2、求還剩多少枝要用什么方法來計算?(請幾名學生說一說,再同桌互相說一說,在說的過程中掌握解決問題的方法)3、為什么用減法?你是怎么想的?(請幾名學生說一說)師:你能根據(jù)要求列出算式來嗎?(請學生在紙上列算式)(學生經(jīng)過10以內(nèi)的加減法的學習以及20以內(nèi)進位加法的學習和長時間的培養(yǎng),已經(jīng)具備了根據(jù)數(shù)學問題列出式子的能力。因此學生根據(jù)問題,能很快的列出式子。)請學生回答。老師板書:15-9=(分析:1,“15,9”分別表示什么?)4、你是怎么來計算的(先讓學生進行自主的探究,尋找計算方法。探究性學習必須要有獨立思考的時間。由于學生的學習能力存在差異,對15-9的理解也存在不同,只有讓學生經(jīng)過獨立思考,才能讓他們真正的掌握知識。)
二、說學情學生有了前面學習的基礎(chǔ),課堂上盡可能放手讓學生自主探索出兩位數(shù)減兩位數(shù)(不退位)的計算方法。關(guān)注學生豎式的書寫。三、教學目標:1、學生在具體情境下,進一步體會加減法的意義。2、探索并掌握兩位數(shù)減兩位數(shù)(不退位)的計算方法3、初步學會應(yīng)用加減法解決生活中的簡單問題,感受加減法與日常生活的密切聯(lián)系教學重點:本節(jié)課的重點是理解筆算兩位數(shù)不退位減的算理,能正確用豎式計算。教學難點:理解兩位數(shù)減兩位數(shù)不退位減法的算理。三、精選教法。針對本節(jié)課抽象性較強,算理比較復雜,而一年級學生以形象思維為主,抽象思維相對較弱的特點,教學時應(yīng)采用多種方法來激發(fā)學生興趣,引導探究新知。教師主要采用:情境教學法、嘗試教學法、講授法、直觀演示法、練習法等,并使這些方法相互交融,融為一體。
一、說教材(一)說教學內(nèi)容我說課的內(nèi)容是北師大版義務(wù)教育課程第八冊第四單元“觀察物體”一節(jié),是一節(jié)新授課。(二)教材簡析觀察物體是在學生學習并掌握了“上下、前后、左右”位置關(guān)系的基礎(chǔ)上安排的。通過這部分內(nèi)容的教學,不但可以使學生能通過由低到高來觀察物體的活動,從而體會到不同的位置看到的情景不一樣,而且能通過由遠到近看景物,能體會到看到的范圍越來越小。(三)說教材重點和難點。教學重點:想象、判斷觀察到畫面發(fā)生的相應(yīng)變化,發(fā)展空間觀念。教學難點:想象、判斷觀察到畫面發(fā)生的相應(yīng)變化,發(fā)展空間觀念。二、說教學目標依照《新課程標準》的要求,結(jié)合教材和學生的特點,從知識、能力、情感態(tài)度三方面制定以下教學目標:1、通過引導學生參與各種形式的數(shù)學活動,使他們體驗從不同的角度觀察同一物體所看到的圖形可能并不完全相同,領(lǐng)悟觀察物體的方法,培養(yǎng)和發(fā)展學生的空間觀念。2、培養(yǎng)學生運用所學知識解決實際問題的能力、與人交流的能力以及觀察能力。
一、說教材噸的認識這部分內(nèi)容是在學生認識了質(zhì)量單位“克”和“千克”的基礎(chǔ)上進行教學的。且學生已經(jīng)能夠準確地進行千克和克單位之間的換算。這些都為這節(jié)課的教學內(nèi)容作了知識的鋪墊和思路孕伏。而通過本課的教學,使學生對質(zhì)量單位有比較全面的認識和理解。對于噸這個質(zhì)量單位,學生在日常生活中雖然略有所聞,但接觸并不多。教材所展現(xiàn)的知識結(jié)構(gòu),層次清楚、循序漸進,便于學生理解和掌握。教材先通過觀察大宗物體,對噸有初步的感覺。接著介紹噸的概念,提示了噸與千克之間的進率1噸=1000千克。接著教材結(jié)合學生的生活實際,通過對面粉、油、小學生體重等物體的介紹幫助認識噸,讓學生加深1噸=1000千克的認識。最后通過練習讓學生了解并掌握噸與千克之間的簡單換算及質(zhì)量單位的合理運用。
《集郵》是北師大版小學三年級下冊第一單元除法里的一節(jié)課,主要教學內(nèi)容是三位數(shù)除以一位數(shù),被除數(shù)的最高位比除數(shù)小,商是兩位數(shù)的除法。教材安排了估算和筆算兩種方法,估算是讓學生算出大概的結(jié)果,它的最終目的是為學會筆算服務(wù)的,如果用于檢驗筆算結(jié)果的準確性及試商等。由于學生已經(jīng)學習了一位數(shù)除兩位數(shù)(首位不夠除)的筆算計算方法,再加上大量的練習,因此一些基本的計算過程及格式學生理解和掌握起來應(yīng)該不難,關(guān)鍵還是要把握住“當被除數(shù)的最高位不夠商一,用除數(shù)去除被除數(shù)的前兩位”這個知識點。二、說學情教材呈現(xiàn)了估算和筆算的過程,注重培養(yǎng)學生的估算意識,幫助學生體會估算、筆算不同的特點。本節(jié)課有一個新的知識點,即當被除數(shù)第一位不夠除的時候就用前兩位去除。相對來說,這些算式的數(shù)字較大,學生容易算錯,教材中提出了用乘法驗算除法的方法,以此培養(yǎng)學生驗算的習慣。
2.應(yīng)用意識方面,解決問題能力較差。一方面是符號意識、應(yīng)用意識需要發(fā)展,從現(xiàn)實問題抽象出數(shù)學問題的能力和主動用數(shù)學思想分析現(xiàn)實問題的習慣。二是分析問題、解決問題的策略缺乏、靈活使用的能力不足(幾何直觀、模型思想、歸納、類比、逆向思考等方法)。五、教法、學法教法:利用談話法,引導學生思考、探究的過程,實現(xiàn)教師主導下的學生的自主建構(gòu)。利用講解法,在探究學習的基礎(chǔ)上,教師和學生共同對重點、難點進行梳理,引導學生建立清晰、系統(tǒng)的知識結(jié)構(gòu)。利用練習法,鞏固知識,發(fā)展學生的運算能力、符合意識、應(yīng)用意識。學法:自主探究,有利于形成主動思考的習慣,思維能力獲得提高。成功的探索使其獲得理智感,有益于學習興趣的培養(yǎng)。合作學習,交流比較,質(zhì)疑反思的經(jīng)驗有利于學生創(chuàng)新能力的提升。合作交流同時也促進個性、社會性的發(fā)展。
《包裝》是北師大版四年級下冊第三單元第四課時的內(nèi)容。本課主要讓學生探索小數(shù)乘小數(shù)的豎式計算方法,是在學生掌握小數(shù)點位置的移動引起小數(shù)大小變化的規(guī)律以及積的小數(shù)位數(shù)與兩個乘數(shù)的小數(shù)位數(shù)之間關(guān)系的基礎(chǔ)上教學的。小數(shù)乘法的豎式計算是本單元的重點,是學生正確進行小數(shù)乘法計算的關(guān)鍵。課本首先安排了三個問題:第一個問題是結(jié)合解決實際問題的過程,會選擇適當方法估計運算結(jié)果,發(fā)展數(shù)感,并通過交流進一步理解小數(shù)乘法與整數(shù)乘法之間相互轉(zhuǎn)化的條件;第二個問題也是結(jié)合解決實際問題的過程,掌握小數(shù)乘法轉(zhuǎn)化為整數(shù)乘法進行運算的一般步驟,從而歸納總結(jié)小數(shù)乘法的豎式計算方法;第三個問題是經(jīng)歷獨立計算和交流小數(shù)乘法的過程,體驗算法的多樣化,發(fā)展運算能力。其次安排了6道練習題,目的是為了進一步發(fā)展數(shù)感,鞏固小數(shù)乘法的豎式計算方法,體會小數(shù)乘法的豎式計算在生活中的應(yīng)用。
一、說教材分析《采松果》一課講的主要內(nèi)容是:兩位數(shù)加、減一位數(shù)(不進位、不退位),是在學生熟練掌握20以內(nèi)加、減法以及整十數(shù)加、減整十數(shù)的基礎(chǔ)上安排的。教材內(nèi)容分為兩部分:一部分是教學兩位數(shù)加一位數(shù),另一部分是教學兩位數(shù)減一位數(shù)。這兩部分內(nèi)容呈現(xiàn)在同一情境圖——“采松果”中,創(chuàng)設(shè)了一個充滿童趣的生活故事場景,引發(fā)學生在讀懂圖意的基礎(chǔ)上,發(fā)現(xiàn)其中的數(shù)學信息,并能利用這些數(shù)學信息提出數(shù)學問題。二、說學情分析在學習本節(jié)課內(nèi)容之前,學生已認識了100以內(nèi)的數(shù),掌握了20以內(nèi)的加減法以及整十數(shù)加、減整十數(shù)的計算方法,對于加減法的意義有了一個基本的了解。另外經(jīng)過上半學期的目標性訓練,學生已具有了初步的合作交流意識和提出問題、解決問題的能力,能夠有目的地進行探索性學習。但是,對于單純的口算學習學生的學習興趣并不是很濃,因此,激發(fā)學生的學習興趣,使學生想學、樂學便顯得尤為重要。
教學目標:1.知道二次函數(shù)與一元二次方程的聯(lián)系,提高綜合解決問題的能力.2.會求拋物線與坐標軸交點坐標,會結(jié)合函數(shù)圖象求方程的根.教學重點:二次函數(shù)與一元二次方程的聯(lián)系.預設(shè)難點:用二次函數(shù)與一元二次方程的關(guān)系綜合解題.☆ 預習導航 ☆一、鏈接:1.畫一次函數(shù)y=2x-3的圖象并回答下列問題(1)求直線y=2x-3與x軸的交點坐標; (2)解方程2x-3=0(3)說出直線y=2x-3與x軸交點的橫坐標和方程根的關(guān)系2.不解方程3x2-2x+4=0,此方程有 個根。二、導讀畫二次函數(shù)y= x2-5x+4的圖象1.觀察圖象,拋物線與x軸的交點坐標是什么?2.求一元二次方程x2-5x+4=0的解。3.拋物線與x軸交點的橫坐標與一元二次方程x2-5x+4=0的解有什么關(guān)系?(3)一元二次方程ax2+bx+c=0是二次函數(shù)y=ax2+bx+c當函數(shù)值y=0時的特殊情況.二次函數(shù)y=ax2+bx+c的圖象與x軸交點的橫坐標與一元二次方程ax2+bx+c=0的根有什么關(guān)系?
解:(1)設(shè)第一次落地時,拋物線的表達式為y=a(x-6)2+4,由已知:當x=0時,y=1,即1=36a+4,所以a=-112.所以函數(shù)表達式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據(jù)題意:CD=EF(即相當于將拋物線AEMFC向下平移了2個單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結(jié):解決此類問題的關(guān)鍵是先進行數(shù)學建模,將實際問題中的條件轉(zhuǎn)化為數(shù)學問題中的條件.常有兩個步驟:(1)根據(jù)題意得出二次函數(shù)的關(guān)系式,將實際問題轉(zhuǎn)化為純數(shù)學問題;(2)應(yīng)用有關(guān)函數(shù)的性質(zhì)作答.
問題2、如何用測角儀測量一個低處物體的俯角呢?和測量仰角的步驟是一樣的,只不過測量俯角時,轉(zhuǎn)動度盤,使度盤的直徑對準低處的目標,記下此時鉛垂線所指的度數(shù),同樣根據(jù)“同角的余角相等”,鉛垂線所指的度數(shù)就是低處的俯角.活動三:測量底部可以到達的物體的高度.“底部可以到達”,就是在地面上可以無障礙地直接測得測點與被測物體底部之間的距離.要測旗桿MN的高度,可按下列步驟進行:(如下圖)1.在測點A處安置測傾器(即測角儀),測得M的仰角∠MCE=α.2.量出測點A到物體底部N的水平距離AN=l.3.量出測傾器(即測角儀)的高度AC=a(即頂線PQ成水平位置時,它與地面的距離).根據(jù)測量數(shù)據(jù),就能求出物體MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因為NE=AC=a,所以MN=ME+EN=l·tanα+a.
(8)物價部門規(guī)定,此新型通訊產(chǎn)品售價不得高于每件80元。在此情況下,售價定為多少元時,該公司可獲得最大利潤?最大利潤為多少萬元?若該公司計劃年初投入進貨成本m不超過200萬元,請你分析一下,售價定為多少元,公司獲利最大?售價定為多少元,公司獲利最少?三、小練兵:某商場經(jīng)營某種品牌的童裝,購進時的單價是60元.根據(jù)市場調(diào)查,銷售量y(件)與銷售單價x(元)之間的函數(shù)關(guān)系式為y= –20 x +1800.(1)寫出銷售該品牌童裝獲得的利潤w(元)與銷售單價x(元)之間的函數(shù)關(guān)系式;(2)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,不高于78元,那么商場銷售該品牌童裝獲得的最大利潤是多少元?(3)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,且商場要完成不少于240件的銷售任務(wù),那么商場銷售該品牌童裝獲得的最大利潤是多少元?
(2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?解析:(1)分1≤x<50和50≤x≤90兩種情況進行討論,利用利潤=每件的利潤×銷售的件數(shù),即可求得函數(shù)的解析式;(2)利用(1)得到的兩個解析式,結(jié)合二次函數(shù)與一次函數(shù)的性質(zhì)分別求得最值,然后兩種情況下取最大的即可.解:(1)當1≤x<50時,y=(200-2x)(x+40-30)=-2x2+180x+2000;當50≤x≤90時,y=(200-2x)(90-30)=-120x+12000.綜上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)當1≤x<50時,y=-2x2+180x+2000,二次函數(shù)開口向下,對稱軸為x=45,當x=45時,y最大=-2×452+180×45+2000=6050;當50≤x≤90時,y=-120x+12000,y隨x的增大而減小,當x=50時,y最大=6000.綜上所述,銷售該商品第45天時,當天銷售利潤最大,最大利潤是6050元.方法總結(jié):本題考查了二次函數(shù)的應(yīng)用,讀懂表格信息、理解利潤的計算方法,即利潤=每件的利潤×銷售的件數(shù),是解決問題的關(guān)鍵.
AD=CD,∠ADE=∠CDG,DE=GD,∴△ADE≌△CDG(SAS),∴AE=CG;(2)設(shè)AE與DG相交于M,AE與CG相交于N.在△GMN和△DME中,由(1)得∠CGD=∠AED,又∵∠GMN=∠DME,∠DEM+∠DME=90°,∴∠CGD+∠GMN=90°,∴∠GNM=90°,∴AE⊥CG.三、板書設(shè)計1.邊角邊:兩邊及其夾角分別相等的兩個三角形全等,簡寫成“邊角邊”或“SAS”.兩邊和其中一邊的對角對應(yīng)相等的兩個三角形不一定全等.2.全等三角形判定與性質(zhì)的綜合運用本節(jié)課從操作探究入手,具有較強的操作性和直觀性,有利于學生從直觀上積累感性認識,從而有效地激發(fā)了學生的學習積極性和探究熱情,提高了課堂的教學效率,促進了學生對新知識的理解和掌握.從課堂教學的情況來看,學生對“邊角邊”掌握較好,但在探究三角形的大小、形狀時不會正確分類,需要在今后的教學和作業(yè)中進一步加強分類思想的鞏固和訓練
解:(ax2+bx+1)(3x-2)=3ax3-2ax2+3bx2-2bx+3x-2.∵積不含x2項,也不含x項,∴-2a+3b=0,-2b+3=0,解得b=32,a=94,∴系數(shù)a、b的值分別是94,32.方法總結(jié):解決此類問題首先要利用多項式乘法法則計算出展開式,合并同類項后,再根據(jù)不含某一項,可得這一項系數(shù)等于零,再列出方程解答.三、板書設(shè)計1.多項式與多項式的乘法法則:多項式和多項式相乘,先用一個多項式的每一項與另一個多項式的每一項相乘,再把所得的積相加.2.多項式與多項式乘法的應(yīng)用本節(jié)知識的綜合性較強,要求學生熟練掌握前面所學的單項式與單項式相乘及單項式與多項式相乘的知識,同時為了讓學生理解并掌握多項式與多項式相乘的法則,教學中一定要精講精練,讓學生從練習中再次體會法則的內(nèi)容,為以后的學習奠定基礎(chǔ)
光的速度約為3×108米/秒,一顆人造地球衛(wèi)星的速度是8×103米/秒,則光的速度是這顆人造地球衛(wèi)星速度的多少倍?解析:要求光速是人造地球衛(wèi)星的速度的倍數(shù),用光速除以人造地球衛(wèi)星的速度,可轉(zhuǎn)化為單項式相除問題.解:(3×108)÷(8×103)=(3÷8)·(108÷103)=3.75×104.答:光速是這顆人造地球衛(wèi)星速度的3.75×104倍.方法總結(jié):解整式除法的實際應(yīng)用題時,應(yīng)分清何為除式,何為被除式,然后應(yīng)當單項式除以單項式法則計算.三、板書設(shè)計1.單項式除以單項式的運算法則:單項式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式;對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式.2.單項式除以單項式的應(yīng)用在教學過程中,通過生活中的情景導入,引導學生根據(jù)單項式乘以單項式的乘法運算推導出其逆運算的規(guī)律,在探究的過程中經(jīng)歷數(shù)學概念的生成過程,從而加深印象
解析:先求出長方形的面積,再求出綠化的面積,兩者相減即可求出剩下的面積.解:長方形的面積是xym2,綠化的面積是35x×34y=920xy(m2),則剩下的面積是xy-920xy=1120xy(m2).方法總結(jié):掌握長方形的面積公式和單項式乘單項式法則是解題的關(guān)鍵.三、板書設(shè)計1.單項式乘以單項式的運算法則:單項式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對于只在一個單項式里面含有的字母,則連同它的指數(shù)作為積的一個因式.2.單項式乘以單項式的應(yīng)用本課時的重點是讓學生理解單項式的乘法法則并能熟練應(yīng)用.要求學生在乘法的運算律以及冪的運算律的基礎(chǔ)上進行探究.教師在課堂上應(yīng)該處于引導位置,鼓勵學生“試一試”,學生通過動手操作,能夠更為直接的理解和應(yīng)用該知識點
一、情境導入1.計算:(1)-6x3y4z2÷(-23x2y2);(2)9mn÷(-6mn)2·(13n2);(3)6(a-b)3c5÷[-35(a-b)2c]·[-2(a-b)3c4].2.m(a+b+c)=am+bm+cm,(am+bm+cm)÷m=am÷m+bm÷m+cm÷m=a+b+c.你能根據(jù)多項式乘以單項式的運算歸納出多項式除以單項式的運算法則嗎?二、合作探究探究點:多項式除以單項式【類型一】 直接利用多項式除以單項式進行計算計算:(72x3y4-36x2y3+9xy2)÷(-9xy2).解析:根據(jù)多項式除以單項式,先用多項式的每一項分別除以這個單項式,然后再把所得的商相加.解:原式=72x3y4÷(-9xy2)+(-36x2y3)÷(-9xy2)+9xy2÷(-9xy2)=-8x2y2+4xy-1.方法總結(jié):多項式除以單項式,先把多項式的每一項都分別除以這個單項式,然后再把所得的商相加.
解析:由于多邊形(三邊以上的)不具有穩(wěn)定性,將其轉(zhuǎn)化為三角形后木架的形狀就不變了.根據(jù)具體多邊形轉(zhuǎn)化為三角形的經(jīng)驗及題中所加木條可找到一般規(guī)律.解:過n邊形的一個頂點可以作(n-3)條對角線,把多邊形分成(n-2)個三角形,所以,要使一個n邊形木架不變形,至少需要(n-3)根木條固定.方法總結(jié):將多邊形轉(zhuǎn)化為三角形時,所需要的木條根數(shù),可從具體到一般去發(fā)現(xiàn)規(guī)律,然后驗證求解.三、板書設(shè)計1.邊邊邊:三邊對應(yīng)相等的兩個三角形全等,簡寫成“邊邊邊”或“SSS”.2.三角形的穩(wěn)定性本節(jié)課從操作探究活動入手,有效地激發(fā)了學生的學習積極性和探究熱情,提高了課堂的教學效率,促進了學生對新知識的理解和掌握.從課堂教學的情況來看,學生對“邊邊邊”掌握較好,達到了教學的預期目的.存在的問題是少數(shù)學生在輔助線的構(gòu)造上感到困難,不知道如何添加合理的輔助線,還需要在今后的教學中進一步加強鞏固和訓練
1.理解并掌握三角形全等的判定方法——“角邊角”“角角邊”;(重點)2.能運用“角邊角”“角角邊”判定方法解決有關(guān)問題.(難點) 一、情境導入如圖所示,某同學把一塊三角形的玻璃不小心打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是帶哪塊去?學生活動:學生先自主探究出答案,然后再與同學進行交流.教師點撥:顯然僅僅帶①或②是無法配成完全一樣的玻璃的,而僅僅帶③則可以,為什么呢?本節(jié)課我們繼續(xù)研究三角形全等的判定方法.二、合作探究探究點一:全等三角形判定定理“ASA”如圖,AD∥BC,BE∥DF,AE=CF,試說明:△ADF≌△CBE.解析:根據(jù)平行線的性質(zhì)可得∠A=∠C,∠DFE=∠BEC,再根據(jù)等式的性質(zhì)可得AF=CE,然后利用“ASA”可得到△ADF≌△CBE.