3,3),A12(-3,-3),….仔細觀察每四個點的橫、縱坐標,發(fā)現(xiàn)存在著一定規(guī)律性.因為2015=503×4+3,所以點A2015在第二象限,縱坐標和橫坐標互為相反數(shù),所以A2015的坐標為(-504,504).故填(-504,504).方法總結(jié):解決此類題常用的方法是通過對幾種特殊情況的研究,歸納總結(jié)出一般規(guī)律,再根據(jù)一般規(guī)律探究特殊情況.三、板書設(shè)計軸對稱與坐標變化關(guān)于坐標軸對稱作圖——軸對稱變換通過本課時的學(xué)習(xí),學(xué)生經(jīng)歷圖形坐標變化與圖形的軸對稱之間的關(guān)系的探索過程,掌握空間與圖形的基礎(chǔ)知識和基本作圖技能,豐富對現(xiàn)實空間及圖形的認識,建立初步的空間觀念,發(fā)展形象思維,激發(fā)數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲.教學(xué)過程中學(xué)生能積極參與數(shù)學(xué)學(xué)習(xí)活動,積極交流合作,體驗數(shù)學(xué)活動的樂趣.
由于題目較簡單,所以學(xué)生分析解答時很有信心,且正確率也比較高,同時也進一步體會到了借助“線段圖”分析行程問題的優(yōu)越性.六、歸納總結(jié):活動內(nèi)容:學(xué)生歸納總結(jié)本節(jié)課所學(xué)知識:1.會借線段圖分析行程問題.2.各種行程問題中的規(guī)律及等量關(guān)系.同向追及問題:①同時不同地——甲路程+路程差=乙路程; 甲時間=乙時間.②同地不同時——甲時間+時間差=乙時間; 甲路程=乙路程.相向的相遇問題:甲路程+乙路程=總路程; 甲時間=乙時間.目的:強調(diào)本課的重點內(nèi)容是要學(xué)會借線段圖來分析行程問題,并能掌握各種行程問題中的規(guī)律及等量關(guān)系.引導(dǎo)學(xué)生自己對所學(xué)知識和思想方法進行歸納和總結(jié),從而形成自己對數(shù)學(xué)知識的理解和解決問題的方法策略.
探究點三:列一元一次方程解應(yīng)用題某單位計劃“五一”期間組織職工到東湖旅游,如果單獨租用40座的客車若干輛則剛好坐滿;如果租用50座的客車則可以少租一輛,并且有40個剩余座位.(1)該單位參加旅游的職工有多少人?(2)如同時租用這兩種客車若干輛,問有無可能使每輛車剛好坐滿?如有可能,兩種車各租多少輛?(此問可只寫結(jié)果,不寫分析過程)解析:(1)先設(shè)該單位參加旅游的職工有x人,利用人數(shù)不變,車的輛數(shù)相差1,可列出一元一次方程求解;(2)可根據(jù)租用兩種汽車時,利用假設(shè)一種車的數(shù)量,進而得出另一種車的數(shù)量求出即可.解:(1)設(shè)該單位參加旅游的職工有x人,由題意得方程x40-x+4050=1,解得x=360,答:該單位參加旅游的職工有360人;(2)有可能,因為租用4輛40座的客車、4輛50座的客車剛好可以坐360人,正好坐滿.方法總結(jié):解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程再求解.
[例3]、用一個平面去截一個幾何體,截面形狀有圓、三角形,那么這個幾何體可能是_________。四、鞏固強化:1、一個正方體的截面不可能是( )A、三角形 B、梯形 C、五邊形 D、七邊形2、用一個平面去截五棱柱,邊數(shù)最多的截面是_______形.3*、用一個平面去截幾何體,若截面是三角形,這個幾何體可能是__________________________________________________.4*、用一個平面截一個幾何體,如果截面是圓,你能想象出原來的幾何體可能是什么嗎?如虹截面是三角形呢?5*、如果用一個平面截一個正方體的一個角,剩下的幾何體有幾個頂點、幾條棱、幾個面?6*、幾何體中的圓臺、棱錐都是課外介紹的,所以我們就在這個欄目里繼續(xù)為大家介紹這兩種幾何體的截面.(1)圓臺用平面截圓臺,截面形狀會有_____和_______這兩種較特殊圖形,截法如下:
某文具店一支鉛筆的售價為1.2元,一支圓珠筆的售價為2元.該店在“6·1兒童節(jié)”舉行文具優(yōu)惠售賣活動,鉛筆按原價打8折出售,圓珠筆按原價打9折出售,結(jié)果兩種筆共賣出60支,賣得金額87元.若設(shè)鉛筆賣出x支,則依題意可列得的一元一次方程為( )A.1.2×0.8x+2×0.9(60+x)=87B.1.2×0.8x+2×0.9(60-x)=87C.2×0.9x+1.2×0.8(60+x)=87D.2×0.9x+1.2×0.8(60-x)=87解析:設(shè)鉛筆賣出x支,根據(jù)“鉛筆按原價打8折出售,圓珠筆按原價打9折出售,結(jié)果兩種筆共賣出60支,賣得金額87元”,得出等量關(guān)系:x支鉛筆的售價+(60-x)支圓珠筆的售價=87,據(jù)此列出方程為1.2×0.8x+2×0.9(60-x)=87.故選B.方法總結(jié):解題的關(guān)鍵是讀懂題意,設(shè)出未知數(shù),找到題目當(dāng)中的等量關(guān)系,最后列方程.三、板書設(shè)計教學(xué)過程中,通過對多種實際問題情境的分析,感受方程作為刻畫現(xiàn)實世界有效模型的意義,通過觀察、歸納一元一次方程的概念,使學(xué)生在分析實際問題情境的活動中體會數(shù)學(xué)與現(xiàn)實的密切聯(lián)系.
方法總結(jié):讓利10%,即利潤為原來的90%.探究點三:求原價某商場節(jié)日酬賓:全場8折.一種電器在這次酬賓活動中的利潤率為10%,它的進價為2000元,那么它的原價為多少元?解析:本題中的利潤為(2000×10%)元,銷售價為(原價×80%)元,根據(jù)公式建立起方程即可.解:設(shè)原價為x元,根據(jù)題意,得80%x-2000=2000×10%.解得x=2750.答:它的原價為2750元.方法總結(jié):典例關(guān)系:售價=進價+利潤,售價=原價×打折數(shù)×0.1,售價=進價×(1+利潤率).三、板書設(shè)計本節(jié)課從和我們的生活息息相關(guān)的利潤問題入手,讓學(xué)生在具體情境中感受到數(shù)學(xué)在生活實際中的應(yīng)用,從而激發(fā)他們學(xué)習(xí)數(shù)學(xué)的興趣.根據(jù)“實際售價=進價+利潤”等數(shù)量關(guān)系列一元一次方程解決與打折銷售有關(guān)的實際問題.審清題意,找出等量關(guān)系是解決問題的關(guān)鍵.另外,商品經(jīng)濟問題的題型很多,讓學(xué)生觸類旁通,達到舉一反三,靈活的運用有關(guān)的公式解決實際問題,提高學(xué)生的數(shù)學(xué)能力.
解:(1)設(shè)x分鐘后兩人第一次相遇,由題意,得360x-240x=400.解得x=103.(103×360+103×240)÷400=5(圈).答:兩人一共跑了5圈.(2)設(shè)x分鐘后兩人第一次相遇,由題意,得360x+240x=400.解得x=23(分鐘)=40(秒).答:40秒后兩人第一次相遇.方法總結(jié):環(huán)形問題中的相等關(guān)系:兩個人同地背向而行:相遇問題(首次相遇),甲的行程+乙的行程=一圈周長;兩個人同地同向而行:追及問題(首次追上),甲的行程-乙的行程=一圈周長.三、板書設(shè)計追趕小明→行程問題→相遇問題追及問題環(huán)形問題教學(xué)過程中,通過對開放性問題的探討與交流,體驗生活中數(shù)學(xué)的應(yīng)用與價值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生的創(chuàng)新意識、團隊精神和克服困難的勇氣.
解:原式=(-47)×(3.94+2.41-6.35)=(-47)×0=0.方法總結(jié):如果按照先算乘法,再算加減,則運算較繁瑣,且符號容易出錯,但如果逆用乘法對加法的分配律,則可使運算簡便.探究點三:有理數(shù)乘法的運算律的實際應(yīng)用甲、乙兩地相距480千米,一輛汽車從甲地開往乙地,已經(jīng)行駛了全程的13,再行駛多少千米就可以到達中點?解析:把兩地間的距離看作單位“1”,中點即全程12處,根據(jù)題意用乘法分別求出480千米的12和13,再求差.解:480×12-480×13=480×(12-13)=80(千米).答:再行80千米就可以到達中點.方法總結(jié):解答本題的關(guān)鍵是根據(jù)題意列出算式,然后根據(jù)乘法的分配律進行簡便計算.新課程理念要求把學(xué)生“學(xué)”數(shù)學(xué)放在教師“教”之前,“導(dǎo)學(xué)”是教學(xué)的重點.因此,在本節(jié)課的教學(xué)中,不要直接將結(jié)論告訴學(xué)生,而是引導(dǎo)學(xué)生從大量的實例中尋找解決問題的規(guī)律.學(xué)生經(jīng)歷積極探索知識的形成過程,最后總結(jié)得出有理數(shù)乘法的運算律.整個教學(xué)過程要讓學(xué)生積極參與,獨立思考和合作探究相結(jié)合,教師適當(dāng)點評,以達到預(yù)期的教學(xué)效果.
二.思考:(-2) 可以寫成-2 嗎?( ) 可以寫成 嗎?(指名學(xué)生回答,師生共同總結(jié):負數(shù)和分數(shù)的乘方書寫時,一定要把整個負數(shù)和分數(shù)用小括號括起來)三.計算:①(-2) ,②-2 ,③(- ) ,④ (叫4個學(xué)生上臺板演,其他練習(xí)本上完成,教師巡視,確保人人學(xué)得緊張高效).(四)討論更正,合作探究1.學(xué)生自由更正,或?qū)懗霾煌夥ǎ?.評講思考:將三題①③中將底數(shù)換成為正數(shù)或0,結(jié)果有什么規(guī)律?學(xué)生總結(jié):負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù),正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都為0。有理數(shù)的乘方就是幾個相同因數(shù)積的運算,可以運用有理數(shù)乘方法則進行符號的確定和冪的求值.乘方的含義:①表示一種運算;②表示運算的結(jié)果.
方法總結(jié):股票每天的漲跌都是在前一天的基礎(chǔ)上進行的,不要理解為每天都是在67元的基礎(chǔ)上漲跌.另外熟記運算法則并根據(jù)題意準確列出算式也是解題的關(guān)鍵.三、板書設(shè)計加法法則(1)同號兩數(shù)相加,取與加數(shù)相同的符號,把絕對 值相加.(2)異號兩數(shù)相加,取絕對值較大加數(shù)的符號,并 用較大的絕對值減去較小的絕對值.(3)互為相反數(shù)的兩數(shù)相加得0.(4)一個數(shù)同0相加,仍得這個數(shù).本課時利用情境教學(xué)、解決問題等方法進行教學(xué),使學(xué)生在情境中提出問題,并尋找解決問題的途徑,因此不知不覺地進入學(xué)習(xí)氛圍,把學(xué)生從被動學(xué)習(xí)變?yōu)橹鲃酉雽W(xué).在本節(jié)教學(xué)中,要堅持以學(xué)生為主體,教師為主導(dǎo),充分調(diào)動學(xué)生的興趣和積極性,使他們最大限度地參與到課堂的活動中.
1、掌握有理數(shù)混合運算法則,并能進行有理數(shù)的混合運算的計算。2、經(jīng)歷“二十四”點游戲,培養(yǎng)學(xué)生的探究能力[教學(xué)重點]有理數(shù)混合運算法則。[教學(xué)難點]培養(yǎng)探索思 維方式?!窘虒W(xué)過程】情境導(dǎo)入——有理數(shù)的混合運算是指一個算式里含有加、減、乘、除、乘方的多種運算.下面的算式里有哪幾種運算?3+50÷22×( )-1.有理數(shù)混合運算的運算順序規(guī)定如下:1 先算乘方,再算乘除,最后算加減;2 同級運算,按照從左至右的順序進行;3 如果有括號,就先算小括號里的,再算中括號里的,最后算大括號里的。 加法和減法叫做第一級運算;乘法和除法叫做第二級運算;乘方和開方(今后將會學(xué)到)叫做第三級運算。注意:可以應(yīng)用運算律,適當(dāng)改變運算順序,使運算簡便.合作探究——
師生共同歸納法則2、異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。生5:這兩天的庫存量合計增加了2噸。(+3)+(-1)=+2 或(+8)+(-6)=+2師:會不會出現(xiàn)和為零的情況?提示:可以聯(lián)系倉庫進出貨的具體情形。生6:如星期一倉庫進貨5噸,出貨5噸,則庫存量為零。(+5)+(-5)=0師生共同歸納法則3、互為相反數(shù)的兩個數(shù)相加得零。師:你能用加法法則來解釋法則3嗎?生7:可用異號兩數(shù)相加的法則。一般地還有:一個數(shù)同零相加,仍得這個數(shù)。小結(jié):運算關(guān)鍵:先分類運算步驟:先確定符號,再計算絕對值做一做:(口答)確定下列各題中和的符號,并說明理由:(1)(+3)+(+7);(2)(-10)+(-3);(3)(+6)+(-5);(4)0+(-5).例 計算下列各式:(1)(-3)+(-4);(2)(-2.5)+5;(3)(-2)+0;(4)(+ )+(- )教法:請四位學(xué)生板演,讓學(xué)生批改并說明理由。
內(nèi)容:情景1:多媒體展示:提出問題:從二教樓到綜合樓怎樣走最近?情景2:如圖:在一個圓柱石凳上,若小明在吃東西時留下了一點食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?意圖:通過情景1復(fù)習(xí)公理:兩點之間線段最短;情景2的創(chuàng)設(shè)引入新課,激發(fā)學(xué)生探究熱情.效果:從學(xué)生熟悉的生活場景引入,提出問題,學(xué)生探究熱情高漲,為下一環(huán)節(jié)奠定了良好基礎(chǔ).第二環(huán)節(jié):合作探究內(nèi)容:學(xué)生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計算方法,通過具體計算,總結(jié)出最短路線.讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導(dǎo)學(xué)生體會利用數(shù)學(xué)解決實際問題的方法.
解:∵y=23x+a與y=-12x+b的圖象都過點A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴兩個一次函數(shù)分別是y=32x+6和y=-12x-2.y=32x+6與y軸交于點B,則y=32×0+6=6,∴B(0,6);y=-12x-2與y軸交于點C,則y=-2,∴C(0,-2).如圖所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法總結(jié):解此類題要先求得頂點的坐標,即兩個一次函數(shù)的交點和它們分別與x軸、y軸交點的坐標.三、板書設(shè)計兩個一次函數(shù)的應(yīng)用實際生活中的問題幾何問題進一步訓(xùn)練學(xué)生的識圖能力,能通過函數(shù)圖象獲取信息,解決簡單的實際問題,在函數(shù)圖象信息獲取過程中,進一步培養(yǎng)學(xué)生的數(shù)形結(jié)合意識,發(fā)展形象思維.在解決實際問題的過程中,進一步發(fā)展學(xué)生的分析問題、解決問題的能力和數(shù)學(xué)應(yīng)用意識.
(2)DF∥BE.∵DE平分∠ADC,BF平分∠ABC(已知),∴∠3=12∠ADC,∠2=12∠ABC(角平分線定義).∵∠ADC=∠ABC(已知),∴∠2=∠3(等量代換).又∵∠1=∠2(已知),∴∠1=∠3(等量代換),∴DF∥BE(內(nèi)錯角相等,兩直線平行).(3)AD∥BC.由(2)知∠3=∠1,又∵DE平分∠ADC(已知),∴∠ADE=∠3(角平分線定義),∠ADE=∠1(等量代換).∴∠A=180°-∠ADE-∠1=180°-2∠ADE=180°-∠ADC=180°-∠ABC(三角形內(nèi)角和為180°及等量代換),即∠A+∠ABC=180°,∴AD∥BC(同旁內(nèi)角互補,兩直線平行).方法總結(jié):解此類題應(yīng)首先結(jié)合圖形猜測結(jié)論,然后證明.證明兩條直線平行,一般先找它們的截線,再求同位角相等(或內(nèi)錯角相等,同旁內(nèi)角互補)來說明兩直線平行.若沒有公共截線,則需作出兩直線的截線輔助證明.三、板書設(shè)計平行線,的判定)判定公理:同位角相等,兩直線平行判定定理內(nèi)錯角相等,兩直線平行同旁內(nèi)角互補,兩直線平行本節(jié)課通過經(jīng)歷探索平行線的判定方法的過程,發(fā)展學(xué)生的邏輯推理能力,逐步掌握規(guī)范的推理論證格式.