說(shuō)明:此處進(jìn)行的是一次嘗試應(yīng)用乘方運(yùn)算來(lái)解決開(kāi)頭的問(wèn)題,互相呼應(yīng),以體現(xiàn)整節(jié)課的完整性,把學(xué)生開(kāi)始的興趣再次引向高潮。趣味探索:一張薄薄的紙對(duì)折56次后有多厚?試驗(yàn)一下你能折這么厚嗎?說(shuō)明:這個(gè)探索實(shí)際上仍是對(duì)學(xué)生應(yīng)用能力的一個(gè)檢查,紙對(duì)折56次,用什么運(yùn)算來(lái)計(jì)算比較方便,另外計(jì)算過(guò)程中可使用計(jì)算器,進(jìn)一步加深對(duì)乘方意義的理解(五)作業(yè)P56頁(yè)1、2說(shuō)明:這兩個(gè)習(xí)題是對(duì)課本上例題的簡(jiǎn)單重復(fù)和模仿,通過(guò)本節(jié)課的學(xué)習(xí),多數(shù)學(xué)生應(yīng)該可以較輕松地完成。總之,在整個(gè)教學(xué)設(shè)計(jì)中,我始終以學(xué)生為課堂主體,讓他們積極參與到教學(xué)中來(lái),不斷從舊知識(shí)中獲得新的認(rèn)識(shí),通過(guò)不斷進(jìn)行聯(lián)系比較,讓學(xué)生主動(dòng)自覺(jué)地去思考、探索、總結(jié)直至發(fā)現(xiàn)結(jié)果、發(fā)現(xiàn)"方法",進(jìn)而優(yōu)化了整個(gè)教學(xué)。
5、總結(jié)學(xué)生解題過(guò)程中存在的問(wèn)題,并指導(dǎo)并糾正、分析根本原因。6、通過(guò)演示法給學(xué)生演示完整、詳細(xì)和規(guī)范的解題過(guò)程。7、總結(jié)有理數(shù)的運(yùn)算順序和方法。先讓學(xué)生自己總結(jié)運(yùn)算順序,培養(yǎng)學(xué)生自己思考的能力,然后教師進(jìn)行糾正。等這個(gè)過(guò)程結(jié)束之后,再給出完整的運(yùn)算順序和方法。8、出示練習(xí)題,鞏固所學(xué)知識(shí),教師及時(shí)指正。9、最后布置課后作業(yè)題。四、教學(xué)評(píng)價(jià)本節(jié)課我注重體現(xiàn)“以教師為主導(dǎo)、學(xué)生為主體、以學(xué)生發(fā)展為本的教學(xué)思想”。1、通過(guò)具體的題目引入,讓學(xué)生先以自己的知識(shí)體系解決問(wèn)題,在這過(guò)程中發(fā)現(xiàn)問(wèn)題、歸納總結(jié)原因,并予以解決。一方面復(fù)習(xí)前面所學(xué)的基本運(yùn)算,另一方面完善學(xué)生的知識(shí)體系。2、培養(yǎng)學(xué)生自主學(xué)習(xí)與探究的能力、分析與解決問(wèn)題的能力。
“數(shù)的運(yùn)算”是“數(shù)與代數(shù)”學(xué)習(xí)領(lǐng)域的重要內(nèi)容,減法是其中的一種基本運(yùn)算.本課的學(xué)習(xí)遠(yuǎn)接小學(xué)階段關(guān)于整數(shù)、分?jǐn)?shù)(包括小數(shù))的減法運(yùn)算,近承第四節(jié)有理數(shù)的加法運(yùn)算.通過(guò)對(duì)有理數(shù)的減法運(yùn)算的學(xué)習(xí),學(xué)生將對(duì)減法運(yùn)算有進(jìn)一步的認(rèn)識(shí)和理解,為后繼諸如實(shí)數(shù)、復(fù)數(shù)的減法運(yùn)算的學(xué)習(xí)奠定了堅(jiān)實(shí)的基礎(chǔ).鑒于以上對(duì)教學(xué)內(nèi)容在教材體系中的位置及地位的認(rèn)識(shí)和理解,確定本節(jié)課的教學(xué)目標(biāo)如下:1、知識(shí)目標(biāo):經(jīng)歷探索有理數(shù)的減法法則的過(guò)程,理解有理數(shù)的減法法則,并能熟練運(yùn)用法則進(jìn)行有理數(shù)的減法運(yùn)算.2、能力目標(biāo):經(jīng)歷由特例歸納出一般規(guī)律的過(guò)程,培養(yǎng)學(xué)生的抽象概括能力及表達(dá)能力;通過(guò)減法到加法的轉(zhuǎn)化,讓學(xué)生初步體會(huì)轉(zhuǎn)化、化歸的數(shù)學(xué)思想.3、情感目標(biāo):
問(wèn)題6:觀察剛才所畫(huà)的圖象我們發(fā)現(xiàn)反比例函數(shù)的圖象有兩個(gè)分支,那么它的分布情況又是怎么樣的呢?在這一環(huán)節(jié)中的設(shè)計(jì):(1) 引導(dǎo)學(xué)生對(duì)比正比例函數(shù)圖象的分布,啟發(fā)他們主動(dòng)探索反比例函數(shù)的分布情況,給學(xué)生充分考慮的時(shí)間;(2) 充分運(yùn)用多媒體的優(yōu)勢(shì)進(jìn)行教學(xué),使用函數(shù)圖象的課件試著任意輸入幾個(gè)k的值,觀察函數(shù)圖象的不同分布,觀察函數(shù)圖象的動(dòng)態(tài)演變過(guò)程。把不同的函數(shù)圖象集中到一個(gè)屏幕中,便于學(xué)生對(duì)比和探究。學(xué)生通過(guò)觀察及對(duì)比,對(duì)反比例函數(shù)圖象的分布與k的關(guān)系有一個(gè)直觀的了解;(3) 組織小組討論來(lái)歸納出反比例函數(shù)的一條性質(zhì):當(dāng)k>0時(shí),函數(shù)圖象的兩支分別在第一、三象限內(nèi);當(dāng)k<0時(shí),函數(shù)圖象的兩支分別在第二、四象限內(nèi)。
教學(xué)媒體設(shè)計(jì)充分利用多媒體教學(xué),將powerpoint、《幾何畫(huà)板》兩種軟件結(jié)合起來(lái)制作上課課件。制作的課件,不僅課堂所授容量大,而且,利用作二次函數(shù)圖像的動(dòng)畫(huà)性,更加形象的反映出作圖的過(guò)程,增加數(shù)學(xué)的美感,激發(fā)學(xué)生作圖的興趣。教學(xué)評(píng)價(jià)設(shè)計(jì)本節(jié)課,我合理、充分利用了多媒體教學(xué)的手段,利用powerpoint,《幾何畫(huà)板》這兩種軟件制作了課件,特別是《幾何畫(huà)板》軟件的應(yīng)用,畫(huà)出了標(biāo)準(zhǔn)、動(dòng)畫(huà)形式的二次函數(shù)的圖像,讓抽象思維不強(qiáng)的學(xué)生,更加形象的結(jié)合圖形,分析說(shuō)出二次函數(shù)y=ax2的有關(guān)性質(zhì),充分體現(xiàn)了“數(shù)形結(jié)合”的數(shù)學(xué)思想。為了突出重點(diǎn),攻破難點(diǎn),我要求學(xué)生“先觀察后思考”、“先做后說(shuō)”、“先討論后總結(jié)”,“師生共做”充分體現(xiàn)了教學(xué)過(guò)程中以學(xué)生為主體,老師起主導(dǎo)作用的教學(xué)原則。本節(jié)課,讓學(xué)生有觀察,有思考,有討論,有練習(xí),充分調(diào)動(dòng)了學(xué)生的學(xué)習(xí)興趣,從而為高效率、高質(zhì)量地上好這一堂課作好了充分的準(zhǔn)備。
1、圓的半徑是 ,假設(shè)半徑增加 時(shí),圓的面積增加 。(1)寫(xiě)出 與 之間的關(guān)系表達(dá)式;(2)當(dāng)圓的半徑分別增加 , , 時(shí),圓的面積增加多少?!驹O(shè)計(jì)意圖】此題由具體數(shù)據(jù)逐步過(guò)渡到用字母表示關(guān)系式,讓學(xué)生經(jīng)歷由具體到抽象的過(guò)程,從而降低學(xué)生學(xué)習(xí)的難度。2、籬笆墻長(zhǎng) ,靠墻圍成一個(gè)矩形花壇,寫(xiě)出花壇面積 與長(zhǎng) 之間的函數(shù)關(guān)系式,并指出自變量的取值范圍?!驹O(shè)計(jì)意圖】此題稍微復(fù)雜些,旨在讓學(xué)生能夠開(kāi)動(dòng)腦筋,積極思考,讓學(xué)生能夠“跳一跳,夠得到”。(六) 小結(jié)思考本節(jié)課你有哪些收獲?還有什么不清楚的地方?【設(shè)計(jì)意圖】讓學(xué)生來(lái)談本節(jié)課的收獲,培養(yǎng)學(xué)生自我檢查、自我小結(jié)的良好習(xí)慣,將知識(shí)進(jìn)行整理并系統(tǒng)化。而且由此可了解到學(xué)生還有哪些不清楚的地方,以便在今后的教學(xué)中補(bǔ)充。(七)布置作業(yè),提高升華必做題:課本P39-40隨堂練習(xí)第1題,習(xí)題2.1第1題;
教學(xué)過(guò)程我主要分為六部分:一、新課引入,二、探究新知 ,三、鞏固新知,四、感悟收獲,五、布置作業(yè),六、板書(shū)設(shè)計(jì) (一)、新課引入教師提問(wèn):一個(gè)直角三角形中,一個(gè)銳角正弦、余弦、正切值是怎么定義的? sinA如圖在 Rt△ABC中,∠C=90°。(1)a、b、c三者之間的關(guān)系是 ,∠A+∠B= 。 (2)sinA=sinB= , cosB= ,tanB= 。 (3)若A=30°,則B(4)sinA和cosB有什么關(guān)系?____________________;【設(shè)計(jì)意圖】回顧上節(jié)課所學(xué)的內(nèi)容,便于后面教學(xué)的開(kāi)展。 (二)、探究新知活動(dòng)一、探索特殊角的三角函數(shù),并填寫(xiě)課本表格[問(wèn)題] 1、觀察一副三角尺,其中有幾個(gè)銳角?它們分別等于多少度? [問(wèn)題] 2、sin30°等于多少呢?你是怎樣得到的?與同伴交流. [問(wèn)題] 3、cos30°等于多少?tan30°呢? [問(wèn)題] 4、我們求出了30°角的三個(gè)三角函數(shù)值,還有兩個(gè)特殊角——45°、60°,它們的三角函數(shù)值分別是多少?你是如何得到的? 1、特殊角的三角函數(shù)值表:
(2)請(qǐng)你思考:師:這樣就需要設(shè)計(jì)一張其他面值的郵票,如果最高的資費(fèi)是6元,那么用3張郵票來(lái)支付時(shí),面值對(duì)大的郵票是幾元?可增加什么面值的郵票?(學(xué)生分組討論設(shè)計(jì)思考)生:6元除以3元就是2元,可增加的郵票面值可為2.0元,2.4元或4.0元。(3)小結(jié):雖然滿足條件的郵票組合很多,但郵政部門(mén)在發(fā)行郵票時(shí),還要從經(jīng)濟(jì)、合理等角度考慮。【設(shè)計(jì)意圖:大膽放手,讓學(xué)生參與數(shù)學(xué)活動(dòng)。讓學(xué)生成為課堂的主體,讓他們?cè)趧?dòng)手、動(dòng)腦、動(dòng)口的過(guò)程中學(xué)到知識(shí)和思維的方法,知識(shí)的獲得和學(xué)習(xí)方法的形成都是在學(xué)生“做”的過(guò)程中形成的。】四、鞏固深化:1、如果小明的爸爸要給小明回一封不足20g的信,他該貼多少錢的郵票?2、如果小明的好朋友要寄一封39g的信,他該貼多少錢的郵票?五、課后實(shí)踐:課后給你的親戚或者好朋友寄封信。
(三)實(shí)踐活動(dòng)(運(yùn)用)接著,我設(shè)計(jì)了實(shí)踐活動(dòng),讓學(xué)生走出教室,在校園找到不同型號(hào)的自行車有四輛我把學(xué)生分成四組,并且分工合作,每組5個(gè)人,有3 個(gè)人負(fù)責(zé)采集數(shù)據(jù),有兩個(gè)人負(fù)責(zé)計(jì)算出結(jié)果。教師還要在旁邊指導(dǎo)測(cè)量的方法,讓學(xué)生學(xué)會(huì)收集數(shù)據(jù)。培養(yǎng)學(xué)生學(xué)會(huì)用數(shù)學(xué)的眼光觀察現(xiàn)實(shí)生活,從中發(fā)現(xiàn)問(wèn)題,提出問(wèn)題,解決問(wèn)題,體會(huì)數(shù)學(xué)的廣泛應(yīng)用與實(shí)際價(jià)值,獲得良好的情感體驗(yàn)。數(shù)學(xué)模型方法的教學(xué),還要培養(yǎng)學(xué)生運(yùn)用模型解決現(xiàn)實(shí)問(wèn)題的能力。因此,在學(xué)生理解模型之后,老師提供各種各樣的現(xiàn)實(shí)問(wèn)題,引導(dǎo)學(xué)生運(yùn)用所得的數(shù)學(xué)模型去解決。在這個(gè)過(guò)程中,教師的指導(dǎo)非常重要,教師要指導(dǎo)學(xué)生把現(xiàn)實(shí)問(wèn)題的元素與數(shù)學(xué)模型中的元素建立丐聯(lián)系,還要指導(dǎo)學(xué)生如何運(yùn)用已經(jīng)建構(gòu)的數(shù)學(xué)模型來(lái)分析和處理問(wèn)題。學(xué)生經(jīng)歷了這樣的學(xué)習(xí)過(guò)程,他們才會(huì)感受到數(shù)學(xué)模型的力量,才會(huì)感受到數(shù)學(xué)學(xué)習(xí)的樂(lè)趣。
求函數(shù)的導(dǎo)數(shù)的策略(1)先區(qū)分函數(shù)的運(yùn)算特點(diǎn),即函數(shù)的和、差、積、商,再根據(jù)導(dǎo)數(shù)的運(yùn)算法則求導(dǎo)數(shù);(2)對(duì)于三個(gè)以上函數(shù)的積、商的導(dǎo)數(shù),依次轉(zhuǎn)化為“兩個(gè)”函數(shù)的積、商的導(dǎo)數(shù)計(jì)算.跟蹤訓(xùn)練1 求下列函數(shù)的導(dǎo)數(shù):(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟蹤訓(xùn)練2 求下列函數(shù)的導(dǎo)數(shù)(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的飲用水通常是經(jīng)過(guò)凈化的,隨著水的純凈度的提高,所需進(jìn)化費(fèi)用不斷增加,已知將1t水進(jìn)化到純凈度為x%所需費(fèi)用(單位:元),為c(x)=5284/(100-x) (80<x<100)求進(jìn)化到下列純凈度時(shí),所需進(jìn)化費(fèi)用的瞬時(shí)變化率:(1) 90% ;(2) 98%解:凈化費(fèi)用的瞬時(shí)變化率就是凈化費(fèi)用函數(shù)的導(dǎo)數(shù);c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2
由樣本相關(guān)系數(shù)??≈0.97,可以推斷脂肪含量和年齡這兩個(gè)變量正線性相關(guān),且相關(guān)程度很強(qiáng)。脂肪含量與年齡變化趨勢(shì)相同.歸納總結(jié)1.線性相關(guān)系數(shù)是從數(shù)值上來(lái)判斷變量間的線性相關(guān)程度,是定量的方法.與散點(diǎn)圖相比較,線性相關(guān)系數(shù)要精細(xì)得多,需要注意的是線性相關(guān)系數(shù)r的絕對(duì)值小,只是說(shuō)明線性相關(guān)程度低,但不一定不相關(guān),可能是非線性相關(guān).2.利用相關(guān)系數(shù)r來(lái)檢驗(yàn)線性相關(guān)顯著性水平時(shí),通常與0.75作比較,若|r|>0.75,則線性相關(guān)較為顯著,否則不顯著.例2. 有人收集了某城市居民年收入(所有居民在一年內(nèi)收入的總和)與A商品銷售額的10年數(shù)據(jù),如表所示.畫(huà)出散點(diǎn)圖,判斷成對(duì)樣本數(shù)據(jù)是否線性相關(guān),并通過(guò)樣本相關(guān)系數(shù)推斷居民年收入與A商品銷售額的相關(guān)程度和變化趨勢(shì)的異同.
二、典例解析例4. 用 10 000元購(gòu)買某個(gè)理財(cái)產(chǎn)品一年.(1)若以月利率0.400%的復(fù)利計(jì)息,12個(gè)月能獲得多少利息(精確到1元)?(2)若以季度復(fù)利計(jì)息,存4個(gè)季度,則當(dāng)每季度利率為多少時(shí),按季結(jié)算的利息不少于按月結(jié)算的利息(精確到10^(-5))?分析:復(fù)利是指把前一期的利息與本金之和算作本金,再計(jì)算下一期的利息.所以若原始本金為a元,每期的利率為r ,則從第一期開(kāi)始,各期的本利和a , a(1+r),a(1+r)^2…構(gòu)成等比數(shù)列.解:(1)設(shè)這筆錢存 n 個(gè)月以后的本利和組成一個(gè)數(shù)列{a_n },則{a_n }是等比數(shù)列,首項(xiàng)a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12個(gè)月后的利息為10 490.7-10^4≈491(元).解:(2)設(shè)季度利率為 r ,這筆錢存 n 個(gè)季度以后的本利和組成一個(gè)數(shù)列{b_n },則{b_n }也是一個(gè)等比數(shù)列,首項(xiàng) b_1=10^4 (1+r),公比為1+r,于是 b_4=10^4 (1+r)^4.
課程分析中專數(shù)學(xué)課程教學(xué)是專業(yè)建設(shè)與專業(yè)課程體系改革的一部分,應(yīng)與專業(yè)課教學(xué)融為一體,立足于為專業(yè)課服務(wù),解決實(shí)際生活中常見(jiàn)問(wèn)題,結(jié)合中專學(xué)生的實(shí)際,強(qiáng)調(diào)數(shù)學(xué)的應(yīng)用性,以滿足學(xué)生在今后的工作崗位上的實(shí)際應(yīng)用為主,這也體現(xiàn)了新課標(biāo)中突出應(yīng)用性的理念。分段函數(shù)的實(shí)際應(yīng)用在本課程中的地位:(1) 函數(shù)是中專數(shù)學(xué)學(xué)習(xí)的重點(diǎn)和難點(diǎn),函數(shù)的思想貫穿于整個(gè)中專數(shù)學(xué)之中,分段函數(shù)在科技和生活的各個(gè)領(lǐng)域有著十分廣泛的應(yīng)用。(2) 本節(jié)所探討學(xué)習(xí)分段函數(shù)在生活生產(chǎn)中的實(shí)際問(wèn)題上應(yīng)用,培養(yǎng)學(xué)生分析與解決問(wèn)題的能力,養(yǎng)成正確的數(shù)學(xué)化理性思維的同時(shí),形成一種意識(shí),即數(shù)學(xué)“源于生活、寓于生活、用于生活”。教材分析 教材使用的是中等職業(yè)教育課程改革國(guó)家規(guī)劃教材,依照13級(jí)教學(xué)計(jì)劃,函數(shù)的實(shí)際應(yīng)用舉例內(nèi)容安排在第三章函數(shù)的最后一部分講解。本節(jié)內(nèi)容是在學(xué)生熟知函數(shù)的概念,表示方法和對(duì)函數(shù)性質(zhì)有一定了解的基礎(chǔ)上研究分段函數(shù),同時(shí)深化學(xué)生對(duì)函數(shù)概念的理解和認(rèn)識(shí),也為接下來(lái)學(xué)習(xí)指數(shù)函數(shù)和對(duì)數(shù)函數(shù)作了良好鋪墊。根據(jù)13級(jí)學(xué)生實(shí)際情況,由生活生產(chǎn)中的實(shí)際問(wèn)題入手,求得分段函數(shù)此部分知識(shí)以學(xué)生生活常識(shí)為背景,可以引導(dǎo)學(xué)生分析得出。
新知探究我們知道,等差數(shù)列的特征是“從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù)” 。類比等差數(shù)列的研究思路和方法,從運(yùn)算的角度出發(fā),你覺(jué)得還有怎樣的數(shù)列是值得研究的?1.兩河流域發(fā)掘的古巴比倫時(shí)期的泥版上記錄了下面的數(shù)列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《莊子·天下》中提到:“一尺之錘,日取其半,萬(wàn)世不竭.”如果把“一尺之錘”的長(zhǎng)度看成單位“1”,那么從第1天開(kāi)始,每天得到的“錘”的長(zhǎng)度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在營(yíng)養(yǎng)和生存空間沒(méi)有限制的情況下,某種細(xì)菌每20 min 就通過(guò)分裂繁殖一代,那么一個(gè)這種細(xì)菌從第1次分裂開(kāi)始,各次分裂產(chǎn)生的后代個(gè)數(shù)依次是2,4,8,16,32,64,… ⑤4.某人存入銀行a元,存期為5年,年利率為 r ,那么按照復(fù)利,他5年內(nèi)每年末得到的本利和分別是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥
新知探究前面我們研究了兩類變化率問(wèn)題:一類是物理學(xué)中的問(wèn)題,涉及平均速度和瞬時(shí)速度;另一類是幾何學(xué)中的問(wèn)題,涉及割線斜率和切線斜率。這兩類問(wèn)題來(lái)自不同的學(xué)科領(lǐng)域,但在解決問(wèn)題時(shí),都采用了由“平均變化率”逼近“瞬時(shí)變化率”的思想方法;問(wèn)題的答案也是一樣的表示形式。下面我們用上述思想方法研究更一般的問(wèn)題。探究1: 對(duì)于函數(shù)y=f(x) ,設(shè)自變量x從x_0變化到x_0+ ?x ,相應(yīng)地,函數(shù)值y就從f(x_0)變化到f(〖x+x〗_0) 。這時(shí), x的變化量為?x,y的變化量為?y=f(x_0+?x)-f(x_0)我們把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函數(shù)從x_0到x_0+?x的平均變化率。1.導(dǎo)數(shù)的概念如果當(dāng)Δx→0時(shí),平均變化率ΔyΔx無(wú)限趨近于一個(gè)確定的值,即ΔyΔx有極限,則稱y=f (x)在x=x0處____,并把這個(gè)________叫做y=f (x)在x=x0處的導(dǎo)數(shù)(也稱為_(kāi)_________),記作f ′(x0)或________,即
新知探究國(guó)際象棋起源于古代印度.相傳國(guó)王要獎(jiǎng)賞國(guó)際象棋的發(fā)明者,問(wèn)他想要什么.發(fā)明者說(shuō):“請(qǐng)?jiān)谄灞P(pán)的第1個(gè)格子里放上1顆麥粒,第2個(gè)格子里放上2顆麥粒,第3個(gè)格子里放上4顆麥粒,依次類推,每個(gè)格子里放的麥粒都是前一個(gè)格子里放的麥粒數(shù)的2倍,直到第64個(gè)格子.請(qǐng)給我足夠的麥粒以實(shí)現(xiàn)上述要求.”國(guó)王覺(jué)得這個(gè)要求不高,就欣然同意了.假定千粒麥粒的質(zhì)量為40克,據(jù)查,2016--2017年度世界年度小麥產(chǎn)量約為7.5億噸,根據(jù)以上數(shù)據(jù),判斷國(guó)王是否能實(shí)現(xiàn)他的諾言.問(wèn)題1:每個(gè)格子里放的麥粒數(shù)可以構(gòu)成一個(gè)數(shù)列,請(qǐng)判斷分析這個(gè)數(shù)列是否是等比數(shù)列?并寫(xiě)出這個(gè)等比數(shù)列的通項(xiàng)公式.是等比數(shù)列,首項(xiàng)是1,公比是2,共64項(xiàng). 通項(xiàng)公式為〖a_n=2〗^(n-1)問(wèn)題2:請(qǐng)將發(fā)明者的要求表述成數(shù)學(xué)問(wèn)題.
二、典例解析例10. 如圖,正方形ABCD 的邊長(zhǎng)為5cm ,取正方形ABCD 各邊的中點(diǎn)E,F,G,H, 作第2個(gè)正方形 EFGH,然后再取正方形EFGH各邊的中點(diǎn)I,J,K,L,作第3個(gè)正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開(kāi)始,連續(xù)10個(gè)正方形的面積之和;(2) 如果這個(gè)作圖過(guò)程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個(gè)等比數(shù)列。解:設(shè)正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個(gè)正方形的頂點(diǎn)分別是第k個(gè)正方形各邊的中點(diǎn),所以a_(k+1)=〖1/2 a〗_k,因此{(lán)a_n},是以25為首項(xiàng),1/2為公比的等比數(shù)列.設(shè){a_n}的前項(xiàng)和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個(gè)正方形的面積之和為25575/512cm^2.(2)當(dāng)無(wú)限增大時(shí),無(wú)限趨近于所有正方形的面積和
1.判斷正誤(正確的打“√”,錯(cuò)誤的打“×”)(1)函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數(shù)f (x)在這個(gè)區(qū)間上單調(diào)遞減. ( )(2)函數(shù)在某一點(diǎn)的導(dǎo)數(shù)越大,函數(shù)在該點(diǎn)處的切線越“陡峭”. ( )(3)函數(shù)在某個(gè)區(qū)間上變化越快,函數(shù)在這個(gè)區(qū)間上導(dǎo)數(shù)的絕對(duì)值越大.( )(4)判斷函數(shù)單調(diào)性時(shí),在區(qū)間內(nèi)的個(gè)別點(diǎn)f ′(x)=0,不影響函數(shù)在此區(qū)間的單調(diào)性.( )[解析] (1)√ 函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數(shù)f (x)在這個(gè)區(qū)間上單調(diào)遞減,故正確.(2)× 切線的“陡峭”程度與|f ′(x)|的大小有關(guān),故錯(cuò)誤.(3)√ 函數(shù)在某個(gè)區(qū)間上變化的快慢,和函數(shù)導(dǎo)數(shù)的絕對(duì)值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數(shù)f (x)在區(qū)間內(nèi)單調(diào)遞增(減),故f ′(x)=0不影響函數(shù)單調(diào)性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因?yàn)閒(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數(shù)在R上單調(diào)遞增,如圖(1)所示
1.對(duì)稱性與首末兩端“等距離”的兩個(gè)二項(xiàng)式系數(shù)相等,即C_n^m=C_n^(n"-" m).2.增減性與最大值 當(dāng)k(n+1)/2時(shí),C_n^k隨k的增加而減小.當(dāng)n是偶數(shù)時(shí),中間的一項(xiàng)C_n^(n/2)取得最大值;當(dāng)n是奇數(shù)時(shí),中間的兩項(xiàng)C_n^((n"-" 1)/2) 與C_n^((n+1)/2)相等,且同時(shí)取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二項(xiàng)式系數(shù)的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展開(kāi)式的各二項(xiàng)式系數(shù)之和為2^n1. 在(a+b)8的展開(kāi)式中,二項(xiàng)式系數(shù)最大的項(xiàng)為 ,在(a+b)9的展開(kāi)式中,二項(xiàng)式系數(shù)最大的項(xiàng)為 . 解析:因?yàn)?a+b)8的展開(kāi)式中有9項(xiàng),所以中間一項(xiàng)的二項(xiàng)式系數(shù)最大,該項(xiàng)為C_8^4a4b4=70a4b4.因?yàn)?a+b)9的展開(kāi)式中有10項(xiàng),所以中間兩項(xiàng)的二項(xiàng)式系數(shù)最大,這兩項(xiàng)分別為C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4與126a4b5 2. A=C_n^0+C_n^2+C_n^4+…與B=C_n^1+C_n^3+C_n^5+…的大小關(guān)系是( )A.A>B B.A=B C.A<B D.不確定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B
一、說(shuō)教學(xué)內(nèi)容本節(jié)課的教學(xué)內(nèi)容是人教版小學(xué)四年級(jí)下冊(cè)數(shù)學(xué)課本第50-51頁(yè)的例1和做一做,以及第55頁(yè)的練習(xí)九第1-3題。這一內(nèi)容,既是前面在三年級(jí)“分?jǐn)?shù)的初步認(rèn)識(shí)”和“小數(shù)的初步認(rèn)識(shí)”的基礎(chǔ)上的延伸,也是系統(tǒng)學(xué)習(xí)小數(shù)的開(kāi)始。要求學(xué)生明確小數(shù)的產(chǎn)生和意義,小數(shù)與分?jǐn)?shù)的聯(lián)系,掌握小數(shù)的計(jì)數(shù)單位及相鄰兩個(gè)計(jì)數(shù)單位之間的進(jìn)率,從而對(duì)小數(shù)的概念有更清楚的認(rèn)識(shí)。教材中簡(jiǎn)要呈現(xiàn)了“小數(shù)產(chǎn)生的”過(guò)程,通過(guò)實(shí)際測(cè)量黑板、數(shù)學(xué)課本,使學(xué)生體會(huì)小數(shù)的產(chǎn)生的原因。例1,教材分三個(gè)層次編排:先通過(guò)分米數(shù)改寫(xiě)成米數(shù),說(shuō)明十分之幾的數(shù)用一位小數(shù)來(lái)表示;再通過(guò)厘米數(shù)改寫(xiě)成米數(shù),說(shuō)明百分之幾的數(shù)用兩位小數(shù)來(lái)表示;然后通過(guò)毫米數(shù)改寫(xiě)成米數(shù),說(shuō)明千分之幾的數(shù)用三位小數(shù)來(lái)表示。
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。