解:四邊形ABCD是平行四邊形.證明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四邊形ABCD是平行四邊形.方法總結(jié):此題主要考查了平行四邊形的判定,以及三角形全等的判定與性質(zhì),解題的關(guān)鍵是根據(jù)條件證出△AFD≌△CEB.三、板書設(shè)計1.平行四邊形的判定定理(1)兩組對邊分別相等的四邊形是平行四邊形.2.平行四邊形的判定定理(2)一組對邊平行且相等的四邊形是平行四邊形.在整個教學(xué)過程中,以學(xué)生看、想、議、練為主體,教師在學(xué)生仔細觀察、類比、想象的基礎(chǔ)上加以引導(dǎo)點撥.判定方法是學(xué)生自己探討發(fā)現(xiàn)的,因此,應(yīng)用也就成了學(xué)生自發(fā)的需要,用起來更加得心應(yīng)手.在證明命題的過程中,學(xué)生自然將判定方法進行對比和篩選,或?qū)σ活}進行多解,便于思維發(fā)散,不把思路局限在某一判定方法上.
已知一水壩的橫斷面是梯形ABCD,下底BC長14m,斜坡AB的坡度為3∶3,另一腰CD與下底的夾角為45°,且長為46m,求它的上底的長(精確到0.1m,參考數(shù)據(jù):2≈1.414,3≈1.732).解析:過點A作AE⊥BC于E,過點D作DF⊥BC于F,根據(jù)已知條件求出AE=DF的值,再根據(jù)坡度求出BE,最后根據(jù)EF=BC-BE-FC求出AD.解:過點A作AE⊥BC,過點D作DF⊥BC,垂足分別為E、F.∵CD與BC的夾角為45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度為3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的長約為3.1m.方法總結(jié):考查對坡度的理解及梯形的性質(zhì)的掌握情況.解決問題的關(guān)鍵是添加輔助線構(gòu)造直角三角形.
一、本章知識要點: 1、銳角三角函數(shù)的概念; 2、解直角三角形。二、本章教材分析: (一).使學(xué)生正確理解和掌握三角函數(shù)的定義,才能正確理解和掌握直角三角形中邊與角的相互關(guān)系,進而才能利用直角三角形的邊與角的相互關(guān)系去解直角三角形,因此三角形函數(shù)定義既是本章的重點又是理解本章知識的關(guān)鍵,而且也是本章知識的難點。如何解決這一關(guān)鍵問題,教材采取了以下的教學(xué)步驟:1. 從實際中提出問題,如修建揚水站的實例,這一實例可歸結(jié)為已知RtΔ的一個銳角和斜邊求已知角的對邊的問題。顯然用勾股定理和直角三角形兩個銳角互余中的邊與邊或角與角的關(guān)系無法解出了,因此需要進一步來研究直角三角形中邊與角的相互關(guān)系。2. 教材又采取了從特殊到一般的研究方法利用學(xué)生的舊知識,以含30°、45°的直角三角形為例:揭示了直角三角形中一個銳角確定為30°時,那么這角的對邊與斜邊之比就確定比值為1:2。
(2)由題意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,該產(chǎn)品的質(zhì)量檔次為第6檔.方法總結(jié):解決此類問題的關(guān)鍵是要吃透題意,確定變量,建立函數(shù)模型.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后鞏固提升”第8題三、板書設(shè)計二次函數(shù)1.二次函數(shù)的概念2.從實際問題中抽象出二次函數(shù)解析式二次函數(shù)是一種常見的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型.許多實際問題往往可以歸結(jié)為二次函數(shù)加以研究.本節(jié)課是學(xué)習(xí)二次函數(shù)的第一節(jié)課,通過實例引入二次函數(shù)的概念,并學(xué)習(xí)求一些簡單的實際問題中二次函數(shù)的解析式.在教學(xué)中要重視二次函數(shù)概念的形成和建構(gòu),在概念的學(xué)習(xí)過程中,讓學(xué)生體驗從問題出發(fā)到列二次函數(shù)解析式的過程,體驗用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義.
4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設(shè)該商品每天的利潤為y元,求y與x的函數(shù)關(guān)系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出問題讓學(xué)生思考回答;(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個? (各有1個)(2)多項式-2x2+20和-100x2+100x+200分別是幾次多項式?(分別是二次多項式)(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點? (都是用自變量的二次多項式來表示的)(4)本章導(dǎo)圖中的問題以及P1頁的問題2有什么共同特點?讓學(xué)生討論、歸結(jié)為:自變量x為何值時,函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項的系數(shù),c叫作常數(shù)項.
解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點P在⊙O′的外部;QO′=1<2,則點Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點R在圓上.方法總結(jié):注意運用平面內(nèi)兩點之間的距離公式,設(shè)平面內(nèi)任意兩點的坐標分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點與圓的位置關(guān)系的實際應(yīng)用如圖,城市A的正北方向50千米的B處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為100千米,AC是一條直達C城的公路,從A城發(fā)往C城的客車車速為60千米/時.(1)當客車從A城出發(fā)開往C城時,某人立即打開無線電收音機,客車行駛了0.5小時的時候,接收信號最強.此時,客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號越強)?(2)客車從A城到C城共行駛2小時,請你判斷到C城后還能接收到信號嗎?請說明理由.
(3)若要滿足結(jié)論,則∠BFO=∠GFC,根據(jù)切線長定理得∠BFO=∠EFO,從而得到這三個角應(yīng)是60°,然后結(jié)合已知的正方形的邊長,也是圓的直徑,利用30°的直角三角形的知識進行計算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設(shè)存在點P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問題的結(jié)論有兩種可能,所以具有開放的特征,在假設(shè)存在性以后進行的推理或計算.一般思路是:假設(shè)存在——推理論證——得出結(jié)論.若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,若導(dǎo)出矛盾,就做出“不存在”的判斷.
我們知道圓是一個旋轉(zhuǎn)對稱圖形,無論繞圓心旋轉(zhuǎn)多少度,它都能與自身重合,對稱中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點O逆時針旋轉(zhuǎn)某個角度,畫出旋轉(zhuǎn)之后的圖形,比較前后兩個圖形,你能發(fā)現(xiàn)什么?二、合作探究探究點:圓心角、弧、弦之間的關(guān)系【類型一】 利用圓心角、弧、弦之間的關(guān)系證明線段相等如圖,M為⊙O上一點,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據(jù)等弧對等圓心角,則∠MOD=∠MOE,再由角平分線的性質(zhì),得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結(jié):圓心角、弧、弦之間相等關(guān)系的定理可以用來證明線段相等.本題考查了等弧對等圓心角,以及角平分線的性質(zhì).
教學(xué)目標:1、理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。2、了解計算一個銳角的正切值的方法。教學(xué)重點:理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。教學(xué)難點:計算一個銳角的正切值的方法。教學(xué)過程:一、觀察回答:如圖某體育館,為了方便不同需求的觀眾設(shè)計了多種形式的臺階。下列圖中的兩個臺階哪個更陡?你是怎么判斷的?圖(1) 圖(2)[點撥]可將這兩個臺階抽象地看成兩個三角形答:圖 的臺階更陡,理由 二、探索活動1、思考與探索一:除了用臺階的傾斜角度大小外,還可以如何描述臺階的傾斜程度呢?① 可通過測量BC與AC的長度,② 再算出它們的比,來說明臺階的傾斜程度。(思考:BC與AC長度的比與臺階的傾斜程度有何關(guān)系?)答:_________________.③ 討論:你還可以用其它什么方法?能說出你的理由嗎?答:________________________.2、思考與探索二:
解析:根據(jù)銳角三角函數(shù)的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結(jié):當角度在0°cosA>0.當角度在45°<∠A<90°間變化時,tanA>1.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達標訓(xùn)練”第10題【類型四】 與三角函數(shù)有關(guān)的探究性問題在Rt△ABC中,∠C=90°,D為BC邊(除端點外)上的一點,設(shè)∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關(guān)系;(2)試證明你的結(jié)論.解析:(1)因為在△ABD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數(shù)的定義可求出sinα,sinβ的關(guān)系式即可得出結(jié)論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結(jié):利用三角函數(shù)的定義把兩角的正弦值表示成線段的比,然后進行比較是解題的關(guān)鍵.
[教學(xué)目標]1、 理解并掌握正弦、余弦的含義,會在直角三角形中求出某個銳角的正弦和余弦值。2、能用函數(shù)的觀點理解正弦、余弦和正切。[教學(xué)重點與難點] 在直角三角形中求出某個銳角的正弦和余弦值。[教學(xué)過程] 一、情景創(chuàng)設(shè)1、問題1:如圖,小明沿著某斜坡向上行走了13m后,他的相對位置升高了5m,如果他沿著該斜坡行走了20m,那么他的相對位置升高了多少?行走了a m呢?2、問題2:在上述問題中,他在水平方向又分別前進了多遠?二、探索活動1、思考:從上面的兩個問題可以看出:當直角三角形的一個銳角的大小已確定時,它的對邊與斜邊的比值________;它的鄰邊與斜邊的比值________。(根據(jù)是__________________。)2、正弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的對邊a與斜邊c的比叫做∠A的______,記作________,即:sinA=________=________.3、余弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的鄰邊b與斜邊c的比叫做∠A的______,記作=_________,即:cosA=______=_____。(你能寫出∠B的正弦、余弦的表達式嗎?)試試看.___________.
<Good morning> T:Look!今天我們班來了很多老師,我們一起跟老師打招呼吧! S:Goodmorning Miss! T:Follow mecry stop ! Follow me laugh stop ! Follow me eat stop ! Follow me stand up ! Follow me sit down !幼兒跟老師做 T:Children,look ,what’s this ? S:A T:Yes! Verygood!Follow me A A ae ae ae S:A A ae aeae T:Apple S:Apple T: A A ae aeae ant S: A A ae aeae ant T: A A ae aeae cat S: A A ae aeae cat T: A A ae aeae hat S: A A ae aeae hat
學(xué)習(xí)策略的第五級標準分為認知策略和調(diào)控策略。認知策略方面,標準描述有:根據(jù)需要進行預(yù)習(xí);在學(xué)習(xí)中集中注意力;在學(xué)習(xí)中善于記要點;在學(xué)習(xí)中積極思考,主動探究,善于發(fā)現(xiàn)語言的規(guī)律并運用規(guī)律舉一反三。對于調(diào)控策略,其標準是這樣描述的:明確自學(xué)習(xí)英語的目標;積極探索適合自己的英語學(xué)習(xí)方法;經(jīng)常與老師和同學(xué)交流學(xué)習(xí)體會。
(四)、課堂總結(jié)、體驗成功引導(dǎo)學(xué)生對所學(xué)知識、學(xué)習(xí)方法、學(xué)習(xí)結(jié)果、情感等進行全面總結(jié),讓學(xué)生體驗學(xué)習(xí)的成功感,同時,進一步系統(tǒng)、完善知識結(jié)構(gòu)??傊?,本課的教學(xué)設(shè)計力求體現(xiàn)“以學(xué)生為本”的教學(xué)理念,具體體現(xiàn)在以下幾個方面:(一)、創(chuàng)設(shè)生動的情景,激發(fā)探索的樂趣,讓學(xué)生感受數(shù)學(xué)與生活的聯(lián)系。課的引入以一幅學(xué)生經(jīng)常接觸的,喜聞樂見的購買玩具這一題材為切入點。在練習(xí)設(shè)計中,改變枯燥抽象的數(shù)字計算練習(xí),選取了一組寓有童趣的素材。它們以豐富多彩的呈現(xiàn)方式深深地吸引著學(xué)生,使他們認識到現(xiàn)實生活中蘊含著大量的數(shù)學(xué)信息,使學(xué)生感到有趣、有挑戰(zhàn)性,激發(fā)他們好奇,好勝的心理,從而誘發(fā)他們?nèi)ブ鲃訉で蠼鉀Q問題的策略,同時體驗到數(shù)學(xué)與生活的聯(lián)系。
二、說教學(xué)目標1、結(jié)合具體情境進一步理解加減法的意義,能正確口算得數(shù)是百以內(nèi)數(shù)的兩位數(shù)加減法。2、能利用所學(xué)知識,在教師的指導(dǎo)下提出并解決簡單的實際問題,了解同一問題可以用不同的方法解決。3、經(jīng)歷與他人交流各自計算方法的過程,體驗解決問題策略的多樣性,感受學(xué)數(shù)學(xué)、用數(shù)學(xué)的樂趣。三、說教法、學(xué)法教法:為了使學(xué)生掌握好百以內(nèi)的兩位數(shù)加減兩位數(shù)的口算這部分知識,達到以上教學(xué)目的,突破以上教學(xué)重難點,我采用了遷移法、引導(dǎo)法、講解法、聯(lián)系法、自主探索法來進行教學(xué)。學(xué)法:通過本課的學(xué)習(xí),使學(xué)生學(xué)會利用舊知構(gòu)建新知的方法、合作探究的方法,調(diào)動學(xué)生主動探索的積極性。四、說教學(xué)過程(一)創(chuàng)設(shè)情景、導(dǎo)入新課1、談話:同學(xué)們,大千世界無奇不有。我們所處的人類的社會是由一個個擔(dān)任不同工作的人所組成的,而和我們生活密切相關(guān)的蜜蜂也跟人類一樣,它們生活在一個蜜蜂王國里,今天我們就一起到那里了解一下蜜蜂的生活吧。
二、幼兒情況大班的幼兒已經(jīng)掌握了一些基本的日常生活用語和課堂用語,因此進行全英文教學(xué)活動。三、活動目標1、通過輕松、自然、愉快的英語游戲設(shè)計,讓幼兒積極參與英語活動,大膽用英語進行表達,并感受英語活動帶給他們的快樂與自信。2、復(fù)習(xí)兩首英語歌曲:《松餅先生》《快樂拍手歌》3、學(xué)習(xí)新詞匯:碗、盤子、筷子、調(diào)羹。學(xué)習(xí)新句子:我是一個廚師。四、活動準備碗、盤子、筷子、調(diào)羹若干廚師帽和廚師圍兜每人一套神秘箱音樂磁帶五、教學(xué)方法1、游戲法孩子生來是好動的,是以游戲為生命的。游戲化教學(xué)有著其他活動不能代替的功能和價值。英語與游戲的結(jié)合,能充分激起幼兒學(xué)英語的興趣,密切師幼關(guān)系,尤其能提供給幼兒輕松自然愉快運用英語的機會。2、直接法全英文教學(xué)形式,直接培養(yǎng)幼兒簡單英語思維以及表達習(xí)慣。3、重復(fù)法不斷重復(fù)單詞與句型,刺激幼兒印象,強化鞏固記憶。4、賞識教育法鼓勵與表揚幼兒的每一次進步,培養(yǎng)孩子們的興趣,并幫助他們樹立信心。六、活動過程1、問候2、句子:我是一個廚師把小朋友打扮成廚師,引起幼兒興趣。學(xué)習(xí)句子:我是一個廚師。熱身歌曲:《松餅先生》3、游戲——神秘箱。引出活動新內(nèi)容——碗、盤子、筷子、調(diào)羹。(教師示范奏樂)4、游戲——找、找、找。播放音樂,幼兒在教室里尋找碗、盤子、筷子、調(diào)羹。5、幼兒分組向大家介紹自己找到的東西,并分組奏樂。
2. 內(nèi)容內(nèi)在邏輯本單元親子之間的交往既承接了上一課的“師生之間”的交往,也為七年級 下冊關(guān)于中學(xué)生提升在集體中的交往水平和能力奠定了堅實的基礎(chǔ),因此本單元 在教材中起承上啟下的作用。第一框“家的意味”,通過對“家規(guī)” “家訓(xùn)”的探究,引出中國家庭文化中“孝”的精神內(nèi)涵,引導(dǎo)學(xué)生對家庭美德進行深入思考,學(xué)會孝親敬長。第二框“愛在家人間”,通過體驗家人間的親情之愛,進而引導(dǎo)學(xué)生感受對 家人割舍不斷的情感。第三框“讓家更美好”,通過對傳統(tǒng)家庭與現(xiàn)代家庭的比較,引導(dǎo)學(xué)生認識 現(xiàn)代家庭的特點,樹立共創(chuàng)共享家庭美德的意識,共創(chuàng)和諧美德之家。從初識家中“孝”,體驗家中“愛”,處理家中“沖突”,到自覺共建家庭 “美德”,學(xué)生逐步體味親情之愛,將“親情之愛”內(nèi)化于心、夕卜化于行。(三)學(xué)情分析(1) 認知水平與心理特點七年級學(xué)生正處于青春期,是生理和心理急劇變化的關(guān)鍵時期,自我意識不 斷增強,逆反心理更加強烈,情緒波動較大。
教師扮做客人,讓孩子根據(jù)問題做出反應(yīng)并回答。 Can I have an apple? Can I have some grapes? Let’s sing 播放歌曲的錄像,先觀看一遍, 幫助孩子理解歌曲。 孩子邊唱邊表演。 小組表演,小組展示。 (四) 擴展性活動(Add-activities) Coloring Draw some grapes, color them red Draw a banana,color it green. …, …【板書設(shè)計 】Do you like pears? Do you like pears? 第五課時第六課時【課題】Do you like pears? 第六課時 【教學(xué)重點】聽、說、認讀字母Rr Ss Tt,體會字母在單詞中的發(fā)音 【教學(xué)難點 】字母Ss的發(fā)音。Tiger中字母I的發(fā)音 【教具準備】 1、本課生詞的單詞卡片 2、配套的教學(xué)課件 3、相配套的教學(xué)錄音帶 4、學(xué)生的小英語練習(xí)本 5、大字母卡片,每組一套的小字母卡片 【教學(xué)過程 】 (一)熱身/復(fù)習(xí)(Warm-up/Revision) 1、Let’s sing 演唱B部分的歌曲,邊唱邊演。
(1)呈現(xiàn)猴子圖片,初步接觸知識.教師在發(fā)指令時,加入 Touch your tail.當學(xué)生覺得茫然時,老師趁機出示課件(一只猴子)Look,We have no tails,but the monkey has.Look at the monkey,How long is the tail?在課件上呈現(xiàn)數(shù)據(jù)38cm.學(xué)生回答:Its tail is38cm long.根據(jù)教材內(nèi)容教師提問:How tall is the monkey?學(xué)生:It’s 40cm tall.老師自己引出only一詞,注意這個詞的發(fā)音.多媒體再出示兩只猴子的圖片,一只黃色,一只棕色,讓學(xué)生加以比較.教師問:Which monkey do you like?The yellow one or the brown one?【設(shè)計思路】 學(xué)生在回答這些問題時,也同時在復(fù)習(xí)前兩課時所學(xué)內(nèi)容,起到知識循環(huán)的作用.(2)猜一猜游戲:它們有多高?讓學(xué)生猜一猜這兩只猴子的身高.注意提示學(xué)生用上I think….這一句型,表示自己的猜測.在這里也可安排一個競賽,看誰能猜中正確數(shù)據(jù),教師讓一些學(xué)生猜后出示數(shù)據(jù).【設(shè)計思路】 學(xué)生對有懸念的東西都特別感興趣,在此不僅練習(xí)了兩位數(shù)的讀法,又滿足了學(xué)生的好勝心理.
師:從圖1到圖2,風(fēng)車發(fā)生了怎樣的變化呢?下面請同學(xué)們小組合作,共同來解決報告單上提出的問題。(1)從圖1到圖2,風(fēng)車繞點O逆時針旋轉(zhuǎn)了___度。(2)你是怎樣判斷風(fēng)車旋轉(zhuǎn)的角度的?生小組討論。3.小組匯報(實物投影展示)(1)圖1到圖2,風(fēng)車繞點O逆時針旋轉(zhuǎn)了90°;(2)組1,根據(jù)三角形變換的位置判斷風(fēng)車旋轉(zhuǎn)的角度;(3)組2,根據(jù)對應(yīng)的線段判斷風(fēng)車旋轉(zhuǎn)的角度;(4)組3,根據(jù)對應(yīng)的點判斷風(fēng)車旋轉(zhuǎn)的角度。4.小結(jié)(教師邊做小結(jié)邊演示)師:通過觀察,我們發(fā)現(xiàn)風(fēng)車旋轉(zhuǎn)后,不僅是每個三角形都繞點O逆時針旋轉(zhuǎn)了90°(閃爍),而且,每條線段(閃爍),每個頂點(閃爍),都繞點O逆時針旋轉(zhuǎn)了90°。5.揭示旋轉(zhuǎn)的特征和性質(zhì)