(三)解釋、應用和發(fā)展問題4:如果測量一座小山的高度,小山腳下還有一條河,怎么辦? (教師巡視課堂,友情幫助 ,讓學生參照書本99頁,用測角儀測量塔高的方法.這個物體的底部不能到達。)(1)請你設計一個測量小山高度的方法:要求寫出測量步驟和必須的測量數(shù)據(jù)(用字母表示),并畫出測量平面圖形;(2)用你測量的數(shù)據(jù)(用字母表示),寫出計算小山高度的方法。過程: (1) 學生觀察、思考、建模、自行解決(3) 學生間討論交流后,教師展示部分學生的解答過程(重點關注:1.學生能否發(fā)現(xiàn)解決問題的途徑;學生在引導下,能否借助方程或方程組來解決問題;學生的自學能力.2.關注學生克服困難的勇氣和堅強的意志力。3.繼續(xù)關注學生中出現(xiàn)的典型錯誤。)(設計意圖: 讓學生進一步熟悉如何將實際問題轉(zhuǎn)化成數(shù)學模型,并能用解直角三角形的知識解決簡單的實際問題,發(fā)展學生的應用意識和應用能力。
煤的價格為400元/噸,生產(chǎn)1噸甲產(chǎn)品除需原料費用外,還需其他費用400元,甲產(chǎn)品每噸售價4600元;生產(chǎn)1噸乙產(chǎn)品除原料費用外,還需其他費用500元,乙產(chǎn)品每噸售價5500元.現(xiàn)將該礦石原料全部用完,設生產(chǎn)甲產(chǎn)品x噸,乙產(chǎn)品m噸,公司獲得的總利潤為y元.(1)寫出m與x的關系式;(2)寫出y與x的函數(shù)關系式.(不要求寫自變量的取值范圍)解析:(1)因為礦石的總量一定,當生產(chǎn)的甲產(chǎn)品的數(shù)量x變化時,那么乙產(chǎn)品的產(chǎn)量m將隨之變化,m和x是動態(tài)變化的兩個量;(2)題目中的等量關系為總利潤y=甲產(chǎn)品的利潤+乙產(chǎn)品的利潤.解:(1)因為4m+10x=300,所以m=150-5x2.(2)生產(chǎn)1噸甲產(chǎn)品獲利為4600-10×200-4×400-400=600(元);生產(chǎn)1噸乙產(chǎn)品獲利為5500-4×200-8×400-500=1000(元).所以y=600x+1000m.將m=150-5x2代入,得y=600x+1000×150-5x2,即y=-1900x+75000.方法總結(jié):根據(jù)條件求一次函數(shù)的關系式時,要找準題中所給的等量關系,然后求解.
(1)用簡潔明快的語言概括大意,不能超過200字;(2)圖表中能確定的數(shù)值,在故事敘述中不得少于3個,且要分別涉及時間、路和速度這三個量.意圖:旨在檢測學生的識圖能力,可根據(jù)學生情況和上課情況適當調(diào)整。說明:練習注意了問題的梯度,由淺入深,一步步引導學生從不同的圖象中獲取信息,對同學的回答,教師給予點評,對回答問題暫時有困難的同學,教師應幫助他們樹立信心。第四環(huán)節(jié):課時小結(jié)內(nèi)容:本節(jié)課我們學習了一次函數(shù)圖象的應用,在運用一次函數(shù)解決實際問題時,可以直接從函數(shù)圖象上獲取信息解決問題,當然也可以設法得出各自對應的函數(shù)關系式,然后借助關系式完全通過計算解決問題。通過列出關系式解決問題時,一般首先判斷關系式的特征,如兩個變量之間是不是一次函數(shù)關系?當確定是一次函數(shù)關系時,可求出函數(shù)解析式,并運用一次函數(shù)的圖象和性質(zhì)進一步求得我們所需要的結(jié)果.
方法總結(jié):要認真觀察圖象,結(jié)合題意,弄清各點所表示的意義.探究點二:一次函數(shù)與一元一次方程一次函數(shù)y=kx+b(k,b為常數(shù),且k≠0)的圖象如圖所示,根據(jù)圖象信息可求得關于x的方程kx+b=0的解為()A.x=-1B.x=2C.x=0D.x=3解析:首先由函數(shù)經(jīng)過點(0,1)可得b=1,再將點(2,3)代入y=kx+1,可求出k的值為1,從而可得出一次函數(shù)的表達式為y=x+1,再求出方程x+1=0的解為x=-1,故選A.方法總結(jié):此題主要考查了一次函數(shù)與一元一次方程的關系,關鍵是正確利用待定系數(shù)法求出一次函數(shù)的關系式.三、板書設計一次函數(shù)的應用單個一次函數(shù)圖象的應用一次函數(shù)與一元一次方程的關系探究的過程由淺入深,并利用了豐富的實際情景,增加了學生的學習興趣.教學中要注意層層遞進,逐步讓學生掌握求一次函數(shù)與一元一次方程的關系.教學中還應注意尊重學生的個體差異,使每個學生都學有所獲.
解:∵y=23x+a與y=-12x+b的圖象都過點A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴兩個一次函數(shù)分別是y=32x+6和y=-12x-2.y=32x+6與y軸交于點B,則y=32×0+6=6,∴B(0,6);y=-12x-2與y軸交于點C,則y=-2,∴C(0,-2).如圖所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法總結(jié):解此類題要先求得頂點的坐標,即兩個一次函數(shù)的交點和它們分別與x軸、y軸交點的坐標.三、板書設計兩個一次函數(shù)的應用實際生活中的問題幾何問題進一步訓練學生的識圖能力,能通過函數(shù)圖象獲取信息,解決簡單的實際問題,在函數(shù)圖象信息獲取過程中,進一步培養(yǎng)學生的數(shù)形結(jié)合意識,發(fā)展形象思維.在解決實際問題的過程中,進一步發(fā)展學生的分析問題、解決問題的能力和數(shù)學應用意識.
學習目標1.掌握兩個一次函數(shù)圖像的應用;(重點)2.能利用函數(shù)圖象解決實際問題。(難點)教學過程一、情景導入在一次蠟燭燃燒實驗中,甲、乙兩根蠟燭燃燒時剩余部分的高度y(厘米)與燃燒時間x(小時)之間的關系如圖所示.請你根據(jù)圖象所提供的信息回答下列問題:甲、乙兩根蠟燭燃燒前的高度分別是 厘米、 厘米,從點燃到燃盡所用的時間分別是 小時、 小時.你會解答上面的問題嗎?學完本解知識,相信你能很快得出答案。二、 合作探究探究點一:兩個一次函數(shù)的應用(2015?日照模擬)自來水公司有甲、乙兩個蓄水池,現(xiàn)將甲池的中水勻速注入乙池,甲、乙兩個蓄水池中水的深度y(米)與注水時間x(時)之間的函數(shù)圖象如下所示,結(jié)合圖象回答下列問題.(1)分別求出甲、乙兩個蓄水池中水的深度y與注水時間x之間的函數(shù)表達式;(2)求注入多長時間甲、乙兩個蓄水池水的深度相同;(3)求注入多長時間甲、乙兩個蓄水的池蓄水量相同;
解:設正比例函數(shù)的表達式為y1=k1x,一次函數(shù)的表達式為y2=k2x+b.∵點A(4,3)是它們的交點,∴代入上述表達式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函數(shù)的表達式為y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵點B在y軸的負半軸上,∴B點的坐標為(0,-52).又∵點B在一次函數(shù)y2=k2x+b的圖象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函數(shù)的表達式為y2=118x-52.方法總結(jié):根據(jù)圖象確定一次函數(shù)的表達式的方法:從圖象上選取兩個已知點的坐標,然后運用待定系數(shù)法將兩點的橫、縱坐標代入所設表達式中求出待定系數(shù),從而求出函數(shù)的表達式.【類型三】 根據(jù)實際問題確定一次函數(shù)的表達式某商店售貨時,在進價的基礎上加一定利潤,其數(shù)量x與售價y的關系如下表所示,請你根據(jù)表中所提供的信息,列出售價y(元)與數(shù)量x(千克)的函數(shù)關系式,并求出當數(shù)量是2.5千克時的售價.
四個不同類型的問題由淺入深,學生能從不同角度掌握求一次函數(shù)的方法.對于問題4,教師可引導學生分析,并教學生要學會畫圖,利用圖象分析問題,體會數(shù)形結(jié)合方法的重要性.學生若出現(xiàn)解題格式不規(guī)范的情況,教師應糾正并給予示范,訓練學生規(guī)范答題的習慣.第五環(huán)節(jié)課時小結(jié)內(nèi)容:總結(jié)本課知識與方法1.本節(jié)課主要學習了怎樣確定一次函數(shù)的表達式,在確定一次函數(shù)的表達式時可以用待定系數(shù)法,即先設出解析式,再根據(jù)題目條件(根據(jù)圖象、表格或具體問題)求出 , 的值,從而確定函數(shù)解析式。其步驟如下:(1)設函數(shù)表達式;(2)根據(jù)已知條件列出有關k,b的方程;(3)解方程,求k,b;4.把k,b代回表達式中,寫出表達式.2.本節(jié)課用到的主要的數(shù)學思想方法:數(shù)形結(jié)合、方程的思想.目的:引導學生小結(jié)本課的知識及數(shù)學方法,使知識系統(tǒng)化.第六環(huán)節(jié)作業(yè)布置習題4.5:1,2,3,4目的:進一步鞏固當天所學知識。教師也可根據(jù)學生情況適當增減,但難度不應過大.
(4)從平均分看,兩隊的平均分相同,實力大體相當;從折線的走勢看,甲隊比賽成績呈上升趨勢,而乙隊比賽成績呈下降趨勢;從獲勝場數(shù)看,甲隊勝三場,乙隊勝兩場,甲隊成績較好;從方差看,甲隊比賽成績比乙隊比賽成績波動小,甲隊成績較穩(wěn)定.綜上所述,選派甲隊參賽更能取得好成績.方法總結(jié):本題是反映數(shù)據(jù)集中程度與離散程度的綜合題.從圖形中得到兩隊的成績,然后從平均數(shù)、方差的角度來考慮,在平均數(shù)相同的情況下,方差越小的越穩(wěn)定.三、板書設計數(shù)據(jù)的離散程度極差:一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差方差:各個數(shù)據(jù)與平均數(shù)差的平方的平均數(shù) s2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2]標準差:方差的算術平方根 公式:s=s2經(jīng)歷表示數(shù)據(jù)離散程度的幾個量的探索過程,通過實例體會用樣本估計總體的統(tǒng)計思想,培養(yǎng)學生的數(shù)學應用能力.通過小組合作,培養(yǎng)學生的合作意識;通過解決實際問題,讓學生體會數(shù)學與生活的密切聯(lián)系.
解:(1)∵點(1,5)在反比例函數(shù)y=kx的圖象上,∴5=k1,即k=5,∴反比例函數(shù)的解析式為y=5x.又∵點(1,5)在一次函數(shù)y=3x+m的圖象上,∴5=3+m,即m=2,∴一次函數(shù)的解析式為y=3x+2;(2)由題意,聯(lián)立y=5x,y=3x+2.解得x1=1,y1=5或x2=-53,y2=-3.∴這兩個函數(shù)圖象的另一個交點的坐標為(-53,-3).三、板書設計反比例函數(shù)的圖象形狀:雙曲線位置當k>0時,兩支曲線分別位于 第一、三象限內(nèi)當k<0時,兩支曲線分別位于 第二、四象限內(nèi)畫法:列表、描點、連線(描點法)通過學生自己動手列表、描點、連線,提高學生的作圖能力.理解函數(shù)的三種表示方法及相互轉(zhuǎn)換,對函數(shù)進行認識上的整合,逐步明確研究函數(shù)的一般要求.反比例函數(shù)的圖象具體展現(xiàn)了反比例函數(shù)的整體直觀形象,為學生探索反比例函數(shù)的性質(zhì)提供了思維活動的空間.
因為反比例函數(shù)的圖象經(jīng)過點A(1.5,400),所以有k=600.所以反比例函數(shù)的關系式為p=600S(S>0);(2)當S=0.2時,p=6000.2=3000,即壓強是3000Pa;(3)由題意知600S≤6000,所以S≥0.1,即木板面積至少要有0.1m2.方法總結(jié):本題滲透了物理學中壓強、壓力與受力面積之間的關系p= ,當壓力F一定時,p與S成反比例.另外,利用反比例函數(shù)的知識解決實際問題時,要善于發(fā)現(xiàn)實際問題中變量之間的關系,從而進一步建立反比例函數(shù)模型.三、板書設計反比例函數(shù)的應用實際問題與反比例函數(shù)反比例函數(shù)與其他學科知識的綜合經(jīng)歷分析實際問題中變量之間的關系,建立反比例函數(shù)模型,進而解決問題的過程,提高運用代數(shù)方法解決問題的能力,體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系,增強應用意識.通過反比例函數(shù)在其他學科中的運用,體驗學科整合思想.
觀察 和 的圖象,它們有什么相同點和不同點?學生小組討論,弄清上述兩個圖象的異同點。交流討論反比 例函數(shù)圖象是中心對稱圖形嗎?如果是,請找出對稱中心.反比例函數(shù)圖象是軸對稱圖形嗎?如果是,請指出它的對稱軸.二、隨堂練習課本隨堂練習 [探索與交流]對于函數(shù) , 兩支曲線分別位于哪個象限內(nèi)?對于函數(shù) ,兩支曲線又分別位于哪個象限內(nèi)?怎樣區(qū)別這兩個函數(shù)的圖象。學生分四人小組全班探索。 三、課堂總結(jié)在進行函數(shù)的列表,描點作圖的活動中,就已經(jīng)滲透了反比例函數(shù)圖象的特征,因此在作圖象的過程中,大家要進行積極的探索 。另外,(1)反比例函數(shù)的圖象是非線性的,它的圖象是雙曲線;(2)反比例 函數(shù)y= 的圖像,當k>0時,它的圖像位于一、三象限內(nèi),當k<0時,它的圖像位于二、四象限內(nèi);(3)反比例函數(shù)既是中心對稱圖形,又是軸對稱圖形。
補充題:為了預防“非典”,某學校對教室采用藥熏消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成為正比例,藥物燃燒后,y與x成反比例(如右圖),現(xiàn)測得藥物8分鐘燃畢,此時室內(nèi)空氣中每立方米的含藥量6毫克,請根據(jù)題中所提供的信息,解答下列問題:(1)藥物燃燒時,y關于x的函數(shù)關系式為 ,自變量x的取值范圍為 ;藥物燃燒后,y關于x的函數(shù)關系式為 .(2)研究表明,當空氣中每立方米的含藥量低于1.6毫克時學生方可進教室,那么從消毒開始,至少需要經(jīng)過______分鐘后,學生才能回到教室;(3)研究表明,當空氣中每立方米的含藥量不低于3毫克且持續(xù)時間不低于10分鐘時,才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?答案:(1)y= x, 010,即空氣中的含藥量不低于3毫克/m3的持續(xù)時間為12分鐘,大于10分鐘的有效消毒時間.
教學設計說明:本節(jié)課從學生接觸到的實際問題出發(fā),結(jié)合新課程標準的理念,創(chuàng)造性地使用教材而設計的一節(jié)課,是前面線段的比、成比例線段等知識在現(xiàn)實生活中的應用. 一開始情境的創(chuàng)設——彩色圖片的投影,給學生以美的感覺,激發(fā)學生的求知欲.通過實際生活中的例子,讓學生自己發(fā)表自己的看法,培養(yǎng)學生的審美情趣,又從學生最感興趣的奧運會的比賽中引出今天所要學習的內(nèi)容,從而進一步培養(yǎng)學生的愛國主義情感.在教學設計中,充分發(fā)揮了學生的主觀能動性,通過小組討論,師生間的合作交流,解決了本節(jié)課的重點和難點.讓每個學生都能從同伴的交流中獲益,同時也培養(yǎng)了學生的合作意識,提高了學生的動手操作的能力.本節(jié)課在教學設計中主要運用了引導探究、分組討論的教學方法;引導學生自主探究、合作交流的研討學習方式,確立了學生的主體地位.
用你的語言描述一下配方法解一元二次方程的基本步驟和需注意的問題。 教師引導學生進行反思、歸納配方法解一元二次方程的基本思路、步驟及注意事項。鞏固對課堂知識的理解和掌握,同時進一步體會解一元二次方程時降次的基本策略和轉(zhuǎn)化的思想。 六、布置作業(yè)分層布置作業(yè),既鞏固本節(jié)主要內(nèi)容,又有讓學有余力的學生有思考和提升的空間。思考題為后面深入研究配方法,完善對配方法的認識做準備。 同時讓學生感受到數(shù)學學習在實際生活中的作用,感受數(shù)學的美。五、板書設計我將板書分成了兩部分,重點突出這節(jié)課用配方法解一元二次方程的步驟,在配以適當?shù)木毩暎唵蚊髁?,重點突出。六、教學評價與反思本節(jié)課我根據(jù)學生的特點采用合作交流探究式學西方法教學,讓學生動起來,感受數(shù)學學習的樂趣。讓學生更加愛學數(shù)學。
第三環(huán)節(jié)。嘗試練習,信息反饋。讓學生嘗試練習:課本p152第3題,并引導中下學生看p152例題,教師及時點撥講評?!鹘處煱才胚@一過程,完全放手讓學生自主進行,充分暴露學生的思維過程,展現(xiàn)學生生動活潑、主動求知和富有的個性,使學生真正成為學習的主體,使因式分解與整式的乘法的關系得到正強化。第四環(huán)節(jié)。小結(jié)階段。這是最后的一個環(huán)節(jié),教師出示“想一想”:下列式子從左邊到右邊是因式分解嗎,為什么?學生展開討論,得到下列結(jié)論:A.左邊是乘法,而右邊是差,不是積;B.左右兩邊都不是整式;C.從右邊到左邊是利用了因式分解的變形方法進行分解。由此可知,上式不是因式分解。進而,教師呈現(xiàn)因式分解定義?!鹘處煱才胚@一過程意圖是:學生一般到臨近下課,大腦處于疲勞狀態(tài),注意力開始分散。
活動6:通過隨堂小測的方式辨別圓的相關概念。目的:讓學生準確地掌握直徑與弦,弧與半圓的關系,以及準確理解等圓和等弧的概念?;顒?:讓學生分組討論“投圈游戲”,解決生活中的實際問題。目的:提高學生運用所學圓的知識,解決實際問題的能力;也是為了鞏固圓的定義,同時再次激發(fā)學生的學習興趣?;顒?:給學生一個草坪情境,要求作出半徑為5m的圓,并說明原理。目的:提高學生的綜合運用能力,并鞏固圓的定義。活動9:讓學生根據(jù)樹木的年輪的直徑和生長年齡,計算樹木每年的生長情況。目的:鞏固圓的知識?;顒?0:讓學生回顧本節(jié)課的重要內(nèi)容并布置課后作業(yè)。目的:前者的目的是梳理圓及圓的相關元素的概念,便于識記、理解和運用。后者的目的是:第一題,檢測學生的動手能力和提高學生學習數(shù)學的興趣;第二題,檢測學生對本節(jié)課的重要內(nèi)容的理解情況;第三題,檢測學生的綜合運用能力。以上是我對本節(jié)課內(nèi)容的理解和設計。
(一)自學質(zhì)疑看書 解決下面兩個問題:1.下列圖中的兩個臺階哪個更陡?你是怎么判斷的? 答:圖 的臺階更陡,理由 2.除了用臺階的傾斜角度大小外,還可以如何描述臺階的傾斜程度呢?
1.多媒體的合理應用,可極大的激發(fā)學生的學習興趣,提高教學效果.在本節(jié)課的“情境引入”這一教學環(huán)節(jié)中,用媒體展示的人影、皮影、手影的精彩圖片,用媒體播放的皮影戲、手影戲視頻片斷給學生以視覺沖擊,產(chǎn)生了視覺和心理的震撼,這樣在課堂“第一時間”抓住了學生的注意力、極大的激發(fā)了學生的學習熱情,將十分有利于后面教學活動的開展,提高課堂教學效果.2.附有挑戰(zhàn)性的“問題(或活動)”、層層深入的“問題串”可激發(fā)學生的探索欲望,培養(yǎng)創(chuàng)新精神,拓展思維能力.在本節(jié)課“探究活動”這一教學環(huán)節(jié)中的“做一做”設計的4個活動,由簡單的“模仿”到“創(chuàng)作設計、觀察思考”循序漸進、挑戰(zhàn)性逐漸增大,不斷激發(fā)學生的探索欲望,引人入勝,培養(yǎng)創(chuàng)新精神,拓展能力.再如,在本節(jié)課“數(shù)學運用”這一教學環(huán)節(jié)中的“例2”設計的2個問題層層深入,現(xiàn)實情境味很濃,學生做起來饒有興趣.
∴∠AEP=∠ACB,∠APE=∠ABC,∴△AEP∽△ACB.∴PECB=APAB,即1.89=2AB,解得AB=10(m).∴QB=AB-AP-PQ=10-2-6.5=1.5(m),即小明站在點Q時在路燈AD下影子的長度為1.5m;(2)同理可證△HQB∽△DAB,∴HQDA=QBAB,即1.8AD=1.510,解得AD=12(m).即路燈AD的高度為12m.方法總結(jié):解決本題的關鍵是構(gòu)造相似三角形,然后利用相似三角形的性質(zhì)求出對應線段的長度.三、板書設計投影的概念與中心投影投影的概念:物體在光線的照射下,會 在地面或其他平面上留 下它的影子,這就是投影 現(xiàn)象中心投影概念:點光源的光線形成的 投影變化規(guī)律影子是生活中常見的現(xiàn)象,在探索物體與其投影關系的活動中,體會立體圖形與平面圖形的相互轉(zhuǎn)化關系,發(fā)展學生的空間觀念.通過在燈光下擺弄小棒、紙片,體會、觀察影子大小和形狀的變化情況,總結(jié)規(guī)律,培養(yǎng)學生觀察問題、分析問題的能力.