探究點(diǎn)三:作中心對稱圖形如圖,網(wǎng)格中有一個四邊形和兩個三角形.(1)請你畫出三個圖形關(guān)于點(diǎn)O的中心對稱圖形;(2)將(1)中畫出的圖形與原圖形看成一個整體圖形,請寫出這個整體圖形對稱軸的條數(shù);這個整體圖形至少旋轉(zhuǎn)多少度能與自身重合?解:(1)如圖所示;(2)這個整體圖形的對稱軸有4條;此圖形最少旋轉(zhuǎn)90°能與自身重合.三、板書設(shè)計1.中心對稱如果把一個圖形繞著某一點(diǎn)旋轉(zhuǎn)180°,它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點(diǎn)對稱或中心對稱.2.中心對稱圖形把一個圖形繞著某一點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能與原來的圖形重合,那么這個圖形叫做中心對稱圖形.教學(xué)過程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,結(jié)合圖形,多觀察,多歸納,體會識別中心對稱圖形的方法,理解中心對稱圖形的特征.
方法總結(jié):作平移圖形時,找關(guān)鍵點(diǎn)的對應(yīng)點(diǎn)是關(guān)鍵的一步.平移作圖的一般步驟為:①確定平移的方向和距離,先確定一組對應(yīng)點(diǎn);②確定圖形中的關(guān)鍵點(diǎn);③利用第一組對應(yīng)點(diǎn)和平移的性質(zhì)確定圖中所有關(guān)鍵點(diǎn)的對應(yīng)點(diǎn);④按原圖形順序依次連接對應(yīng)點(diǎn),所得到的圖形即為平移后的圖形.三、板書設(shè)計1.平移的定義在平面內(nèi),將一個圖形沿某個方向移動一定的距離,這樣的圖形運(yùn)動稱為平移.2.平移的性質(zhì)一個圖形和它經(jīng)過平移所得的圖形中,對應(yīng)點(diǎn)所連的線段平行(或在一條直線上)且相等,對應(yīng)線段平行(或在一條直線上)且相等,對應(yīng)角相等.3.簡單的平移作圖教學(xué)過程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,學(xué)生經(jīng)歷將實(shí)際問題抽象成圖形問題,培養(yǎng)學(xué)生的邏輯思維能力和空間想象能力,使得學(xué)生能將所學(xué)知識靈活運(yùn)用到生活中.
解析:整個陰影部分比較復(fù)雜和分散,像此類問題通常使用割補(bǔ)法來計算.連接BD、AC,由正方形的對稱性可知,AC與BD必交于點(diǎn)O,正好把左下角的陰影部分分成(Ⅰ)與(Ⅱ)兩部分(如圖②),把陰影部分(Ⅰ)繞點(diǎn)O逆時針旋轉(zhuǎn)90°至陰影部分①處,把陰影部分(Ⅱ)繞點(diǎn)O順時針旋轉(zhuǎn)90°至陰影部分②處,使整個陰影部分割補(bǔ)成半個正方形.解:如圖②,把陰影部分(Ⅰ)繞點(diǎn)O逆時針旋轉(zhuǎn)90°至陰影部分①處,把陰影部分(Ⅱ)繞點(diǎn)O順時針旋轉(zhuǎn)90°至陰影部分②處,使原陰影部分變?yōu)槿鐖D②的陰影部分,即正方形的一半,故陰影部分面積為12×10×10=50(cm2).方法總結(jié):本題是利用旋轉(zhuǎn)的特征:旋轉(zhuǎn)前、后圖形的形狀和大小不變,把圖形利用割補(bǔ)法補(bǔ)全為一個面積可以計算的規(guī)則圖形.三、板書設(shè)計1.簡單的旋轉(zhuǎn)作圖2.旋轉(zhuǎn)圖形的應(yīng)用教學(xué)過程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,經(jīng)歷觀察、歸納和動手操作,利用旋轉(zhuǎn)的性質(zhì)作圖.
方法總結(jié):垂徑定理雖是圓的知識,但也不是孤立的,它常和三角形等知識綜合來解決問題,我們一定要把知識融會貫通,在解決問題時才能得心應(yīng)手.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后鞏固提升”第2題【類型三】 動點(diǎn)問題如圖,⊙O的直徑為10cm,弦AB=8cm,P是弦AB上的一個動點(diǎn),求OP的長度范圍.解析:當(dāng)點(diǎn)P處于弦AB的端點(diǎn)時,OP最長,此時OP為半徑的長;當(dāng)OP⊥AB時,OP最短,利用垂徑定理及勾股定理可求得此時OP的長.解:作直徑MN⊥弦AB,交AB于點(diǎn)D,由垂徑定理,得AD=DB=12AB=4cm.又∵⊙O的直徑為10cm,連接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂線段最短,半徑最長,∴OP的長度范圍是3cm≤OP≤5cm.方法總結(jié):解題的關(guān)鍵是明確OP最長、最短時的情況,靈活利用垂徑定理求解.容易出錯的地方是不能確定最值時的情況.
一、本章知識要點(diǎn): 1、銳角三角函數(shù)的概念; 2、解直角三角形。二、本章教材分析: (一).使學(xué)生正確理解和掌握三角函數(shù)的定義,才能正確理解和掌握直角三角形中邊與角的相互關(guān)系,進(jìn)而才能利用直角三角形的邊與角的相互關(guān)系去解直角三角形,因此三角形函數(shù)定義既是本章的重點(diǎn)又是理解本章知識的關(guān)鍵,而且也是本章知識的難點(diǎn)。如何解決這一關(guān)鍵問題,教材采取了以下的教學(xué)步驟:1. 從實(shí)際中提出問題,如修建揚(yáng)水站的實(shí)例,這一實(shí)例可歸結(jié)為已知RtΔ的一個銳角和斜邊求已知角的對邊的問題。顯然用勾股定理和直角三角形兩個銳角互余中的邊與邊或角與角的關(guān)系無法解出了,因此需要進(jìn)一步來研究直角三角形中邊與角的相互關(guān)系。2. 教材又采取了從特殊到一般的研究方法利用學(xué)生的舊知識,以含30°、45°的直角三角形為例:揭示了直角三角形中一個銳角確定為30°時,那么這角的對邊與斜邊之比就確定比值為1:2。
(2)由題意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,該產(chǎn)品的質(zhì)量檔次為第6檔.方法總結(jié):解決此類問題的關(guān)鍵是要吃透題意,確定變量,建立函數(shù)模型.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后鞏固提升”第8題三、板書設(shè)計二次函數(shù)1.二次函數(shù)的概念2.從實(shí)際問題中抽象出二次函數(shù)解析式二次函數(shù)是一種常見的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實(shí)世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型.許多實(shí)際問題往往可以歸結(jié)為二次函數(shù)加以研究.本節(jié)課是學(xué)習(xí)二次函數(shù)的第一節(jié)課,通過實(shí)例引入二次函數(shù)的概念,并學(xué)習(xí)求一些簡單的實(shí)際問題中二次函數(shù)的解析式.在教學(xué)中要重視二次函數(shù)概念的形成和建構(gòu),在概念的學(xué)習(xí)過程中,讓學(xué)生體驗(yàn)從問題出發(fā)到列二次函數(shù)解析式的過程,體驗(yàn)用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義.
(3)若要滿足結(jié)論,則∠BFO=∠GFC,根據(jù)切線長定理得∠BFO=∠EFO,從而得到這三個角應(yīng)是60°,然后結(jié)合已知的正方形的邊長,也是圓的直徑,利用30°的直角三角形的知識進(jìn)行計算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設(shè)存在點(diǎn)P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問題的結(jié)論有兩種可能,所以具有開放的特征,在假設(shè)存在性以后進(jìn)行的推理或計算.一般思路是:假設(shè)存在——推理論證——得出結(jié)論.若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,若導(dǎo)出矛盾,就做出“不存在”的判斷.
解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點(diǎn)P在⊙O′的外部;QO′=1<2,則點(diǎn)Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點(diǎn)R在圓上.方法總結(jié):注意運(yùn)用平面內(nèi)兩點(diǎn)之間的距離公式,設(shè)平面內(nèi)任意兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點(diǎn)與圓的位置關(guān)系的實(shí)際應(yīng)用如圖,城市A的正北方向50千米的B處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為100千米,AC是一條直達(dá)C城的公路,從A城發(fā)往C城的客車車速為60千米/時.(1)當(dāng)客車從A城出發(fā)開往C城時,某人立即打開無線電收音機(jī),客車行駛了0.5小時的時候,接收信號最強(qiáng).此時,客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號越強(qiáng))?(2)客車從A城到C城共行駛2小時,請你判斷到C城后還能接收到信號嗎?請說明理由.
解析:根據(jù)銳角三角函數(shù)的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結(jié):當(dāng)角度在0°cosA>0.當(dāng)角度在45°<∠A<90°間變化時,tanA>1.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第10題【類型四】 與三角函數(shù)有關(guān)的探究性問題在Rt△ABC中,∠C=90°,D為BC邊(除端點(diǎn)外)上的一點(diǎn),設(shè)∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關(guān)系;(2)試證明你的結(jié)論.解析:(1)因?yàn)樵凇鰽BD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數(shù)的定義可求出sinα,sinβ的關(guān)系式即可得出結(jié)論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結(jié):利用三角函數(shù)的定義把兩角的正弦值表示成線段的比,然后進(jìn)行比較是解題的關(guān)鍵.
[教學(xué)目標(biāo)]1、 理解并掌握正弦、余弦的含義,會在直角三角形中求出某個銳角的正弦和余弦值。2、能用函數(shù)的觀點(diǎn)理解正弦、余弦和正切。[教學(xué)重點(diǎn)與難點(diǎn)] 在直角三角形中求出某個銳角的正弦和余弦值。[教學(xué)過程] 一、情景創(chuàng)設(shè)1、問題1:如圖,小明沿著某斜坡向上行走了13m后,他的相對位置升高了5m,如果他沿著該斜坡行走了20m,那么他的相對位置升高了多少?行走了a m呢?2、問題2:在上述問題中,他在水平方向又分別前進(jìn)了多遠(yuǎn)?二、探索活動1、思考:從上面的兩個問題可以看出:當(dāng)直角三角形的一個銳角的大小已確定時,它的對邊與斜邊的比值________;它的鄰邊與斜邊的比值________。(根據(jù)是__________________。)2、正弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的對邊a與斜邊c的比叫做∠A的______,記作________,即:sinA=________=________.3、余弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的鄰邊b與斜邊c的比叫做∠A的______,記作=_________,即:cosA=______=_____。(你能寫出∠B的正弦、余弦的表達(dá)式嗎?)試試看.___________.
方法總結(jié):本題考查了冪的乘方的逆用及同底數(shù)冪的乘法,整體代入求解也比較關(guān)鍵.【類型三】 逆用冪的乘方結(jié)合方程思想求值已知221=8y+1,9y=3x-9,則代數(shù)式13x+12y的值為________.解析:由221=8y+1,9y=3x-9得221=23(y+1),32y=3x-9,則21=3(y+1),2y=x-9,解得x=21,y=6,故代數(shù)式13x+12y=7+3=10.故答案為10.方法總結(jié):根據(jù)冪的乘方的逆運(yùn)算進(jìn)行轉(zhuǎn)化得到x和y的方程組,求出x、y,再計算代數(shù)式.三、板書設(shè)計1.冪的乘方法則:冪的乘方,底數(shù)不變,指數(shù)相乘.即(am)n=amn(m,n都是正整數(shù)).2.冪的乘方的運(yùn)用冪的乘方公式的探究方式和前節(jié)類似,因此在教學(xué)中可以利用該優(yōu)勢展開教學(xué),在探究過程中可以進(jìn)一步發(fā)揮學(xué)生的主動性,盡可能地讓學(xué)生在已有知識的基礎(chǔ)上,通過自主探究,獲得冪的乘方運(yùn)算的感性認(rèn)識,進(jìn)而理解運(yùn)算法則
解析:平行線中的拐點(diǎn)問題,通常需過拐點(diǎn)作平行線.解:(1)∠AED=∠BAE+∠CDE.理由如下:過點(diǎn)E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD=∠BAF+∠CDF.∵∠BAF=2∠EAF,∠CDF=2∠EDF,∴∠BAE+∠CDE=32∠BAF+32∠CDF,∴∠AED=32∠AFD.方法總結(jié):無論平行線中的何種問題,都可轉(zhuǎn)化到基本模型中去解決,把復(fù)雜的問題分解到簡單模型中,問題便迎刃而解.三、板書設(shè)計平行線的性質(zhì):性質(zhì)1:兩條平行線被第三條直線所截,同位角相等;性質(zhì)2:兩條平行線被第三條直線所截,內(nèi)錯角相等;性質(zhì)3:兩條平行線被第三條直線所截,同旁內(nèi)角互補(bǔ).平行線的性質(zhì)是幾何證明的基礎(chǔ),教學(xué)中注意基本的推理格式的書寫,培養(yǎng)學(xué)生的邏輯思維能力,鼓勵學(xué)生勇于嘗試.在課堂上,力求體現(xiàn)學(xué)生的主體地位,把課堂交給學(xué)生,讓學(xué)生在動口、動手、動腦中學(xué)數(shù)學(xué)
解析:①以O(shè)為圓心,任意長為半徑作弧交OA于D,交OB于C;②以O(shè)′為圓心,以同樣長(OC長)為半徑作弧,交O′B′于C′;③以C′為圓心,CD長為半徑作弧交前弧于D′;④過D′作射線O′A′,∠A′O′B′為所求.解:如下圖所示.【類型三】 利用尺規(guī)作角的和或差已知∠AOB,用尺規(guī)作圖法作∠A′O′B′,使∠A′O′B′=2∠AOB.解析:先作一個角等于∠AOB,再以這個角的一邊為邊在其外部作一個角等于∠AOB,那么圖中最大的角就是所求的角.解:作法:①作∠DO′B′=∠AOB;②在∠DO′B′的外部作∠A′O′D=∠AOB,∠A′O′B′就是所求的角(如下圖).三、板書設(shè)計1.尺規(guī)作圖2.用尺規(guī)作角本節(jié)課學(xué)習(xí)了有關(guān)尺規(guī)作圖的相關(guān)知識,課堂教學(xué)內(nèi)容以學(xué)生動手操作為主,在學(xué)生動手操作的過程中要鼓勵學(xué)生大膽動手,培養(yǎng)學(xué)生的動手能力和書面語言表達(dá)能力
在因式分解的幾種方法中,提取公因式法師最基本的的方法,學(xué)生也很容易掌握。但在一些綜合運(yùn)用的題目中,學(xué)生總會易忘記先觀察是否有公因式,而直接想著運(yùn)用公式法分解。這樣直接導(dǎo)致有些題目分解錯誤,有些題目分解不完全。所以在因式分解的步驟這一塊還要繼續(xù)加強(qiáng)。其實(shí)公式法分解因式。學(xué)生比較會將平方差和完全平方式混淆。這是對公式理解不透徹,彼此的特征區(qū)別還未真正掌握好。大體上可以從以下方面進(jìn)行區(qū)分。如果是兩項(xiàng)的平方差則在提取公因式后優(yōu)先考慮平方差公式。如果是三項(xiàng)則優(yōu)先考慮完全平方式進(jìn)行因式分解。培養(yǎng)學(xué)生的整體觀念,靈活運(yùn)用公式的能力。注重總結(jié)做題步驟。這章節(jié)知識看起來很簡單,但操作性很強(qiáng)的,相同或者相似的式子比較熟悉而需要轉(zhuǎn)化的或者多種公式混合使用的式子就難以入手,基礎(chǔ)不好的學(xué)生需要手把手的教,因此,應(yīng)該引導(dǎo)學(xué)生總結(jié)多項(xiàng)式因式分解的一般步驟①如果多項(xiàng)式的各項(xiàng)有公因式,那么先提公因式;
4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設(shè)該商品每天的利潤為y元,求y與x的函數(shù)關(guān)系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出問題讓學(xué)生思考回答;(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個? (各有1個)(2)多項(xiàng)式-2x2+20和-100x2+100x+200分別是幾次多項(xiàng)式?(分別是二次多項(xiàng)式)(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點(diǎn)? (都是用自變量的二次多項(xiàng)式來表示的)(4)本章導(dǎo)圖中的問題以及P1頁的問題2有什么共同特點(diǎn)?讓學(xué)生討論、歸結(jié)為:自變量x為何值時,函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項(xiàng)的系數(shù),c叫作常數(shù)項(xiàng).
我們知道圓是一個旋轉(zhuǎn)對稱圖形,無論繞圓心旋轉(zhuǎn)多少度,它都能與自身重合,對稱中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點(diǎn)O逆時針旋轉(zhuǎn)某個角度,畫出旋轉(zhuǎn)之后的圖形,比較前后兩個圖形,你能發(fā)現(xiàn)什么?二、合作探究探究點(diǎn):圓心角、弧、弦之間的關(guān)系【類型一】 利用圓心角、弧、弦之間的關(guān)系證明線段相等如圖,M為⊙O上一點(diǎn),MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據(jù)等弧對等圓心角,則∠MOD=∠MOE,再由角平分線的性質(zhì),得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵M(jìn)D⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結(jié):圓心角、弧、弦之間相等關(guān)系的定理可以用來證明線段相等.本題考查了等弧對等圓心角,以及角平分線的性質(zhì).
教學(xué)目標(biāo):1、理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。2、了解計算一個銳角的正切值的方法。教學(xué)重點(diǎn):理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。教學(xué)難點(diǎn):計算一個銳角的正切值的方法。教學(xué)過程:一、觀察回答:如圖某體育館,為了方便不同需求的觀眾設(shè)計了多種形式的臺階。下列圖中的兩個臺階哪個更陡?你是怎么判斷的?圖(1) 圖(2)[點(diǎn)撥]可將這兩個臺階抽象地看成兩個三角形答:圖 的臺階更陡,理由 二、探索活動1、思考與探索一:除了用臺階的傾斜角度大小外,還可以如何描述臺階的傾斜程度呢?① 可通過測量BC與AC的長度,② 再算出它們的比,來說明臺階的傾斜程度。(思考:BC與AC長度的比與臺階的傾斜程度有何關(guān)系?)答:_________________.③ 討論:你還可以用其它什么方法?能說出你的理由嗎?答:________________________.2、思考與探索二:
老師、同學(xué)們,大家早上好!每年三月份最后一周的周一是全國中小學(xué)生的安全教育日,今天是第21個全國中小學(xué)生安全教育日。我校決定將本周確定為安全教育周。在這周里,我校將要開展兩個安全教育實(shí)踐活動。為了讓活動順利進(jìn)行,老師、同學(xué)們一定要牢記安全第一。安全教育是一個沉重的話題,雖然近年來安全教育越來越得到社會各界的重視,同學(xué)們的安全意識有所增強(qiáng),但重大的傷亡事故仍時有發(fā)生。據(jù)有關(guān)部門統(tǒng)計,近年來,全國中小學(xué)每年非正常死亡人數(shù)達(dá)到16000多人,平均每天就有40多名中小學(xué)生不幸死亡。數(shù)字是枯燥的,但它的背后是一個個鮮活的生命,這就說明學(xué)校并不是一塊安全的凈土,校園安全形勢依然非常嚴(yán)峻。作為老師,我們要有高度的安全意思,充分認(rèn)識到安全工作的重要性和緊迫感。各位班主任要認(rèn)真上好每周的安全教育課,將學(xué)生的安全工作擺在重要位置,做到經(jīng)常教育,及時教育,教育到位,教育全面,若發(fā)現(xiàn)有安全隱患,要及時向?qū)W校匯報,防患于未然。對安全工作不能存有絲毫的麻痹僥幸的心理。本周是安全周,希望各位班主任對照我校安全周的活動安排,認(rèn)真落實(shí)安全教育。
1、加強(qiáng)領(lǐng)導(dǎo),建立機(jī)制,保證綜治目標(biāo)的實(shí)現(xiàn)學(xué)校領(lǐng)導(dǎo)始終把“團(tuán)結(jié)協(xié)作,勤奮進(jìn)取,開拓創(chuàng)新”作為班子建設(shè)的目標(biāo)。把“團(tuán)結(jié)”視為力量的象征,把“協(xié)作”視為成功的第一要素,把“勤奮”視為做好工作的必備條件,把“進(jìn)取”視為工作進(jìn)展的支柱,把“開拓”視為打開新局面的鑰匙,把“創(chuàng)新”視為工作的奮斗目標(biāo)。每年初,綜治領(lǐng)導(dǎo)小組召集有關(guān)各方人員進(jìn)行討論研究,制訂學(xué)年度計劃和目標(biāo)。我校先后被評為“合肥市東市區(qū)社會治安綜合治理模范單位”、“合肥市安全文明校園”、“合肥市未成年人保護(hù)示范學(xué)?!薄=窈?,我們將再接再厲,奮斗目標(biāo)是向更高一個檔次邁進(jìn)。(1)健全領(lǐng)導(dǎo)機(jī)制我校對學(xué)校及周邊治安綜合治理工作高度重視,我校綜治工作的辦事機(jī)構(gòu)健全,責(zé)任到人,分工明確。由綜治領(lǐng)導(dǎo)小組負(fù)總責(zé)。法人代表為總責(zé)任人,成立了以校長為組長,分管領(lǐng)導(dǎo)、政教處、保衛(wèi)科、團(tuán)委、年級組長為成員的綜治工作領(lǐng)導(dǎo)小組,實(shí)行一級對一級負(fù)責(zé)的責(zé)任制。堅決做到“四個落實(shí)”:組織人員落實(shí)、辦公地點(diǎn)落實(shí)、規(guī)章制度落實(shí)、經(jīng)費(fèi)保障落實(shí)。(2)健全責(zé)任機(jī)制學(xué)校實(shí)行定人員、定責(zé)任、定時間、定任務(wù)、定標(biāo)準(zhǔn)、定獎懲的“六定”責(zé)任制。綜治辦公室對學(xué)校及周邊治安綜合治理工作實(shí)行半年檢查評比與年終檢查評比同步進(jìn)行,構(gòu)建了領(lǐng)導(dǎo)責(zé)任制、目標(biāo)管理責(zé)任制、責(zé)任追究制、“一票否決制”為框架的工作責(zé)任落實(shí)機(jī)制。(3)健全研究機(jī)制我校堅持每學(xué)期召開2次學(xué)校及周邊治安整治工作專題會議,每季度召開1次學(xué)校及周邊治安綜合整治工作領(lǐng)導(dǎo)小組成員會議,每月召開一次總結(jié)會議,極大地推動學(xué)校及周邊治安綜合治理工作深入開展。學(xué)校進(jìn)一步完善了《學(xué)校及周邊環(huán)境綜臺治理工作方案》,目標(biāo)明確,分工到位,并把方案納入到安全文明創(chuàng)建活動的整體規(guī)劃中同步實(shí)施,把學(xué)校及周邊治安整治工作作為創(chuàng)建“辦人民滿意的教育”的重要內(nèi)容,納入學(xué)校目標(biāo)量化管理范圍,明確時間、任務(wù)和創(chuàng)建標(biāo)準(zhǔn),扎實(shí)工作。
今年,我局認(rèn)真貫徹落實(shí)省市區(qū)工作部署,以推動陽光行政,建設(shè)服務(wù)型工商為抓手,不斷創(chuàng)新載體,豐富內(nèi)容,拓展方式,深入推進(jìn)政府息開工作,有效增強(qiáng)了經(jīng)工作的透明度,并科學(xué)運(yùn)用政務(wù)服務(wù)系統(tǒng)服務(wù)企業(yè),服務(wù)群,服務(wù)地方經(jīng)濟(jì)社會發(fā)展。具體情況如下:一、強(qiáng)化息開載體建設(shè)近年來,企業(yè)和群息的方式方法發(fā)生了深刻變化,對通過網(wǎng)絡(luò)載體息的要求越來越強(qiáng)烈,為此,我局不斷強(qiáng)網(wǎng)絡(luò)載體建設(shè),有效提高息開工作效能。一是強(qiáng)群、QQ群管理,利用操作簡便、傳播速度快、社會關(guān)注度高的特點(diǎn),把職能范圍內(nèi)的政府息,特別是有重大影響的工作息及時向社會布,把群、QQ群打造成我局發(fā)布政府息,服務(wù)群辦事,接受社會監(jiān)督的又一平臺。二是借助區(qū)政府門戶網(wǎng)站平臺,發(fā)布關(guān)于我局的政務(wù)動態(tài)、部門件,并建立快捷鏈接,方便群登錄我局政務(wù)外網(wǎng)。