觀察 和 的圖象,它們有什么相同點(diǎn)和不同點(diǎn)?學(xué)生小組討論,弄清上述兩個(gè)圖象的異同點(diǎn)。交流討論反比 例函數(shù)圖象是中心對(duì)稱圖形嗎?如果是,請(qǐng)找出對(duì)稱中心.反比例函數(shù)圖象是軸對(duì)稱圖形嗎?如果是,請(qǐng)指出它的對(duì)稱軸.二、隨堂練習(xí)課本隨堂練習(xí) [探索與交流]對(duì)于函數(shù) , 兩支曲線分別位于哪個(gè)象限內(nèi)?對(duì)于函數(shù) ,兩支曲線又分別位于哪個(gè)象限內(nèi)?怎樣區(qū)別這兩個(gè)函數(shù)的圖象。學(xué)生分四人小組全班探索。 三、課堂總結(jié)在進(jìn)行函數(shù)的列表,描點(diǎn)作圖的活動(dòng)中,就已經(jīng)滲透了反比例函數(shù)圖象的特征,因此在作圖象的過(guò)程中,大家要進(jìn)行積極的探索 。另外,(1)反比例函數(shù)的圖象是非線性的,它的圖象是雙曲線;(2)反比例 函數(shù)y= 的圖像,當(dāng)k>0時(shí),它的圖像位于一、三象限內(nèi),當(dāng)k<0時(shí),它的圖像位于二、四象限內(nèi);(3)反比例函數(shù)既是中心對(duì)稱圖形,又是軸對(duì)稱圖形。
在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對(duì)角線分成4個(gè)等腰直角三角形,因此在正方形中解決問(wèn)題時(shí)常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類型三】 利用正方形的性質(zhì)證明線段相等如圖,已知過(guò)正方形ABCD的對(duì)角線BD上一點(diǎn)P,作PE⊥BC于點(diǎn)E,PF⊥CD于點(diǎn)F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時(shí)只需說(shuō)明AP=CP,由正方形對(duì)角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對(duì)角線互相垂直平分證明線段相等;(2)無(wú)論是正方形還是矩形,經(jīng)常連接對(duì)角線,這樣可以使分散的條件集中.
意圖:課后作業(yè)設(shè)計(jì)包括了三個(gè)層面:作業(yè)1是為了鞏固基礎(chǔ)知識(shí)而設(shè)計(jì);作業(yè)2是為了擴(kuò)展學(xué)生的知識(shí)面;作業(yè)3是為了拓廣知識(shí),進(jìn)行課后探究而設(shè)計(jì),通過(guò)此題可讓學(xué)生進(jìn)一步認(rèn)識(shí)勾股定理的前提條件.效果:學(xué)生進(jìn)一步加強(qiáng)對(duì)本課知識(shí)的理解和掌握.教學(xué)設(shè)計(jì)反思(一)設(shè)計(jì)理念依據(jù)“學(xué)生是學(xué)習(xí)的主體”這一理念,在探索勾股定理的整個(gè)過(guò)程中,本節(jié)課始終采用學(xué)生自主探索和與同伴合作交流相結(jié)合的方式進(jìn)行主動(dòng)學(xué)習(xí).教師只在學(xué)生遇到困難時(shí),進(jìn)行引導(dǎo)或組織學(xué)生通過(guò)討論來(lái)突破難點(diǎn).(二)突出重點(diǎn)、突破難點(diǎn)的策略為了讓學(xué)生在學(xué)習(xí)過(guò)程中自我發(fā)現(xiàn)勾股定理,本節(jié)課首先情景創(chuàng)設(shè)激發(fā)興趣,再通過(guò)幾個(gè)探究活動(dòng)引導(dǎo)學(xué)生從探究等腰直角三角形這一特殊情形入手,自然過(guò)渡到探究一般直角三角形,學(xué)生通過(guò)觀察圖形,計(jì)算面積,分析數(shù)據(jù),發(fā)現(xiàn)直角三角形三邊的關(guān)系,進(jìn)而得到勾股定理.
解析:熟記常見(jiàn)幾何體的三種視圖后首先可排除選項(xiàng)A,因?yàn)殚L(zhǎng)方體的三視圖都是矩形;因?yàn)樗o的主視圖中間是兩條虛線,故可排除選項(xiàng)B;選項(xiàng)D的幾何體中的俯視圖應(yīng)為一個(gè)梯形,與所給俯視圖形狀不符.只有C選項(xiàng)的幾何體與已知的三視圖相符.故選C.方法總結(jié):由幾何體的三種視圖想象其立體形狀可以從如下途徑進(jìn)行分析:(1)根據(jù)主視圖想象物體的正面形狀及上下、左右位置,根據(jù)俯視圖想象物體的上面形狀及左右、前后位置,再結(jié)合左視圖驗(yàn)證該物體的左側(cè)面形狀,并驗(yàn)證上下和前后位置;(2)從實(shí)線和虛線想象幾何體看得見(jiàn)部分和看不見(jiàn)部分的輪廓線.在得出原立體圖形的形狀后,也可以反過(guò)來(lái)想象一下這個(gè)立體圖形的三種視圖,看與已知的三種視圖是否一致.探究點(diǎn)四:三視圖中的計(jì)算如圖所示是一個(gè)工件的三種視圖,圖中標(biāo)有尺寸,則這個(gè)工件的體積是()A.13πcm3 B.17πcm3C.66πcm3 D.68πcm3解析:由三種視圖可以看出,該工件是上下兩個(gè)圓柱的組合,其中下面的圓柱高為4cm,底面直徑為4cm;上面的圓柱高為1cm,底面直徑為2cm,則V=4×π×22+1×π×12=17π(cm3).故選B.
(1)填寫(xiě)表格中次品的概率.(2)從這批西裝中任選一套是次品的概率是多少?(3)若要銷售這批西裝2000件,為了方便購(gòu)買(mǎi)次品西裝的顧客前來(lái)調(diào)換,至少應(yīng)該進(jìn)多少件西裝?六、課堂小結(jié):盡管隨機(jī)事件在每次實(shí)驗(yàn)中發(fā)生與否具有不確定性,但只要保持實(shí)驗(yàn)條件不變,那么這一事件出現(xiàn)的頻率就會(huì)隨著實(shí)驗(yàn)次數(shù)的增大而趨于穩(wěn)定,這個(gè)穩(wěn)定值就可以作為該事件發(fā)生概率的估計(jì)值。七、作業(yè):課后練習(xí)補(bǔ)充:一個(gè)口袋中有12個(gè)白球和若干個(gè)黑球,在不允許將球倒出來(lái)數(shù)的前提下,小亮為估計(jì)口袋中黑球的個(gè)數(shù),采用了如下的方法:每次先從口袋中摸出10個(gè)球,求出其中白球與10的比值,再把球放回袋中搖勻。不斷重復(fù)上述過(guò)程5次,得到的白求數(shù)與10的比值分別為:0.4,0.1,0.2,0.1,0.2。根據(jù)上述數(shù)據(jù),小亮可估計(jì)口袋中大約有 48 個(gè)黑球。
(4)議一議:頻率與概率有什么區(qū)別和聯(lián)系?隨著重復(fù)實(shí)驗(yàn)次數(shù)的不斷增加,頻率的變化趨勢(shì)如何?結(jié)論:從上面的試驗(yàn)可以看到:當(dāng)重復(fù)實(shí)驗(yàn)的次數(shù)大量增加時(shí),事件發(fā) 生的頻率就穩(wěn)定在相應(yīng)的概率附近,因此,我們可以通過(guò)大量重復(fù)實(shí)驗(yàn),用一個(gè)事件發(fā)生的頻率來(lái)估計(jì)這一事件發(fā)生的概率。三、做一做:1.某運(yùn)動(dòng)員投籃5次, 投中4次,能否說(shuō)該運(yùn)動(dòng)員投一次籃,投中的概率為4/5?為什么?2.回答下列問(wèn)題:(1)抽檢1000件襯衣,其中不合格的襯衣有2件,由 此估計(jì)抽1件襯衣合格的概率是多少?(2)1998年,在美國(guó)密歇根州漢諾城市的一個(gè)農(nóng)場(chǎng)里出生了1頭白色的小奶牛,據(jù)統(tǒng)計(jì),平均出生1千萬(wàn)頭牛才會(huì)有1頭是白色的,由此估計(jì)出生一頭奶牛為白色的概率為多少?
1.經(jīng)歷從不同方向觀察物體的活動(dòng)過(guò)程,發(fā)展空間觀念.2.在觀察的過(guò)程中,初步體會(huì)從不同方向觀察同一物體可能看到不同的形狀.3.能識(shí)別從三個(gè)方向看到的簡(jiǎn)單物體的形狀,會(huì)畫(huà)立方體及簡(jiǎn)單組合體從三個(gè)方向看到的形狀,并能根據(jù)看到的形狀描述基本幾何體或?qū)嵨镌停弧⑶榫硨?dǎo)入觀察圖中不同方向拍攝的廬山美景.你能從蘇東坡《題西林壁》詩(shī)句:“橫看成嶺側(cè)成峰,遠(yuǎn)近高低各不同.不識(shí)廬山真面目,只緣身在此山中.”體驗(yàn)出其中的意境嗎?你能挖掘出其中蘊(yùn)含的數(shù)學(xué)道理嗎?讓我們一起探索新知吧!二、合作探究探究點(diǎn)一:從不同的方向看物體如圖所示的幾何體是由一些小正方體組合而成的,從上面看到的平面圖形是()解析:這個(gè)幾何體從上面看,共有2行,第一行能看到3個(gè)小正方形,第二行能看到2個(gè)小正方形.故選D.
教學(xué)目標(biāo)1、知識(shí)目標(biāo):掌握等式的性質(zhì);會(huì)運(yùn)用等式的性質(zhì)解簡(jiǎn)單的一元一次方程。2、能力目標(biāo):通過(guò)觀察、探究、歸納、應(yīng)用,培養(yǎng)學(xué)生觀察、分析、綜合、抽象能力,獲取學(xué)習(xí)數(shù)學(xué)的方法。3、情感目標(biāo):通過(guò)學(xué)生間的交流與合作,培養(yǎng)學(xué)生積極愉悅地參與數(shù)學(xué)學(xué)習(xí)活動(dòng)的意識(shí)和情感,敢于面對(duì)數(shù)學(xué)活動(dòng)中的困難,獲得成功的體驗(yàn),體會(huì)解決問(wèn)題中與他人合作的重要性。教學(xué)重點(diǎn)與難點(diǎn)重點(diǎn):理解和應(yīng)用等式的性質(zhì)。難點(diǎn):應(yīng)用等式的性質(zhì),把簡(jiǎn)單的一元一次方程化為“x=a”的形式。教學(xué)時(shí)數(shù) 2課時(shí)(本節(jié)課是第一課時(shí))教學(xué)方法 多媒體教學(xué)教學(xué)過(guò)程(一) 創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入。上課開(kāi)始,給出思考,(算一算,試一試)能否用估算法求出下列方程的解:(學(xué)生不用筆算,只能估算)
判斷下面抽樣調(diào)查選取樣本的方法是否合適:(1)檢查某啤酒廠即將出廠的啤酒質(zhì)量情況,先隨機(jī)抽取若干箱(捆),再在抽取的每箱(捆)中,隨機(jī)抽取1~2瓶檢查;(2)通過(guò)網(wǎng)上問(wèn)卷調(diào)查方式,了解百姓對(duì)央視春節(jié)晚會(huì)的評(píng)價(jià);(3)調(diào)查某市中小學(xué)生學(xué)習(xí)負(fù)擔(dān)的狀況,在該市每所小學(xué)的每個(gè)班級(jí)選取一名學(xué)生,進(jìn)行問(wèn)卷調(diào)查;(4)教育部為了調(diào)查中小學(xué)亂收費(fèi)情況,調(diào)查了某市所有中小學(xué)生.解析:本題應(yīng)看樣本是否為簡(jiǎn)單隨機(jī)樣本,是否具有代表性.解:(1)合適,這是一種隨機(jī)抽樣的方法,樣本為簡(jiǎn)單隨機(jī)樣本.(2)不合適,我國(guó)農(nóng)村人口眾多,多數(shù)農(nóng)民是不上網(wǎng)的,所以調(diào)查的對(duì)象在總體中不具有代表性.(3)不合適,選取的樣本中個(gè)體太少.(4)不合適,樣本雖然足夠大,但遺漏了其他城市里的這些群體,應(yīng)在全國(guó)范圍內(nèi)分層選取樣本,除了上述原因外,每班的學(xué)生全部作為樣本是沒(méi)有必要的.
解析:此題作為一道開(kāi)放型題,分類的方法非常多,只要能說(shuō)明分類的理由即可.但要注意:按某一標(biāo)準(zhǔn)分類時(shí),要做到不重不漏,分類標(biāo)準(zhǔn)不同時(shí),分類的結(jié)果也就不盡相同.解:本題答案不唯一,如按柱體、錐體、球體分類:(2)(3)(5)和(6)都是柱體,(4)(7)是錐體,(1)是球體.方法總結(jié):生活中常見(jiàn)幾何體有兩種分類:一種按柱體、錐體、球體分類;一種按平面和曲面分類.探究點(diǎn)二:幾何體的形成筆尖畫(huà)線可以理解為點(diǎn)動(dòng)成線.使用數(shù)學(xué)知識(shí)解釋下列生活中的現(xiàn)象:(1)流星劃破夜空,留下美麗的弧線;(2)一條拉直的細(xì)線切開(kāi)了一塊豆腐;(3)把一枚硬幣立在桌面上用力一轉(zhuǎn),形成一個(gè)球.解析:解釋現(xiàn)象關(guān)鍵是看其屬于什么運(yùn)動(dòng).解:(1)點(diǎn)動(dòng)成線;(2)線動(dòng)成面;(3)面動(dòng)成體.方法總結(jié):生活中的很多現(xiàn)象都可以用數(shù)學(xué)知識(shí)來(lái)解釋,關(guān)鍵是要找到生活實(shí)例與數(shù)學(xué)知識(shí)的連接點(diǎn),如第(1)題可將流星看作一個(gè)點(diǎn),則“點(diǎn)動(dòng)成線”.如圖所示,將平面圖形繞軸旋轉(zhuǎn)一周,得到的幾何體是()
四、做一做(實(shí)踐)1、用牙簽和橡皮泥制作球體和一些柱體和錐體,看哪些同學(xué)做得比較標(biāo)準(zhǔn)。2、使出事先準(zhǔn)備好的等邊三角形紙片,試將它折成一個(gè)正四面體。五、試一試(探索)課前,發(fā)給學(xué)生閱讀材料《晶體--自然界的多面體》,讓學(xué)生通過(guò)閱讀了解什么是正多面體,正多面體是柏拉圖約在公元400年獨(dú)立發(fā)現(xiàn)的,在這之前,埃及人已經(jīng)用于建筑(埃及金字塔),以此激勵(lì)學(xué)生探索的欲望。教師出示實(shí)物模型:正四面體、正方體、正八面體、正十二面體、正二十面體1、以正四面體為例,說(shuō)出它的頂點(diǎn)數(shù)、棱數(shù)和面數(shù)。2、再讓學(xué)生觀察、討論其它正多面體的頂點(diǎn)數(shù)、棱數(shù)和面數(shù)。將結(jié)果記入書(shū)上的P128的表格。引導(dǎo)學(xué)生發(fā)現(xiàn)結(jié)論。3、(延伸):若隨意做一個(gè)多面體,看看是否還是那個(gè)結(jié)果。
(1)依照此規(guī)律,第20個(gè)圖形共有幾個(gè)五角星?(2)擺成第n個(gè)圖形需要幾個(gè)五角星?(3)擺成第2015個(gè)圖形需要幾個(gè)五角星?解析:通過(guò)觀察已知圖形可得:每個(gè)圖形都比其前一個(gè)圖形多3個(gè)五角星,根據(jù)此規(guī)律即可解答.解:(1)根據(jù)題意得,第1個(gè)圖中,五角星有3個(gè)(3×1);第2個(gè)圖中,五角星有6個(gè)(3×2);第3個(gè)圖中,五角星有9個(gè)(3×3);第4個(gè)圖中,五角星有12個(gè)(3×4);∴第n個(gè)圖中有五角星3n個(gè).∴第20個(gè)圖中五角星有3×20=60個(gè).(2)擺成第n個(gè)圖形需要五角星3n個(gè).(3)擺成第2015個(gè)圖形需要6045個(gè)五角星.方法總結(jié):此題首先要結(jié)合圖形具體數(shù)出幾個(gè)值,注意由特殊到一般的分析方法.此題的規(guī)律為擺成第n個(gè)圖形需要3n個(gè)五角星.三、板書(shū)設(shè)計(jì)教學(xué)過(guò)程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,經(jīng)歷觀察、操作、驗(yàn)證、歸納、分析、猜想、抽象、積累、類比、轉(zhuǎn)化等思維過(guò)程,從中獲得數(shù)學(xué)知識(shí)與技能,體驗(yàn)教學(xué)活動(dòng)的方法,同時(shí)升華學(xué)生的情感態(tài)度和價(jià)值觀.
解析:可以根據(jù)線段的定義寫(xiě)出所有的線段即可得解;也可以先找出端點(diǎn)的個(gè)數(shù),然后利用公式n(n-1)2進(jìn)行計(jì)算.方法一:圖中線段有:AB、AC、AD、AE、BC、BD、BE、CD、CE、DE;共4+3+2+1=10條;方法二:共有A、B、C、D、E五個(gè)端點(diǎn),則線段的條數(shù)為5×(5-1)2=10條.故選C.方法總結(jié):找線段時(shí)要按照一定的順序做到不重不漏,若利用公式計(jì)算時(shí)則更加簡(jiǎn)便準(zhǔn)確.【類型四】 線段、射線和直線的應(yīng)用由鄭州到北京的某一次往返列車(chē),運(yùn)行途中??康能?chē)站依次是:鄭州——開(kāi)封——商丘——菏澤——聊城——任丘——北京,那么要為這次列車(chē)制作的火車(chē)票有()A.6種 B.12種C.21種 D.42種解析:從鄭州出發(fā)要經(jīng)過(guò)6個(gè)車(chē)站,所以要制作6種車(chē)票;從開(kāi)封出發(fā)要經(jīng)過(guò)5個(gè)車(chē)站,所以要制作5種車(chē)票;從商丘出發(fā)要經(jīng)過(guò)4個(gè)車(chē)站,所以要制作4種車(chē)票;從菏澤出發(fā)要經(jīng)過(guò)3個(gè)車(chē)站,所以要制作3種車(chē)票;從聊城出發(fā)要經(jīng)過(guò)2個(gè)車(chē)站,所以要制作2種車(chē)票;從任丘出發(fā)要經(jīng)過(guò)1個(gè)車(chē)站,所以要制作1種車(chē)票.再考慮是往返列車(chē),起點(diǎn)與終點(diǎn)不同,則車(chē)票不同,乘以2即可.即共需制作的車(chē)票數(shù)為:2×(6+5+4+3+2+1)=2×21=42種.故選D.
用四舍五入法將下列各數(shù)按括號(hào)中的要求取近似數(shù).(1)0.6328(精確到0.01);(2)7.9122(精確到個(gè)位);(3)47155(精確到百位);(4)130.06(精確到0.1);(5)4602.15(精確到千位).解析:(1)把千分位上的數(shù)字2四舍五入即可;(2)把十分位上的數(shù)字9四舍五入即可;(3)先用科學(xué)記數(shù)法表示,然后把十位上的數(shù)字5四舍五入即可;(4)把百分位上的數(shù)字6四舍五入即可;(5)先用科學(xué)記數(shù)法表示,然后把百位上的數(shù)字6四舍五入即可.解:(1)0.6328≈0.63(精確到0.01);(2)7.9122≈8(精確到個(gè)位);(3)47155≈4.72×104(精確到百位);(4)130.06≈130.1(精確到0.1);(5)4602.15≈5×103(精確到千位).方法總結(jié):按精確度找出要保留的最后一個(gè)數(shù)位,再按下一個(gè)數(shù)位上的數(shù)四舍五入即可.三、板書(shū)設(shè)計(jì)教學(xué)過(guò)程中,強(qiáng)調(diào)學(xué)生自主探索和合作交流,經(jīng)歷觀察、操作、歸納、積累等思維過(guò)程,從中獲得數(shù)學(xué)知識(shí)與技能,體驗(yàn)教學(xué)活動(dòng)的方法,發(fā)展推理能力,同時(shí)升華學(xué)生的情感態(tài)度和價(jià)值觀.
1.會(huì)用二次根式的四則運(yùn)算法則進(jìn)行簡(jiǎn)單地運(yùn)算;(重點(diǎn))2.靈活運(yùn)用二次根式的乘法公式.(難點(diǎn))一、情境導(dǎo)入下面正方形的邊長(zhǎng)分別是多少?這兩個(gè)數(shù)之間有什么關(guān)系,你能借助什么運(yùn)算法則或運(yùn)算律解釋它?二、合作探究探究點(diǎn)一:二次根式的乘除運(yùn)算【類型一】 二次根式的乘法計(jì)算:(1)3×5; (2)13×27;(3)2xy×1x; (4)14×7.解:(1)3×5=15;(2)13×27=13×27=9=3;(3)2xy×1x=2xy×1x=2y;(4)14×7=14×7=72×2=72.方法總結(jié):幾個(gè)二次根式相乘,把它們的被開(kāi)方數(shù)相乘,根指數(shù)不變,如果積含有能開(kāi)得盡方的因數(shù)或因式,一定要化簡(jiǎn).【類型二】 二次根式的除法計(jì)算a2-2a÷a的結(jié)果是()A.-a-2 B.--a-2C.a-2 D.-a-2解析:原式=a2-2aa=a(a-2)a=a-2.故選C.
1.關(guān)于二次根式的概念,要注意以下幾點(diǎn):(1)從形式上看,二次根式是以根號(hào)“ ”表示的代數(shù)式,這里的開(kāi)方運(yùn)算是最后一步運(yùn)算。如 , 等不是二次根式,而是含有二次根式的代數(shù)式或二次根式的運(yùn)算;(2)當(dāng)一個(gè)二次根式前面乘有一個(gè)有理數(shù)或有理式(整式或分式)時(shí),雖然最后運(yùn)算不是開(kāi)方而是乘法,但為了方便起見(jiàn),我們把它看作一個(gè)整體仍叫做二次根式,而前面與其相乘的有理數(shù)或有理式就叫做二次根式的系數(shù);(3)二次根式的被開(kāi)方數(shù),可以是某個(gè)確定的非負(fù)實(shí)數(shù),也可以是某個(gè)代數(shù)式表示的數(shù),但其中所含字母的取值必須使得該代數(shù)式的值為非負(fù)實(shí)數(shù);(4)像“ , ”等雖然可以進(jìn)行開(kāi)方運(yùn)算,但它們?nèi)詫儆诙胃健?.二次根式的主要性質(zhì)(1) ; (2) ; (3) ;(4)積的算術(shù)平方根的性質(zhì): ;(5)商的算術(shù)平方根的性質(zhì): ;
屬于此類問(wèn)題一般有以下三種情況①具體數(shù)字,此時(shí)化簡(jiǎn)的條件已暗中給定,②恒為非負(fù)值或根據(jù)題中的隱含條件,如(1)小題。③給出明確的條件,如(2)小題。第二類,需討論后再化簡(jiǎn)。當(dāng)題目中給定的條件不能判定絕對(duì)值符號(hào)內(nèi)代數(shù)式值的符號(hào)時(shí),則需討論后化簡(jiǎn),如(4)小題。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同號(hào),又∵a+b=-6<0,∴a<0,b<0∴ .說(shuō)明:此題中的隱含條件a<0,b<0不能忽視。否則會(huì)出現(xiàn)錯(cuò)誤。例4.化簡(jiǎn): 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.這樣x=6, ,x=-5,把數(shù)軸分成四段(四個(gè)區(qū)間)在這五段里分別討論如下:當(dāng)x≥6時(shí),原式=(x-6)-(1+2x)+(x+5)=-2.當(dāng) 時(shí),原式=-(x-6)-(1+2x)+(x+5)=-2x+10.當(dāng) 時(shí),原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.當(dāng)x<-5時(shí),原式=-(x-6)+(1+2x)-(x+5)=2.說(shuō)明:利用公式 ,如果絕對(duì)值符號(hào)里面的代數(shù)式的值的符號(hào)無(wú)法決定,則需要討論。方法是:令每一個(gè)絕對(duì)值內(nèi)的代數(shù)式為零,求出對(duì)應(yīng)的“零點(diǎn)”,再用這些“零點(diǎn)”把數(shù)軸分成若干個(gè)區(qū)間,再在每個(gè)區(qū)間內(nèi)進(jìn)行化簡(jiǎn)。
內(nèi)容:情景1:多媒體展示:提出問(wèn)題:從二教樓到綜合樓怎樣走最近?情景2:如圖:在一個(gè)圓柱石凳上,若小明在吃東西時(shí)留下了一點(diǎn)食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?意圖:通過(guò)情景1復(fù)習(xí)公理:兩點(diǎn)之間線段最短;情景2的創(chuàng)設(shè)引入新課,激發(fā)學(xué)生探究熱情.效果:從學(xué)生熟悉的生活場(chǎng)景引入,提出問(wèn)題,學(xué)生探究熱情高漲,為下一環(huán)節(jié)奠定了良好基礎(chǔ).第二環(huán)節(jié):合作探究?jī)?nèi)容:學(xué)生分為4人活動(dòng)小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計(jì)算方法,通過(guò)具體計(jì)算,總結(jié)出最短路線.讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開(kāi)后展開(kāi)得到矩形,研究“螞蟻怎么走最近”就是研究?jī)牲c(diǎn)連線最短問(wèn)題,引導(dǎo)學(xué)生體會(huì)利用數(shù)學(xué)解決實(shí)際問(wèn)題的方法.
3.想一想在例1中,(1)點(diǎn)B與點(diǎn)C的縱坐標(biāo)相同,線段BC的位置有什么特點(diǎn)?(2)線段CE位置有什么特點(diǎn)?(3)坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)?由B(0,-3),C(3,-3)可以看出它們的縱坐標(biāo)相同,即B,C兩點(diǎn)到X軸的距離相等,所以線段BC平行于橫軸(x軸),垂直于縱軸(y軸)。第三環(huán)節(jié)學(xué)有所用.補(bǔ)充:1.在下圖中,確定A,B,C,D,E,F(xiàn),G的坐標(biāo)。(第1題) (第2題)2.如右圖,求出A,B,C,D,E,F(xiàn)的坐標(biāo)。第四環(huán)節(jié)感悟與收獲1.認(rèn)識(shí)并能畫(huà)出平面直角坐標(biāo)系。2.在給定的直角坐標(biāo)系中,由點(diǎn)的位置寫(xiě)出它的坐標(biāo)。3.能適當(dāng)建立直角坐標(biāo)系,寫(xiě)出直角坐標(biāo)系中有關(guān)點(diǎn)的坐標(biāo)。4.橫(縱)坐標(biāo)相同的點(diǎn)的直線平行于y軸,垂直于x軸;連接縱坐標(biāo)相同的點(diǎn)的直線平行于x軸,垂直于y軸。5.坐標(biāo)軸上點(diǎn)的縱坐標(biāo)為0;縱坐標(biāo)軸上點(diǎn)的坐標(biāo)為0。6.各個(gè)象限內(nèi)的點(diǎn)的坐標(biāo)特征是:第一象限(+,+)第二象限(-,+),第三象限(-,-)第四象限(+,-)。
方法總結(jié):題中未給出圖形,作高構(gòu)造直角三角形時(shí),易漏掉鈍角三角形的情況.如在本例題中,易只考慮高AD在△ABC內(nèi)的情形,忽視高AD在△ABC外的情形.探究點(diǎn)二:利用勾股定理求面積如圖,以Rt△ABC的三邊長(zhǎng)為斜邊分別向外作等腰直角三角形.若斜邊AB=3,則圖中△ABE的面積為_(kāi)_______,陰影部分的面積為_(kāi)_______.解析:因?yàn)锳E=BE,所以S△ABE=12AE·BE=12AE2.又因?yàn)锳E2+BE2=AB2,所以2AE2=AB2,所以S△ABE=14AB2=14×32=94;同理可得S△AHC+S△BCF=14AC2+14BC2.又因?yàn)锳C2+BC2=AB2,所以陰影部分的面積為14AB2+14AB2=12AB2=12×32=92.故填94、92.方法總結(jié):求解與直角三角形三邊有關(guān)的圖形面積時(shí),要結(jié)合圖形想辦法把圖形的面積與直角三角形三邊的平方聯(lián)系起來(lái),再利用勾股定理找到圖形面積之間的等量關(guān)系.