1.進(jìn)一步理解字母表示數(shù)的意義,能結(jié)合具體情景給字母賦于實(shí)際意義;理解代數(shù)式和代數(shù)式的值的意義,能解釋一些簡(jiǎn)單代數(shù)式的實(shí)際背景或幾何意義,在具體情景中能求出代數(shù)式的值. (重難點(diǎn))2.通過創(chuàng)設(shè)實(shí)際背景和引用符號(hào),經(jīng)歷觀察、體驗(yàn)、驗(yàn)算、猜想、歸納等數(shù)學(xué)過程,體會(huì)數(shù)學(xué)與現(xiàn)實(shí)世界的聯(lián)系,增強(qiáng)符號(hào)感,發(fā)展運(yùn)用符號(hào)解決問題和數(shù)學(xué)探究意識(shí). 教法學(xué)法:教學(xué)方法:引導(dǎo)—探究—發(fā)現(xiàn)法.學(xué)習(xí)方法:自主探究與合作交流相結(jié)合.課前準(zhǔn)備:多媒體課件、投影儀、電腦教學(xué)過程:一、創(chuàng)設(shè)情境,引入新課.欣賞視頻,導(dǎo)入新課師:國(guó)慶六十周年大閱兵,同學(xué)們看了嗎?首先請(qǐng)同學(xué)們來欣賞一段視頻.(26秒.定格在胡錦濤主席乘坐紅旗轎車閱兵的一個(gè)瞬間.)師:這是新中國(guó)成立以來,規(guī)模最大、裝備最新、機(jī)械化程度最高的一次大閱兵.
方法總結(jié):描述一個(gè)代數(shù)式的意義,可以從字母本身出發(fā)來描述字母之間的數(shù)量關(guān)系,也可以聯(lián)系生活實(shí)際或幾何背景賦予其中字母一定的實(shí)際意義加以描述.探究點(diǎn)四:根據(jù)實(shí)際問題列代數(shù)式用代數(shù)式表示下列各式:(1)王明同學(xué)買2本練習(xí)冊(cè)花了n元,那么買m本練習(xí)冊(cè)要花多少元?(2)正方體的棱長(zhǎng)為a,那么它的表面積是多少?體積呢?解析:(1)根據(jù)買2本練習(xí)冊(cè)花了n元,得出買1本練習(xí)冊(cè)花n2元,再根據(jù)買了m本練習(xí)冊(cè),即可列出算式.(2)根據(jù)正方體的棱長(zhǎng)為a和表面積公式、體積公式列出式子.解:(1)∵買2本練習(xí)冊(cè)花了n元,∴買1本練習(xí)冊(cè)花n2元,∴買m本練習(xí)冊(cè)要花12mn元;(2)∵正方體的棱長(zhǎng)為a,∴它的表面積是6a2;它的體積是a3.方法總結(jié):此題考查了列代數(shù)式,用到的知識(shí)點(diǎn)包括正方體的表面積公式和體積公式,根據(jù)題意列出式子是解本題的關(guān)鍵.
一、情境導(dǎo)入游泳是一項(xiàng)深受青少年喜愛的體育活動(dòng),學(xué)校為了加強(qiáng)學(xué)生的安全意識(shí),組織學(xué)生觀看了紀(jì)實(shí)片《孩子,請(qǐng)不要私自下水》,并于觀看后在本校的2000名學(xué)生中作了抽樣調(diào)查.你能根據(jù)下面兩個(gè)不完整的統(tǒng)計(jì)圖回答以下問題嗎?(1)這次抽樣調(diào)查中,共調(diào)查了多少名學(xué)生?(2)補(bǔ)全兩個(gè)統(tǒng)計(jì)圖;(3)根據(jù)抽樣調(diào)查的結(jié)果,估算該校2000名學(xué)生中大約有多少人“一定會(huì)下河游泳”?二、合作探究探究點(diǎn)一:頻數(shù)直方圖的制作小紅家開了一個(gè)報(bào)亭,為了使每天進(jìn)的某種報(bào)紙適量,小紅對(duì)這種報(bào)紙40天的銷售情況作了調(diào)查,這40天賣出這種報(bào)紙的份數(shù)如下:136 175 153 135 161 140 155 180 179 166188 142 144 154 155 157 160 162 135 156148 173 154 145 158 150 154 168 168 155169 157 157 149 134 167 151 144 155 131將上述數(shù)據(jù)分組,并繪制相應(yīng)的頻數(shù)直方圖.解析:先找出這組數(shù)據(jù)的最大值和最小值,再以10為組距把數(shù)據(jù)分組,然后制作頻數(shù)直方圖.解:通過觀察這組數(shù)據(jù)的最大值為188,最小值為131,它們的差是57,所以取組距為10,分6組,整理可得下面的頻數(shù)分布表:
新建成的紅星中學(xué),首次招收七年級(jí)新生12個(gè)班共500人,學(xué)校準(zhǔn)備修建一個(gè)自行車車棚.請(qǐng)問需要修建多大面積的自行車車棚?請(qǐng)你設(shè)計(jì)一個(gè)調(diào)查方案解決這個(gè)問題.解析:決定自行車車棚面積的因素有兩個(gè),即自行車的數(shù)量與每輛自行車的占地面積.因此收集數(shù)據(jù)的重點(diǎn)應(yīng)圍繞這兩個(gè)因素進(jìn)行.解:調(diào)查方案如下:(1)對(duì)全體新生的到校方式進(jìn)行問卷調(diào)查.調(diào)查問卷如下:你到校的方式是騎自行車嗎?A.經(jīng)常是 B.不經(jīng)常是C.很少是 D.從不是(2)根據(jù)調(diào)查問卷結(jié)果分類統(tǒng)計(jì)騎自行車的人數(shù);(3)實(shí)際測(cè)量或估計(jì)存放1輛自行車的大約占地面積;(4)根據(jù)學(xué)校的建設(shè)規(guī)劃、財(cái)力等因素確定自行車車棚的面積.方法總結(jié):確定調(diào)查方案時(shí)必須明確兩個(gè)問題:(1)需要收集哪些數(shù)據(jù)?(2)采用什么方式進(jìn)行調(diào)查可以獲得這些數(shù)據(jù)?探究點(diǎn)三:從圖表中獲取信息小冰就公眾對(duì)在餐廳吸煙的態(tài)度進(jìn)行了調(diào)查,并將調(diào)查結(jié)果制作成如圖所示的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息回答下列問題:
1. 小明的腳長(zhǎng)23.6厘米,鞋號(hào)應(yīng)是 號(hào)。2.小亮的腳長(zhǎng)25.1厘米,鞋號(hào)應(yīng)是 號(hào)。3.小王選了25號(hào)鞋,那么他的腳長(zhǎng)約是大于等于 厘米且小于 厘米。小結(jié):剛才同學(xué)們都體會(huì)到了分組編碼使原來繁多,無敘的數(shù)據(jù)簡(jiǎn)化、有序。因此分組、編碼是整理數(shù)據(jù)的一種重要的方法,在工商業(yè)、科研等活動(dòng)中有廣泛的應(yīng)用(四)反饋練習(xí)課內(nèi)練習(xí)以下是某校七年級(jí)南,女生各10名右眼裸視的檢測(cè)結(jié)果:0.2,0.5,0.7(女),1.0,0.3(女),1.2(女),1.5,1.2,1.5(女),0.4(女),1.5,1.1,1.2(女),0.8(女),1.5(女),0.6(女),1.0(女),0.8,1.5,1.2(1)這組數(shù)據(jù)是用什么方法獲得的?(2)學(xué)生右眼視力跟性別有關(guān)嗎?為了回答這個(gè)問題,你將怎樣處理這組數(shù)據(jù)?你的結(jié)論是什么?(五). 歸納小結(jié),體味數(shù)學(xué)快樂通過本節(jié)課的學(xué)習(xí),你有那些收獲?(課堂小結(jié)交給學(xué)生)數(shù)據(jù)收集的方法:直接觀察、測(cè)量、調(diào)查、實(shí)驗(yàn)、查閱文獻(xiàn)資料、使用互連網(wǎng)等。整理數(shù)據(jù)的方法:分類、排序、分組編碼等。(學(xué)生可能還會(huì)指出鞋碼和腳長(zhǎng)之間的關(guān)系等)
議一議數(shù)軸上的兩個(gè)點(diǎn),右邊點(diǎn)表示的數(shù)與左邊點(diǎn)表示的數(shù)有怎樣的大小關(guān)系?數(shù)軸上表示的數(shù),▁▁▁邊的總比▁▁▁邊的大;正數(shù)▁▁▁0,負(fù)數(shù)▁▁▁0,正數(shù)▁▁▁負(fù)數(shù)。練習(xí):比較大?。?3▁5; 0 ▁-4 ;-3 ▁-2.5。3、合作交流(1) 什么是數(shù)軸?怎樣畫數(shù)軸。(2) 有理數(shù)與數(shù)軸上的點(diǎn)之間存在怎樣的關(guān)系?(3) 什么是相反數(shù)?怎樣求一個(gè)數(shù)的相反數(shù)?(4) 如何利用數(shù)軸比較有理數(shù)的大小?5、隨堂練習(xí):(1)下列說法正確的是( ) A、 數(shù)軸上的點(diǎn)只能表示有理數(shù)B、 一個(gè)數(shù)只能用數(shù)軸上的一個(gè)點(diǎn)表示C、 在1和3之間只有2D、 在數(shù)軸上離原點(diǎn)2個(gè)單位長(zhǎng)度的點(diǎn)表示的數(shù)是2 (2)語句:①-5是相反數(shù)?②-5與+3互為相反數(shù)③-5是5的相反數(shù)④-5和5互為相反數(shù)⑤0的相反數(shù)是0⑥-0=0。上述說法中正確的是( )
將有理數(shù)-2,+1,0,-212,314在數(shù)軸上表示出來,并用“<”號(hào)連接各數(shù).解析:利用數(shù)軸上的點(diǎn)來表示相應(yīng)的數(shù),再利用它們對(duì)應(yīng)點(diǎn)的位置來判斷各數(shù)的大小.解:如圖:由數(shù)軸可知-212<-2<0<+1<314.方法總結(jié):一般地,數(shù)軸上多個(gè)數(shù)的大小比較,可利用“數(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大”這一性質(zhì)進(jìn)行比較.探究點(diǎn)四:點(diǎn)在數(shù)軸上的移動(dòng)問題點(diǎn)A為數(shù)軸上表示-2的動(dòng)點(diǎn),當(dāng)點(diǎn)A沿?cái)?shù)軸移動(dòng)4個(gè)單位長(zhǎng)度到點(diǎn)B時(shí),點(diǎn)B所表示的有理數(shù)為()A.2 B.-6C.2或-6 D.以上答案都不對(duì)解析:∵點(diǎn)A為數(shù)軸上表示-2的動(dòng)點(diǎn),①當(dāng)點(diǎn)A沿?cái)?shù)軸向左移動(dòng)4個(gè)單位長(zhǎng)度時(shí),點(diǎn)B所表示的有理數(shù)為-6;②當(dāng)點(diǎn)A沿?cái)?shù)軸向右移動(dòng)4個(gè)單位長(zhǎng)度時(shí),點(diǎn)B所表示的有理數(shù)為2.故選C.方法總結(jié):點(diǎn)A在數(shù)軸上移動(dòng)要注意分兩種情況:一個(gè)向左,一個(gè)向右,不要漏掉其中的一種情況.
解:有理數(shù):3.14,-53,0.58··,-0.125,0.35,227;無理數(shù):-5π,5.3131131113…(相鄰兩個(gè)3之間1的個(gè)數(shù)逐次加1).方法總結(jié):有理數(shù)與無理數(shù)的主要區(qū)別.(1)無理數(shù)是無限不循環(huán)小數(shù),而有理數(shù)可以用有限小數(shù)或無限循環(huán)小數(shù)表示.(2)任何一個(gè)有理數(shù)都可以化為分?jǐn)?shù)形式,而無理數(shù)則不能.探究點(diǎn)二:借助計(jì)算器用“夾逼法”求無理數(shù)的近似值正數(shù)x滿足x2=17,則x精確到十分位的值是________.解析:已知x2=17,所以417,所以4.117,所以4.120)中的正數(shù)x各位上的數(shù)字的方法:(1)估計(jì)x的整數(shù)部分,看它在哪兩個(gè)連續(xù)整數(shù)之間,較小數(shù)即為整數(shù)部分;(2)確定x的十分位上的數(shù),同樣尋找它在哪兩個(gè)連續(xù)整數(shù)之間;(3)按照上述方法可以依次確定x的百分位、千分位、…上的數(shù),從而確定x的值.
解析:本題是要求兩個(gè)未知數(shù),即3和4的權(quán).所以應(yīng)把平均數(shù)與方程組綜合起來,利用平均數(shù)的定義來列方程,組成方程組求解.解:設(shè)投進(jìn)3個(gè)球的有x人,投進(jìn)4個(gè)球的有y人,由題意,得3x+4y+5×2=3.5×(x+y+2),0×1+1×2+2×7+3x+4y=2.5×(1+2+7+x+y).整理,得x-y=6,x+3y=18.解得x=9,y=3.答:投進(jìn)3個(gè)球的有9人,投進(jìn)4個(gè)球的有3人.方法總結(jié):利用平均數(shù)的公式解題時(shí),要弄清數(shù)據(jù)及相應(yīng)的權(quán),避免出錯(cuò).三、板書設(shè)計(jì)平均數(shù)算術(shù)平均數(shù):x=1n(x1+x2+…+xn)加權(quán)平均數(shù):x=(x1f1+x2f2+…+xnfn)f1+f2+…fn通過探索算術(shù)平均數(shù)和加權(quán)平均數(shù)的聯(lián)系與區(qū)別,培養(yǎng)學(xué)生的思維能力;通過有關(guān)平均數(shù)問題的解決,提升學(xué)生的數(shù)學(xué)應(yīng)用能力.通過解決實(shí)際問題,體會(huì)數(shù)學(xué)與社會(huì)生活的密切聯(lián)系,了解數(shù)學(xué)的價(jià)值,增進(jìn)學(xué)生對(duì)數(shù)學(xué)的理解和增加學(xué)好數(shù)學(xué)的信心.
探究點(diǎn)三:函數(shù)的圖象洗衣機(jī)在洗滌衣服時(shí),每漿洗一遍都經(jīng)歷了注水、清洗、排水三個(gè)連續(xù)過程(工作前洗衣機(jī)內(nèi)無水).在這三個(gè)過程中,洗衣機(jī)內(nèi)的水量y(升)與漿洗一遍的時(shí)間x(分)之間函數(shù)關(guān)系的圖象大致為()解析:∵洗衣機(jī)工作前洗衣機(jī)內(nèi)無水,∴A,B兩選項(xiàng)不正確,淘汰;又∵洗衣機(jī)最后排完水,∴D選項(xiàng)不正確,淘汰,所以選項(xiàng)C正確,故選C.方法總結(jié):本題考查了對(duì)函數(shù)圖象的理解能力,看函數(shù)圖象要理解兩個(gè)變量的變化情況.三、板書設(shè)計(jì)函數(shù)定義:自變量、因變量、常量函數(shù)的關(guān)系式三種表示方法函數(shù)值函數(shù)的圖象在教學(xué)過程中,注意通過對(duì)以前學(xué)過的“變量之間的關(guān)系”的回顧與思考,力求提供生動(dòng)有趣的問題情境,激發(fā)學(xué)生的學(xué)習(xí)興趣,并通過層層深入的問題設(shè)計(jì),引導(dǎo)學(xué)生進(jìn)行觀察、操作、交流、歸納等數(shù)學(xué)活動(dòng).在活動(dòng)中歸納、概括出函數(shù)的概念,并通過師生交流、生生交流、辨析識(shí)別等加深學(xué)生對(duì)函數(shù)概念的理解.
一.學(xué)習(xí)目的和要求:1.對(duì)本章內(nèi)容的認(rèn)識(shí)更全面、更系統(tǒng)化。2.進(jìn)一步加深對(duì)本章基礎(chǔ)知識(shí)的理解以及基本技能的掌握,并能靈活運(yùn)用。二.學(xué)習(xí)重點(diǎn)和難點(diǎn):重點(diǎn):本章基礎(chǔ)知識(shí)的歸納、總結(jié);基礎(chǔ)知識(shí)的運(yùn)用;整式的加減運(yùn)算的靈活運(yùn)用。難點(diǎn):本章基礎(chǔ)知識(shí)的歸納、總結(jié);基礎(chǔ)知識(shí)的運(yùn)用;整式的加減運(yùn)算的靈活運(yùn)用與提高。三.學(xué)習(xí)方法:歸納,總結(jié) 交流、練習(xí) 探究 相結(jié)合 四.教學(xué)目標(biāo)和教學(xué)目標(biāo)解析:教學(xué)目標(biāo)1 同類項(xiàng) 同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也分別相等的項(xiàng),另外所有的常數(shù)項(xiàng)都是同類項(xiàng)。例如: 與 是同類項(xiàng); 與 是同類項(xiàng)。注意:同類項(xiàng)與系數(shù)大小無關(guān),與字母的排列順序無關(guān)。教學(xué)目標(biāo)2 合并同類項(xiàng)法則 合并同類項(xiàng)法則:把同類項(xiàng)的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)保持不變,如: 。
1、如圖,OA、OB是兩條射線,C是OA上一點(diǎn),D、E是OB上兩點(diǎn),則圖中共有 條錢段、它們分別是 ;圖中共有 射線,它們分別是 。2、如果線段AB=5cm,BC=3cm,那么A、C兩點(diǎn)間的距離是 3、(1)用度、分、秒表示48.26° (2)用度表示37°28′24″ 4、從3點(diǎn)到5點(diǎn)30分,時(shí)鐘的時(shí)針轉(zhuǎn)過了 度。5、一輪船航行到B處測(cè)得小島A的方向?yàn)楸逼?0°,則從A處觀測(cè)此B處的方向?yàn)椋? ) A. 南偏東30° B. 東偏北30° C. 南偏東60° D. 東偏北60°6、已知,OA⊥OC,∠AOB∶∠AOC=2∶3,則∠BOC的度數(shù)為( )A. 30° B. 150° C. 30°或150° D. 不同于上述答案7、如圖,AO⊥OB,直線CD過點(diǎn)O,且∠BOD=130°,求∠AOD的大小。8、已知:如圖,B、C兩點(diǎn)把線段AD分成2∶4∶3三部分,M是AD的中點(diǎn),CD=6,求:線段MC的長(zhǎng)。9、平面上有n個(gè)點(diǎn)(n≥2)且任意三個(gè)點(diǎn)不在同一直線上,經(jīng)過每?jī)蓚€(gè)點(diǎn)畫一條直線,一共可以畫多少條直線?遷移:某足球比賽中有20個(gè)球隊(duì)進(jìn)行單循環(huán)比賽(每?jī)申?duì)之間必須比賽一場(chǎng)),那么一共要進(jìn)行多少場(chǎng)比賽?
一天,王村的小明奶奶提著一籃子土豆去換蘋果,雙方商定的結(jié)果是:1千克土豆換0.5千克蘋果.當(dāng)稱完帶籃子的土豆重量后,攤主對(duì)小明奶奶說:“別稱籃子的重量了,稱蘋果時(shí)也帶籃子稱,這樣既省事又互不吃虧.”你認(rèn)為攤主的話有道理嗎?請(qǐng)你用所學(xué)的有關(guān)數(shù)學(xué)知識(shí)加以判定.解析:要看攤主說得有沒有道理,只要按稱籃子和不稱籃子兩種方式分別求出所得蘋果的重量,比較即可.解:設(shè)土豆重a千克,籃子重b千克,則應(yīng)換蘋果0.5a千克.若不稱籃子,則實(shí)換蘋果為0.5a+0.5b-b=(0.5a-0.5b)千克,很明顯小明奶奶少得蘋果0.5b千克.所以攤主說得沒有道理,這樣做小明奶奶吃虧了.方法總結(jié):體現(xiàn)了數(shù)學(xué)在生活中的運(yùn)用.解決問題的關(guān)鍵是讀懂題意,找到所求的量之間的關(guān)系.三、板書設(shè)計(jì)數(shù)學(xué)教學(xué)要緊密聯(lián)系學(xué)生的生活實(shí)際,本節(jié)課從實(shí)際問題入手,引出合并同類項(xiàng)的概念.通過獨(dú)立思考、討論交流等方式歸納出合并同類項(xiàng)的法則,通過例題教學(xué)、練習(xí)等方式鞏固相關(guān)知識(shí).教學(xué)中應(yīng)激發(fā)學(xué)生主動(dòng)參與學(xué)習(xí)的積極性,培養(yǎng)學(xué)生思維的靈活性.
本節(jié)課采取了開門見山的切入方法,旨在激發(fā)學(xué)生的求知欲望,在學(xué)生已有的認(rèn)識(shí)基礎(chǔ)上,讓學(xué)生經(jīng)歷了“觀察、思考、探究、實(shí)踐”的過程。在總結(jié)出同類項(xiàng)定義后,沒有按通常的做法,即直接分析定義中的兩個(gè)條件,強(qiáng)調(diào)兩個(gè)條件缺一不可,而是通過一組練習(xí),讓學(xué)生在具體問題中體會(huì)定義中的兩個(gè)條件缺一不可,使他們先有較強(qiáng)烈的感性認(rèn)識(shí),而后,分析定義中的兩個(gè)條件,這樣會(huì)給學(xué)生留下更深刻、更牢固的印象.這樣的設(shè)計(jì)既符合學(xué)生的年齡特征,也符合“從感性到理性、從具體到抽象”的認(rèn)知規(guī)律。數(shù)學(xué)不應(yīng)只強(qiáng)調(diào)抽象、嚴(yán)謹(jǐn),這樣不但會(huì)更顯數(shù)學(xué)教學(xué)的枯燥,而且會(huì)使學(xué)生在學(xué)習(xí)中出現(xiàn)畏難情緒,甚至喪失學(xué)習(xí)數(shù)學(xué)的興趣。通過本節(jié)課的教學(xué),我認(rèn)為還存在一些不足,一部分學(xué)生的學(xué)習(xí)能力還有待于進(jìn)一步培養(yǎng)。如:學(xué)習(xí)同類項(xiàng)的概念時(shí),當(dāng)把字母順序進(jìn)行改變后,部分學(xué)生就認(rèn)為不是同類項(xiàng)。
第五環(huán)節(jié):課堂小結(jié)內(nèi)容:師生相互交流總結(jié)解二元一次方程組的基本思路是“消元”,即把“二元”變?yōu)椤耙辉保?解二元一次方程組的第一種解法——代入消元法,其主要步驟是:將其中的一個(gè)方程中的某個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的代數(shù)式表示出來,并代入另一個(gè)方程中,從而消去一個(gè)未知數(shù),化二元一次方程組為一元一次方程.解這個(gè)一元一次方程,便可得到一個(gè)未知數(shù)的值,再將所求未知數(shù)的值代入變形后的方程,便求出了一對(duì)未知數(shù)的值.即求得了方程組的解.目的:鼓勵(lì)學(xué)生通過本節(jié)課的學(xué)習(xí),談?wù)勛约旱氖斋@與感受,加深對(duì) “溫故而知新” 的體會(huì),知道“學(xué)而時(shí)習(xí)之”.設(shè)計(jì)效果:學(xué)生能夠在課堂上暢所欲言,并通過自己的歸納總結(jié),進(jìn)一步鞏固了所學(xué)知識(shí).第六環(huán)節(jié):布置作業(yè)課本習(xí)題5.2教學(xué)設(shè)計(jì)反思1.引入自然.二元一次方程組的解法是學(xué)習(xí)二元一次方程組的重要內(nèi)容.教材通過上一小節(jié)的實(shí)際問題,比較一元一次方程的列法和解法,從而自然引入二元一次方程組的代入消元解法.
【類型三】 已知方程組的解,用代入法求待定系數(shù)的值 已知x=2,y=1是二元一次方程組ax+by=7,ax-by=1的解,則a-b的值為()A.1 B.-1 C.2 D.3解析:把解代入原方程組得2a+b=7,2a-b=1,解得a=2,b=3,所以a-b=-1.故選B.方法總結(jié):解這類題就是根據(jù)方程組解的定義求,即將解代入方程組,得到關(guān)于字母系數(shù)的方程組,解方程組即可.三、板書設(shè)計(jì)解二元一,次方程組)基本思路是“消元”代入法解二元一次方程組的一般步驟回顧一元一次方程的解法,借此探索二元一次方程組的解法,使得學(xué)生的探究有很好的認(rèn)知基礎(chǔ),探究顯得十分自然流暢.充分體現(xiàn)了轉(zhuǎn)化與化歸思想.引導(dǎo)學(xué)生充分思考和體驗(yàn)轉(zhuǎn)化與化歸思想,增強(qiáng)學(xué)生的觀察歸納能力,提高學(xué)生的學(xué)習(xí)能力.
一、情境導(dǎo)入上一節(jié)課我們做過:由兩個(gè)邊長(zhǎng)為1的小正方形,通過剪一剪,拼一拼,得到一個(gè)邊長(zhǎng)為a的大正方形,那么有a2=2,a=________,2是有理數(shù),而a是無理數(shù).在前面我們學(xué)過若x2=a,則a叫做x的平方,反過來x叫做a的什么呢?二、合作探究探究點(diǎn)一:算術(shù)平方根的概念【類型一】 求一個(gè)數(shù)的算術(shù)平方根求下列各數(shù)的算術(shù)平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根據(jù)算術(shù)平方根的定義求非負(fù)數(shù)的算術(shù)平方根,只要找到一個(gè)非負(fù)數(shù)的平方等于這個(gè)非負(fù)數(shù)即可.解:(1)∵82=64,∴64的算術(shù)平方根是8;(2)∵(32)2=94=214,∴214的算術(shù)平方根是32;(3)∵0.62=0.36,∴0.36的算術(shù)平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算術(shù)平方根是3.方法總結(jié):(1)求一個(gè)數(shù)的算術(shù)平方根時(shí),首先要弄清是求哪個(gè)數(shù)的算術(shù)平方根,分清求81與81的算術(shù)平方根的不同意義,不要被表面現(xiàn)象迷惑.(2)求一個(gè)非負(fù)數(shù)的算術(shù)平方根常借助平方運(yùn)算,因此熟記常用平方數(shù)對(duì)求一個(gè)數(shù)的算術(shù)平方根十分有用.
求證:直角三角形的兩個(gè)銳角互余.解析:分析這個(gè)命題的條件和結(jié)論,根據(jù)已知條件和結(jié)論畫出圖形,寫出已知、求證,并寫出證明過程.已知:如圖所示,在△ABC中,∠C=90°.求證:∠A與∠B互余.證明:∵∠A+∠B+∠C=180°(三角形內(nèi)角和等于180°),又∠C=90°,∴∠A+∠B=180°-∠C=90°.∴∠A與∠B互余.方法總結(jié):解此類題首先根據(jù)題意將文字語言變成符號(hào)語言,畫出圖形,最后再經(jīng)過分析論證,并寫出證明的過程.三、板書設(shè)計(jì)命題分類公理:公認(rèn)的真命題定理:經(jīng)過證明的真命題證明:推理的過程經(jīng)歷實(shí)際情境,初步體會(huì)公理化思想和方法,了解本教材所采用的公理,讓學(xué)生對(duì)真假命題有一個(gè)清楚的認(rèn)識(shí),從而進(jìn)一步了解定理、公理的概念.培養(yǎng)學(xué)生的語言表達(dá)能力.
2.法解二元一次方程組,是提升學(xué)生求解二元一次方程的基本技能課,在例題的設(shè)置上充分體現(xiàn)化歸思想.2.在學(xué)習(xí)二元一次方程組的解法中,關(guān)鍵是領(lǐng)會(huì)其本質(zhì)思想——消元,體會(huì)“化未知為已知”的化歸思想.因而在教學(xué)過程中教師通過對(duì)問題的創(chuàng)設(shè),鼓勵(lì)學(xué)生去觀察方程的特點(diǎn),在過手訓(xùn)練中提高學(xué)生的解答正確率和表達(dá)規(guī)范性,提升學(xué)生學(xué)會(huì)數(shù)學(xué)的信心,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣.3.通過精心設(shè)計(jì)的問題,引導(dǎo)學(xué)生在已有知識(shí)的基礎(chǔ)上,自己比較、分析得出二元一次方程組的解法,在鞏固訓(xùn)練活動(dòng)中,加深學(xué)生對(duì)“化未知為已知”的化歸思想的理解.特別是如何由代入消元法到加減消元法,過渡自然。讓學(xué)生深刻的體會(huì)到二元一次方程是一元一次方程的拓展,二元一次方程組又要通過“消元”,轉(zhuǎn)化為一元一次方程求解,這樣的轉(zhuǎn)化,不僅有助于學(xué)生掌握知識(shí)、技能和方法,提高學(xué)習(xí)效率,而且還加深了對(duì)數(shù)學(xué)中通性和通法的認(rèn)識(shí),體會(huì)學(xué)習(xí)數(shù)學(xué)和研究數(shù)學(xué)的規(guī)律,提升數(shù)學(xué)思維能力.
已知xm-n+1y與-2xn-1y3m-2n-5是同類項(xiàng),求m和n的值.解析:根據(jù)同類項(xiàng)的概念,可列出含字母m和n的方程組,從而求出m和n.解:因?yàn)閤m-n+1y與-2xn-1y3m-2n-5是同類項(xiàng),所以m-n+1=n-1,①3m-2n-5=1.②整理,得m-2n+2=0,③3m-2n-6=0.④④-③,得2m=8,所以m=4.把m=4代入③,得2n=6,所以n=3.所以當(dāng)m=4,n=3時(shí),xm-n+1y與-2xn-1y3m-2n-5是同類項(xiàng).方法總結(jié):解這類題,就是根據(jù)同類項(xiàng)的定義,利用相同字母的指數(shù)分別相等,列方程組求字母的值.三、板書設(shè)計(jì)用加減法解二元一次方程組的步驟:①變形,使某個(gè)未知數(shù)的系數(shù)絕對(duì)值相等;②加減消元;③解一元一次方程;④求另一個(gè)未知數(shù)的值,得方程組的解.進(jìn)一步理解二元一次方程組的“消元”思想,初步體會(huì)數(shù)學(xué)研究中“化未知為已知”的化歸思想.選擇恰當(dāng)?shù)姆椒ń舛淮畏匠探M,培養(yǎng)學(xué)生的觀察、分析問題的能力.