解:∵y=23x+a與y=-12x+b的圖象都過(guò)點(diǎn)A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴兩個(gè)一次函數(shù)分別是y=32x+6和y=-12x-2.y=32x+6與y軸交于點(diǎn)B,則y=32×0+6=6,∴B(0,6);y=-12x-2與y軸交于點(diǎn)C,則y=-2,∴C(0,-2).如圖所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法總結(jié):解此類題要先求得頂點(diǎn)的坐標(biāo),即兩個(gè)一次函數(shù)的交點(diǎn)和它們分別與x軸、y軸交點(diǎn)的坐標(biāo).三、板書(shū)設(shè)計(jì)兩個(gè)一次函數(shù)的應(yīng)用實(shí)際生活中的問(wèn)題幾何問(wèn)題進(jìn)一步訓(xùn)練學(xué)生的識(shí)圖能力,能通過(guò)函數(shù)圖象獲取信息,解決簡(jiǎn)單的實(shí)際問(wèn)題,在函數(shù)圖象信息獲取過(guò)程中,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合意識(shí),發(fā)展形象思維.在解決實(shí)際問(wèn)題的過(guò)程中,進(jìn)一步發(fā)展學(xué)生的分析問(wèn)題、解決問(wèn)題的能力和數(shù)學(xué)應(yīng)用意識(shí).
學(xué)習(xí)目標(biāo)1.掌握兩個(gè)一次函數(shù)圖像的應(yīng)用;(重點(diǎn))2.能利用函數(shù)圖象解決實(shí)際問(wèn)題。(難點(diǎn))教學(xué)過(guò)程一、情景導(dǎo)入在一次蠟燭燃燒實(shí)驗(yàn)中,甲、乙兩根蠟燭燃燒時(shí)剩余部分的高度y(厘米)與燃燒時(shí)間x(小時(shí))之間的關(guān)系如圖所示.請(qǐng)你根據(jù)圖象所提供的信息回答下列問(wèn)題:甲、乙兩根蠟燭燃燒前的高度分別是 厘米、 厘米,從點(diǎn)燃到燃盡所用的時(shí)間分別是 小時(shí)、 小時(shí).你會(huì)解答上面的問(wèn)題嗎?學(xué)完本解知識(shí),相信你能很快得出答案。二、 合作探究探究點(diǎn)一:兩個(gè)一次函數(shù)的應(yīng)用(2015?日照模擬)自來(lái)水公司有甲、乙兩個(gè)蓄水池,現(xiàn)將甲池的中水勻速注入乙池,甲、乙兩個(gè)蓄水池中水的深度y(米)與注水時(shí)間x(時(shí))之間的函數(shù)圖象如下所示,結(jié)合圖象回答下列問(wèn)題.(1)分別求出甲、乙兩個(gè)蓄水池中水的深度y與注水時(shí)間x之間的函數(shù)表達(dá)式;(2)求注入多長(zhǎng)時(shí)間甲、乙兩個(gè)蓄水池水的深度相同;(3)求注入多長(zhǎng)時(shí)間甲、乙兩個(gè)蓄水的池蓄水量相同;
教學(xué)目標(biāo): 1.理解、掌握梯形面積的計(jì)算公式,并能運(yùn)用公式正確計(jì)算梯形的面積。2.發(fā)展學(xué)生空間觀念。培養(yǎng)抽象、概括和解決實(shí)際問(wèn)題的能力。3.掌握“轉(zhuǎn)化”的思想和方法,進(jìn)一步明白事物之間是相互聯(lián)系,可以轉(zhuǎn)化的。教學(xué)重點(diǎn):理解、掌握梯形面積的計(jì)算公式。教學(xué)難點(diǎn):理解梯形面積公式的推導(dǎo)過(guò)程。教學(xué)過(guò)程:1.導(dǎo)入新課(1)投影出示一個(gè)三角形,提問(wèn):這是一個(gè)三角形,怎樣求它的面積?三角形面積計(jì)算公式是怎樣推導(dǎo)得到的?學(xué)生回答后,指名學(xué)生操作演示轉(zhuǎn)化的方法。(2)展示臺(tái)出示梯形,讓學(xué)生說(shuō)出它的上底、下底和各是多少厘米。(3)教師導(dǎo)語(yǔ):我們已學(xué)會(huì)了用轉(zhuǎn)化的方法推導(dǎo)三角形面積的計(jì)算公式,那怎樣計(jì)算梯形的面積呢?這節(jié)課我們就來(lái)解決這個(gè)問(wèn)題。(板書(shū)課題,梯形面積的計(jì)算)
1、 如圖4-25,將一個(gè)圓分成三個(gè)大小相同的扇形,你能算出它們的圓心角的度數(shù)嗎?你知道每個(gè)扇形的面積和整個(gè)圓的面積的關(guān)系嗎?與同伴進(jìn)行交流2、 畫(huà)一個(gè)半徑是2cm的圓,并在其中畫(huà)一個(gè)圓心為60º的扇形,你會(huì)計(jì)算這個(gè)扇形的面積嗎?與同伴交流。教師對(duì)答案進(jìn)行匯總,講解本題解題思路:1、 因?yàn)橐粋€(gè)圓被分成了大小相同的扇形,所以每個(gè)扇形的圓心角相同,又因?yàn)閳A周角是360º,所以每個(gè)扇形的圓心角是360º÷3=120º,每個(gè)扇形的面積為整個(gè)圓的面積的三分之一。2、 先求出這個(gè)圓的面積S=πR²=4π,60÷360=1/6扇形面積=4π×1/6=2π/3【設(shè)計(jì)意圖】運(yùn)用小組合作交流的方式,既培養(yǎng)了學(xué)生的合作意識(shí)和能力,又達(dá)到了互幫互助以弱帶強(qiáng)的目的,使學(xué)習(xí)比較吃力的同學(xué)也能參與到學(xué)習(xí)中來(lái),體現(xiàn)了學(xué)生是學(xué)習(xí)的主體。
1.了解“兩點(diǎn)之間,線段最短”.2.能借助尺、規(guī)等工具比較兩條線段的大小,能用圓規(guī)作一條線段等于已知線段.3.了解線段的中點(diǎn)及線段的和、差、倍、分的意義,并能根據(jù)條件求出線段的長(zhǎng).一、情境導(dǎo)入愛(ài)護(hù)花草樹(shù)木是我們每個(gè)人都應(yīng)具備的優(yōu)秀品質(zhì).從教學(xué)樓到圖書(shū)館,總有少數(shù)同學(xué)不走人行道而橫穿草坪(如圖),同學(xué)們,你覺(jué)得這樣做對(duì)嗎?為了解釋這種現(xiàn)象,學(xué)習(xí)了下面的知識(shí),你就會(huì)知道.二、合作探究探究點(diǎn)一:線段長(zhǎng)度的計(jì)算【類型一】 根據(jù)線段的中點(diǎn)求線段的長(zhǎng)如圖,若線段AB=20cm,點(diǎn)C是線段AB上一點(diǎn),M、N分別是線段AC、BC的中點(diǎn).(1)求線段MN的長(zhǎng);(2)根據(jù)(1)中的計(jì)算過(guò)程和結(jié)果,設(shè)AB=a,其它條件不變,你能猜出MN的長(zhǎng)度嗎?請(qǐng)用簡(jiǎn)潔的話表達(dá)你發(fā)現(xiàn)的規(guī)律.
教學(xué)反思: 1.本課時(shí)設(shè)計(jì)的主導(dǎo)思想是:將數(shù)形結(jié)合的思想滲透給學(xué)生,使學(xué)生對(duì)數(shù)與形有一個(gè)初步的認(rèn)識(shí).為將來(lái)的學(xué)習(xí)打下基礎(chǔ),這節(jié)課是一堂起始課,它為學(xué)生的思維開(kāi)拓了一個(gè)新的天地.在傳統(tǒng)的教學(xué)安排中,這節(jié)課的地位沒(méi)有提到一定的高度,只是交給學(xué)生比較線段的方法,沒(méi)有從數(shù)形結(jié)合的高度去認(rèn)識(shí).實(shí)際上這節(jié)課大有可講,可以挖掘出較深的內(nèi)容.在教知識(shí)的同時(shí),交給學(xué)生一種很重要的數(shù)學(xué)思想.這一點(diǎn)不容忽視,在日常的教學(xué)中要時(shí)時(shí)注意.2.學(xué)生在小學(xué)時(shí)只會(huì)用圓規(guī)畫(huà)圓,不會(huì)用圓規(guī)去度量線段的大小以及截取線段,通過(guò)這節(jié)課,學(xué)生對(duì)圓規(guī)的用法有一個(gè)新的認(rèn)識(shí).3.在課堂練習(xí)中安排了度量一些三角形的邊的長(zhǎng)度,目的是想通過(guò)度量使學(xué)生對(duì)“兩點(diǎn)之間線段最短”這一結(jié)論有一個(gè)感性的認(rèn)識(shí),并為下面的教學(xué)做一個(gè)鋪墊.
1.經(jīng)歷從不同方向觀察物體的活動(dòng)過(guò)程,發(fā)展空間觀念.2.在觀察的過(guò)程中,初步體會(huì)從不同方向觀察同一物體可能看到不同的形狀.3.能識(shí)別從三個(gè)方向看到的簡(jiǎn)單物體的形狀,會(huì)畫(huà)立方體及簡(jiǎn)單組合體從三個(gè)方向看到的形狀,并能根據(jù)看到的形狀描述基本幾何體或?qū)嵨镌停?、情境?dǎo)入觀察圖中不同方向拍攝的廬山美景.你能從蘇東坡《題西林壁》詩(shī)句:“橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同.不識(shí)廬山真面目,只緣身在此山中.”體驗(yàn)出其中的意境嗎?你能挖掘出其中蘊(yùn)含的數(shù)學(xué)道理嗎?讓我們一起探索新知吧!二、合作探究探究點(diǎn)一:從不同的方向看物體如圖所示的幾何體是由一些小正方體組合而成的,從上面看到的平面圖形是()解析:這個(gè)幾何體從上面看,共有2行,第一行能看到3個(gè)小正方形,第二行能看到2個(gè)小正方形.故選D.
【教學(xué)目標(biāo)】1.經(jīng)歷從不同方向觀察物體的活動(dòng)過(guò)程,發(fā)展空間觀念;能在與他人交流的過(guò)程中,合理清晰地表達(dá)自己的思維過(guò)程.2.在觀察的過(guò)程中,初步體會(huì)從不同方向觀察同一物體可能看到不同的圖形.3.能識(shí)別簡(jiǎn)單物體的三視圖,會(huì)畫(huà)立方體及其簡(jiǎn)單組合體的三視圖.【基礎(chǔ)知識(shí)精講】1.主視圖、左視圖、俯視圖的定義從不同方向觀察同一物體,從正面看到的圖叫主視圖,從左面看到的圖叫左視圖,從上面看到的圖叫做俯視圖.2.幾種幾何體的三視圖(1)正方體:三視圖都是正方形.圓錐的主視圖、左視圖都是三角形,而俯視圖的圖中有一個(gè)點(diǎn)表示圓錐的頂點(diǎn),因?yàn)閺纳贤驴磮A錐時(shí)先看到圓錐的頂點(diǎn),再看到底面的圓.3.如何畫(huà)三視圖 當(dāng)用若干個(gè)小正方體搭成新的幾何體,如何畫(huà)這個(gè)新的幾何體的三視圖?
方法總結(jié):對(duì)等式進(jìn)行變形,必須在等式的兩邊同時(shí)進(jìn)行,即同加或同減,同乘或同除,不能漏掉一邊,且同加或同減,同乘或同除的數(shù)必須相同.探究點(diǎn)二:利用等式的基本性質(zhì)解方程用等式的性質(zhì)解下列方程:(1)4x+7=3; (2)12x-13x=4.解析:(1)在等式的兩邊都減7,再在等式的兩邊都除以4,可得答案;(2)在等式的兩邊都乘以6,再合并同類項(xiàng),可得答案.解:(1)方程兩邊都減7,得4x=-4.方程兩邊都除以4,得x=-1;(2)方程兩邊都乘以6,得3x-2x=24,x=24.方法總結(jié):解方程時(shí),一般先將方程變形為ax=b的形式,然后再變形為x=c的形式.三、板書(shū)設(shè)計(jì)教學(xué)過(guò)程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,通過(guò)觀察、操作、歸納等數(shù)學(xué)活動(dòng),感受數(shù)學(xué)思想的條理性和數(shù)學(xué)結(jié)論的嚴(yán)密性.
教學(xué)目標(biāo)1、知識(shí)目標(biāo):掌握等式的性質(zhì);會(huì)運(yùn)用等式的性質(zhì)解簡(jiǎn)單的一元一次方程。2、能力目標(biāo):通過(guò)觀察、探究、歸納、應(yīng)用,培養(yǎng)學(xué)生觀察、分析、綜合、抽象能力,獲取學(xué)習(xí)數(shù)學(xué)的方法。3、情感目標(biāo):通過(guò)學(xué)生間的交流與合作,培養(yǎng)學(xué)生積極愉悅地參與數(shù)學(xué)學(xué)習(xí)活動(dòng)的意識(shí)和情感,敢于面對(duì)數(shù)學(xué)活動(dòng)中的困難,獲得成功的體驗(yàn),體會(huì)解決問(wèn)題中與他人合作的重要性。教學(xué)重點(diǎn)與難點(diǎn)重點(diǎn):理解和應(yīng)用等式的性質(zhì)。難點(diǎn):應(yīng)用等式的性質(zhì),把簡(jiǎn)單的一元一次方程化為“x=a”的形式。教學(xué)時(shí)數(shù) 2課時(shí)(本節(jié)課是第一課時(shí))教學(xué)方法 多媒體教學(xué)教學(xué)過(guò)程(一) 創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入。上課開(kāi)始,給出思考,(算一算,試一試)能否用估算法求出下列方程的解:(學(xué)生不用筆算,只能估算)
方法總結(jié):在分辨一個(gè)圖形是否為多邊形時(shí),一定要抓住多邊形定義中的關(guān)鍵詞語(yǔ),如“線段”“首尾順次連接”“封閉”“平面圖形”等.如此,對(duì)于某些似是而非的圖形,只要根據(jù)定義進(jìn)行對(duì)照和分析,即可判定.探究點(diǎn)二:確定多邊形的對(duì)角線一個(gè)多邊形從一個(gè)頂點(diǎn)最多能引出2015條對(duì)角線,這個(gè)多邊形的邊數(shù)是()A.2015 B.2016 C.2017 D.2018解析:這個(gè)多邊形的邊數(shù)為2015+3=2018.故選D.方法總結(jié):過(guò)n邊形的一個(gè)頂點(diǎn)可以畫(huà)出(n-3)條對(duì)角線.本題只要逆向求解即可.探究點(diǎn)三:求扇形圓心角將一個(gè)圓分割成三個(gè)扇形,它們的圓心角的度數(shù)之比為2:3:4,求這三個(gè)扇形圓心角的度數(shù).解析:用扇形圓心角所對(duì)應(yīng)的比去乘360°即可求出相應(yīng)扇形圓心角的度數(shù).解:三個(gè)扇形的圓心角度數(shù)分別為:360°×22+3+4=80°;360°×32+3+4=120°;
解析:此題作為一道開(kāi)放型題,分類的方法非常多,只要能說(shuō)明分類的理由即可.但要注意:按某一標(biāo)準(zhǔn)分類時(shí),要做到不重不漏,分類標(biāo)準(zhǔn)不同時(shí),分類的結(jié)果也就不盡相同.解:本題答案不唯一,如按柱體、錐體、球體分類:(2)(3)(5)和(6)都是柱體,(4)(7)是錐體,(1)是球體.方法總結(jié):生活中常見(jiàn)幾何體有兩種分類:一種按柱體、錐體、球體分類;一種按平面和曲面分類.探究點(diǎn)二:幾何體的形成筆尖畫(huà)線可以理解為點(diǎn)動(dòng)成線.使用數(shù)學(xué)知識(shí)解釋下列生活中的現(xiàn)象:(1)流星劃破夜空,留下美麗的弧線;(2)一條拉直的細(xì)線切開(kāi)了一塊豆腐;(3)把一枚硬幣立在桌面上用力一轉(zhuǎn),形成一個(gè)球.解析:解釋現(xiàn)象關(guān)鍵是看其屬于什么運(yùn)動(dòng).解:(1)點(diǎn)動(dòng)成線;(2)線動(dòng)成面;(3)面動(dòng)成體.方法總結(jié):生活中的很多現(xiàn)象都可以用數(shù)學(xué)知識(shí)來(lái)解釋,關(guān)鍵是要找到生活實(shí)例與數(shù)學(xué)知識(shí)的連接點(diǎn),如第(1)題可將流星看作一個(gè)點(diǎn),則“點(diǎn)動(dòng)成線”.如圖所示,將平面圖形繞軸旋轉(zhuǎn)一周,得到的幾何體是()
方法總結(jié):平行線與角的大小關(guān)系、直線的位置關(guān)系是緊密聯(lián)系在一起的.由兩直線平行的位置關(guān)系得到兩個(gè)相關(guān)角的數(shù)量關(guān)系,從而得到相應(yīng)角的度數(shù).探究點(diǎn)四:平行于同一條直線的兩直線平行如圖所示,AB∥CD.求證:∠B+∠BED+∠D=360°.解析:證明本題的關(guān)鍵是如何使平行線與要證的角發(fā)生聯(lián)系,顯然需作出輔助線,溝通已知和結(jié)論.已知AB∥CD,但沒(méi)有一條直線既與AB相交,又與CD相交,所以需要作輔助線構(gòu)造同位角、內(nèi)錯(cuò)角或同旁內(nèi)角,但是又要保證原有條件和結(jié)論的完整性,所以需要過(guò)點(diǎn)E作AB的平行線.證明:如圖所示,過(guò)點(diǎn)E作EF∥AB,則有∠B+∠BEF=180°(兩直線平行,同旁內(nèi)角互補(bǔ)).又∵AB∥CD(已知),∴EF∥CD(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行),∴∠FED+∠D=180°(兩直線平行,同旁內(nèi)角互補(bǔ)).∴∠B+∠BEF+∠FED+∠D=180°+180°(等式的性質(zhì)),即∠B+∠BED+∠D=360°.方法總結(jié):過(guò)一點(diǎn)作一條直線或線段的平行線是我們常作的輔助線.
四、做一做(實(shí)踐)1、用牙簽和橡皮泥制作球體和一些柱體和錐體,看哪些同學(xué)做得比較標(biāo)準(zhǔn)。2、使出事先準(zhǔn)備好的等邊三角形紙片,試將它折成一個(gè)正四面體。五、試一試(探索)課前,發(fā)給學(xué)生閱讀材料《晶體--自然界的多面體》,讓學(xué)生通過(guò)閱讀了解什么是正多面體,正多面體是柏拉圖約在公元400年獨(dú)立發(fā)現(xiàn)的,在這之前,埃及人已經(jīng)用于建筑(埃及金字塔),以此激勵(lì)學(xué)生探索的欲望。教師出示實(shí)物模型:正四面體、正方體、正八面體、正十二面體、正二十面體1、以正四面體為例,說(shuō)出它的頂點(diǎn)數(shù)、棱數(shù)和面數(shù)。2、再讓學(xué)生觀察、討論其它正多面體的頂點(diǎn)數(shù)、棱數(shù)和面數(shù)。將結(jié)果記入書(shū)上的P128的表格。引導(dǎo)學(xué)生發(fā)現(xiàn)結(jié)論。3、(延伸):若隨意做一個(gè)多面體,看看是否還是那個(gè)結(jié)果。
(1)該校被抽查的學(xué)生共有多少名?(2)現(xiàn)規(guī)定視力5.1及以上為合格,若被抽查年級(jí)共有600名學(xué)生,估計(jì)該年級(jí)在2015年有多少名學(xué)生視力合格.解析:由折線統(tǒng)計(jì)圖可知2015年被抽取的學(xué)生人數(shù),且扇形統(tǒng)計(jì)圖中對(duì)應(yīng)的A區(qū)所占的百分比已知,由此即可求出被抽查的學(xué)生人數(shù);根據(jù)扇形統(tǒng)計(jì)圖中C、D區(qū)所占的百分比,即可求出該年級(jí)在2015年有多少名學(xué)生視力合格.解:(1)該校被抽查的學(xué)生人數(shù)為80÷40%=200(人);(2)估計(jì)該年級(jí)在2015年視力合格的學(xué)生人數(shù)為600×(10%+20%)=180(人).方法總結(jié):本題的解題技巧在于從兩個(gè)統(tǒng)計(jì)圖中獲取正確的信息,并互相補(bǔ)充互相利用.例如求被抽查的學(xué)生人數(shù)時(shí),由折線統(tǒng)計(jì)圖可知2015年被抽取的學(xué)生人數(shù)是80人,與其相對(duì)應(yīng)的是扇形統(tǒng)計(jì)圖中的A區(qū),而A區(qū)所占的百分比是40%,由此求出被抽查的學(xué)生人數(shù)為80÷40%=200(人).
內(nèi)容:情景1:多媒體展示:提出問(wèn)題:從二教樓到綜合樓怎樣走最近?情景2:如圖:在一個(gè)圓柱石凳上,若小明在吃東西時(shí)留下了一點(diǎn)食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?意圖:通過(guò)情景1復(fù)習(xí)公理:兩點(diǎn)之間線段最短;情景2的創(chuàng)設(shè)引入新課,激發(fā)學(xué)生探究熱情.效果:從學(xué)生熟悉的生活場(chǎng)景引入,提出問(wèn)題,學(xué)生探究熱情高漲,為下一環(huán)節(jié)奠定了良好基礎(chǔ).第二環(huán)節(jié):合作探究?jī)?nèi)容:學(xué)生分為4人活動(dòng)小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計(jì)算方法,通過(guò)具體計(jì)算,總結(jié)出最短路線.讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開(kāi)后展開(kāi)得到矩形,研究“螞蟻怎么走最近”就是研究?jī)牲c(diǎn)連線最短問(wèn)題,引導(dǎo)學(xué)生體會(huì)利用數(shù)學(xué)解決實(shí)際問(wèn)題的方法.
(2)DF∥BE.∵DE平分∠ADC,BF平分∠ABC(已知),∴∠3=12∠ADC,∠2=12∠ABC(角平分線定義).∵∠ADC=∠ABC(已知),∴∠2=∠3(等量代換).又∵∠1=∠2(已知),∴∠1=∠3(等量代換),∴DF∥BE(內(nèi)錯(cuò)角相等,兩直線平行).(3)AD∥BC.由(2)知∠3=∠1,又∵DE平分∠ADC(已知),∴∠ADE=∠3(角平分線定義),∠ADE=∠1(等量代換).∴∠A=180°-∠ADE-∠1=180°-2∠ADE=180°-∠ADC=180°-∠ABC(三角形內(nèi)角和為180°及等量代換),即∠A+∠ABC=180°,∴AD∥BC(同旁內(nèi)角互補(bǔ),兩直線平行).方法總結(jié):解此類題應(yīng)首先結(jié)合圖形猜測(cè)結(jié)論,然后證明.證明兩條直線平行,一般先找它們的截線,再求同位角相等(或內(nèi)錯(cuò)角相等,同旁內(nèi)角互補(bǔ))來(lái)說(shuō)明兩直線平行.若沒(méi)有公共截線,則需作出兩直線的截線輔助證明.三、板書(shū)設(shè)計(jì)平行線,的判定)判定公理:同位角相等,兩直線平行判定定理內(nèi)錯(cuò)角相等,兩直線平行同旁內(nèi)角互補(bǔ),兩直線平行本節(jié)課通過(guò)經(jīng)歷探索平行線的判定方法的過(guò)程,發(fā)展學(xué)生的邏輯推理能力,逐步掌握規(guī)范的推理論證格式.
探究點(diǎn)二:三角形內(nèi)角和定理的推論2如圖,P是△ABC內(nèi)的一點(diǎn),求證:∠BPC>∠A.解析:由題意無(wú)法直接得出∠BPC>∠A,延長(zhǎng)BP交AC于D,就能得到∠BPC>∠PDC,∠PDC>∠A.即可得證.證明:延長(zhǎng)BP交AC于D,∵∠BPC是△ABC的外角(外角定義),∴∠BPC>∠PDC(三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角).同理可證:∠PDC>∠A,∴∠BPC>∠A.方法總結(jié):利用推論2證明角的大小時(shí),兩個(gè)角應(yīng)是同一個(gè)三角形的內(nèi)角和外角.若不是,就需借助中間量轉(zhuǎn)化求證.三、板書(shū)設(shè)計(jì)三角形的外角外角:三角形的一邊與另一邊的延長(zhǎng)線所組成的 角,叫做三角形的外角推論1:三角形的一個(gè)外角等于和它不相鄰的兩 個(gè)內(nèi)角的和推論2:三角形的一個(gè)外角大于任何一個(gè)和它不 相鄰的內(nèi)角利用已經(jīng)學(xué)過(guò)的知識(shí)來(lái)推導(dǎo)出新的定理以及運(yùn)用新的定理解決相關(guān)問(wèn)題,進(jìn)一步熟悉和掌握證明的步驟、格式、方法、技巧.進(jìn)一步培養(yǎng)學(xué)生的邏輯思維能力和推理能力,特別是培養(yǎng)有條理的想象和探索能力,從而做到強(qiáng)化基礎(chǔ),激發(fā)學(xué)習(xí)興趣.
證法二:(1)延長(zhǎng)BD交AC于E(或延長(zhǎng)CD交AB于E),如圖.則∠BDC是△CDE的一個(gè)外角.∴∠BDC>∠DEC.(三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角)∵∠DEC是△ABE的一個(gè)外角(已作)∴∠DEC>∠A(三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角)∴∠BDC>∠A(不等式的性質(zhì))(2)延長(zhǎng)BD交AC于E,則∠BDC是△DCE的一個(gè)外角.∴∠BDC=∠C+∠DEC(三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和)∵∠DEC是△ABE的一個(gè)外角∴∠DEC=∠A+∠B(三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和)∴∠BDC=∠B+∠C+∠BAC(等量代換)活動(dòng)目的:讓學(xué)生接觸各種類型的幾何證明題,提高邏輯推理能力,培養(yǎng)學(xué)生的證明思路,特別是不等關(guān)系的證明題,因?yàn)閷W(xué)生接觸較少,因此更需要加強(qiáng)練習(xí).注意事項(xiàng):學(xué)生對(duì)于幾何圖形中的不等關(guān)系的證明比較陌生,因此有必要在證明第2小題中,要引導(dǎo)學(xué)生找到一個(gè)過(guò)渡角∠ACB,由∠1>∠ACB,∠ACB>∠2,再由不等關(guān)系的傳遞性得出∠1>∠2。
(2)請(qǐng)你思考:師:這樣就需要設(shè)計(jì)一張其他面值的郵票,如果最高的資費(fèi)是6元,那么用3張郵票來(lái)支付時(shí),面值對(duì)大的郵票是幾元?可增加什么面值的郵票?(學(xué)生分組討論設(shè)計(jì)思考)生:6元除以3元就是2元,可增加的郵票面值可為2.0元,2.4元或4.0元。(3)小結(jié):雖然滿足條件的郵票組合很多,但郵政部門在發(fā)行郵票時(shí),還要從經(jīng)濟(jì)、合理等角度考慮?!驹O(shè)計(jì)意圖:大膽放手,讓學(xué)生參與數(shù)學(xué)活動(dòng)。讓學(xué)生成為課堂的主體,讓他們?cè)趧?dòng)手、動(dòng)腦、動(dòng)口的過(guò)程中學(xué)到知識(shí)和思維的方法,知識(shí)的獲得和學(xué)習(xí)方法的形成都是在學(xué)生“做”的過(guò)程中形成的。】四、鞏固深化:1、如果小明的爸爸要給小明回一封不足20g的信,他該貼多少錢的郵票?2、如果小明的好朋友要寄一封39g的信,他該貼多少錢的郵票?五、課后實(shí)踐:課后給你的親戚或者好朋友寄封信。