某文具店一支鉛筆的售價(jià)為1.2元,一支圓珠筆的售價(jià)為2元.該店在“6·1兒童節(jié)”舉行文具優(yōu)惠售賣(mài)活動(dòng),鉛筆按原價(jià)打8折出售,圓珠筆按原價(jià)打9折出售,結(jié)果兩種筆共賣(mài)出60支,賣(mài)得金額87元.若設(shè)鉛筆賣(mài)出x支,則依題意可列得的一元一次方程為( )A.1.2×0.8x+2×0.9(60+x)=87B.1.2×0.8x+2×0.9(60-x)=87C.2×0.9x+1.2×0.8(60+x)=87D.2×0.9x+1.2×0.8(60-x)=87解析:設(shè)鉛筆賣(mài)出x支,根據(jù)“鉛筆按原價(jià)打8折出售,圓珠筆按原價(jià)打9折出售,結(jié)果兩種筆共賣(mài)出60支,賣(mài)得金額87元”,得出等量關(guān)系:x支鉛筆的售價(jià)+(60-x)支圓珠筆的售價(jià)=87,據(jù)此列出方程為1.2×0.8x+2×0.9(60-x)=87.故選B.方法總結(jié):解題的關(guān)鍵是讀懂題意,設(shè)出未知數(shù),找到題目當(dāng)中的等量關(guān)系,最后列方程.三、板書(shū)設(shè)計(jì)教學(xué)過(guò)程中,通過(guò)對(duì)多種實(shí)際問(wèn)題情境的分析,感受方程作為刻畫(huà)現(xiàn)實(shí)世界有效模型的意義,通過(guò)觀察、歸納一元一次方程的概念,使學(xué)生在分析實(shí)際問(wèn)題情境的活動(dòng)中體會(huì)數(shù)學(xué)與現(xiàn)實(shí)的密切聯(lián)系.
解析:①以O(shè)為圓心,任意長(zhǎng)為半徑作弧交OA于D,交OB于C;②以O(shè)′為圓心,以同樣長(zhǎng)(OC長(zhǎng))為半徑作弧,交O′B′于C′;③以C′為圓心,CD長(zhǎng)為半徑作弧交前弧于D′;④過(guò)D′作射線O′A′,∠A′O′B′為所求.解:如下圖所示.【類型三】 利用尺規(guī)作角的和或差已知∠AOB,用尺規(guī)作圖法作∠A′O′B′,使∠A′O′B′=2∠AOB.解析:先作一個(gè)角等于∠AOB,再以這個(gè)角的一邊為邊在其外部作一個(gè)角等于∠AOB,那么圖中最大的角就是所求的角.解:作法:①作∠DO′B′=∠AOB;②在∠DO′B′的外部作∠A′O′D=∠AOB,∠A′O′B′就是所求的角(如下圖).三、板書(shū)設(shè)計(jì)1.尺規(guī)作圖2.用尺規(guī)作角本節(jié)課學(xué)習(xí)了有關(guān)尺規(guī)作圖的相關(guān)知識(shí),課堂教學(xué)內(nèi)容以學(xué)生動(dòng)手操作為主,在學(xué)生動(dòng)手操作的過(guò)程中要鼓勵(lì)學(xué)生大膽動(dòng)手,培養(yǎng)學(xué)生的動(dòng)手能力和書(shū)面語(yǔ)言表達(dá)能力
光的速度約為3×108米/秒,一顆人造地球衛(wèi)星的速度是8×103米/秒,則光的速度是這顆人造地球衛(wèi)星速度的多少倍?解析:要求光速是人造地球衛(wèi)星的速度的倍數(shù),用光速除以人造地球衛(wèi)星的速度,可轉(zhuǎn)化為單項(xiàng)式相除問(wèn)題.解:(3×108)÷(8×103)=(3÷8)·(108÷103)=3.75×104.答:光速是這顆人造地球衛(wèi)星速度的3.75×104倍.方法總結(jié):解整式除法的實(shí)際應(yīng)用題時(shí),應(yīng)分清何為除式,何為被除式,然后應(yīng)當(dāng)單項(xiàng)式除以單項(xiàng)式法則計(jì)算.三、板書(shū)設(shè)計(jì)1.單項(xiàng)式除以單項(xiàng)式的運(yùn)算法則:?jiǎn)雾?xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式;對(duì)于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個(gè)因式.2.單項(xiàng)式除以單項(xiàng)式的應(yīng)用在教學(xué)過(guò)程中,通過(guò)生活中的情景導(dǎo)入,引導(dǎo)學(xué)生根據(jù)單項(xiàng)式乘以單項(xiàng)式的乘法運(yùn)算推導(dǎo)出其逆運(yùn)算的規(guī)律,在探究的過(guò)程中經(jīng)歷數(shù)學(xué)概念的生成過(guò)程,從而加深印象
一、情境導(dǎo)入1.計(jì)算:(1)-6x3y4z2÷(-23x2y2);(2)9mn÷(-6mn)2·(13n2);(3)6(a-b)3c5÷[-35(a-b)2c]·[-2(a-b)3c4].2.m(a+b+c)=am+bm+cm,(am+bm+cm)÷m=am÷m+bm÷m+cm÷m=a+b+c.你能根據(jù)多項(xiàng)式乘以單項(xiàng)式的運(yùn)算歸納出多項(xiàng)式除以單項(xiàng)式的運(yùn)算法則嗎?二、合作探究探究點(diǎn):多項(xiàng)式除以單項(xiàng)式【類型一】 直接利用多項(xiàng)式除以單項(xiàng)式進(jìn)行計(jì)算計(jì)算:(72x3y4-36x2y3+9xy2)÷(-9xy2).解析:根據(jù)多項(xiàng)式除以單項(xiàng)式,先用多項(xiàng)式的每一項(xiàng)分別除以這個(gè)單項(xiàng)式,然后再把所得的商相加.解:原式=72x3y4÷(-9xy2)+(-36x2y3)÷(-9xy2)+9xy2÷(-9xy2)=-8x2y2+4xy-1.方法總結(jié):多項(xiàng)式除以單項(xiàng)式,先把多項(xiàng)式的每一項(xiàng)都分別除以這個(gè)單項(xiàng)式,然后再把所得的商相加.
本節(jié)課中教師首先用拼圖游戲引發(fā)學(xué)生學(xué)習(xí)的欲望,把課程內(nèi)容通過(guò)學(xué)生的生活經(jīng)驗(yàn)呈現(xiàn)出來(lái),然后進(jìn)行大膽置疑,生活中的數(shù)并不都是有理數(shù),那它們究竟是什么數(shù)呢?從而引發(fā)了學(xué)生的好奇心,為獲取新知,創(chuàng)設(shè)了積極的氛圍.在教學(xué)中,不要盲目的搶時(shí)間,讓學(xué)生能夠充分的思考與操作.(二)化抽象為具體常言道:“數(shù)學(xué)是鍛煉思維的體操”,數(shù)學(xué)教師應(yīng)通過(guò)一系列數(shù)學(xué)活動(dòng)開(kāi)啟學(xué)生的思維,因此對(duì)新數(shù)的學(xué)習(xí)不能僅僅停留于感性認(rèn)識(shí),還應(yīng)要求學(xué)生充分理解,并能用恰當(dāng)數(shù)學(xué)語(yǔ)言進(jìn)行解釋.正是基于這個(gè)原因,在教學(xué)過(guò)程中,刻意安排了一些環(huán)節(jié),加深對(duì)新數(shù)的理解,充分感受新數(shù)的客觀存在,讓學(xué)生覺(jué)得新數(shù)并不抽象.(三)強(qiáng)化知識(shí)間聯(lián)系,注意糾錯(cuò)既然稱之為“新數(shù)”,那它當(dāng)然不是有理數(shù),亦即不是整數(shù),也不是分?jǐn)?shù),所以“新數(shù)”不可以用分?jǐn)?shù)來(lái)表示,這為進(jìn)一步學(xué)習(xí)“新數(shù)”,即第二課時(shí)教學(xué)埋下了伏筆,在教學(xué)中,要著重強(qiáng)調(diào)這一點(diǎn):“新數(shù)”不能表示成分?jǐn)?shù),為無(wú)理數(shù)的教學(xué)奠好基.
解:有理數(shù):3.14,-53,0.58··,-0.125,0.35,227;無(wú)理數(shù):-5π,5.3131131113…(相鄰兩個(gè)3之間1的個(gè)數(shù)逐次加1).方法總結(jié):有理數(shù)與無(wú)理數(shù)的主要區(qū)別.(1)無(wú)理數(shù)是無(wú)限不循環(huán)小數(shù),而有理數(shù)可以用有限小數(shù)或無(wú)限循環(huán)小數(shù)表示.(2)任何一個(gè)有理數(shù)都可以化為分?jǐn)?shù)形式,而無(wú)理數(shù)則不能.探究點(diǎn)二:借助計(jì)算器用“夾逼法”求無(wú)理數(shù)的近似值正數(shù)x滿足x2=17,則x精確到十分位的值是________.解析:已知x2=17,所以417,所以4.117,所以4.120)中的正數(shù)x各位上的數(shù)字的方法:(1)估計(jì)x的整數(shù)部分,看它在哪兩個(gè)連續(xù)整數(shù)之間,較小數(shù)即為整數(shù)部分;(2)確定x的十分位上的數(shù),同樣尋找它在哪兩個(gè)連續(xù)整數(shù)之間;(3)按照上述方法可以依次確定x的百分位、千分位、…上的數(shù),從而確定x的值.
解析:本題是要求兩個(gè)未知數(shù),即3和4的權(quán).所以應(yīng)把平均數(shù)與方程組綜合起來(lái),利用平均數(shù)的定義來(lái)列方程,組成方程組求解.解:設(shè)投進(jìn)3個(gè)球的有x人,投進(jìn)4個(gè)球的有y人,由題意,得3x+4y+5×2=3.5×(x+y+2),0×1+1×2+2×7+3x+4y=2.5×(1+2+7+x+y).整理,得x-y=6,x+3y=18.解得x=9,y=3.答:投進(jìn)3個(gè)球的有9人,投進(jìn)4個(gè)球的有3人.方法總結(jié):利用平均數(shù)的公式解題時(shí),要弄清數(shù)據(jù)及相應(yīng)的權(quán),避免出錯(cuò).三、板書(shū)設(shè)計(jì)平均數(shù)算術(shù)平均數(shù):x=1n(x1+x2+…+xn)加權(quán)平均數(shù):x=(x1f1+x2f2+…+xnfn)f1+f2+…fn通過(guò)探索算術(shù)平均數(shù)和加權(quán)平均數(shù)的聯(lián)系與區(qū)別,培養(yǎng)學(xué)生的思維能力;通過(guò)有關(guān)平均數(shù)問(wèn)題的解決,提升學(xué)生的數(shù)學(xué)應(yīng)用能力.通過(guò)解決實(shí)際問(wèn)題,體會(huì)數(shù)學(xué)與社會(huì)生活的密切聯(lián)系,了解數(shù)學(xué)的價(jià)值,增進(jìn)學(xué)生對(duì)數(shù)學(xué)的理解和增加學(xué)好數(shù)學(xué)的信心.
【類型三】 已知方程組的解,用代入法求待定系數(shù)的值 已知x=2,y=1是二元一次方程組ax+by=7,ax-by=1的解,則a-b的值為()A.1 B.-1 C.2 D.3解析:把解代入原方程組得2a+b=7,2a-b=1,解得a=2,b=3,所以a-b=-1.故選B.方法總結(jié):解這類題就是根據(jù)方程組解的定義求,即將解代入方程組,得到關(guān)于字母系數(shù)的方程組,解方程組即可.三、板書(shū)設(shè)計(jì)解二元一,次方程組)基本思路是“消元”代入法解二元一次方程組的一般步驟回顧一元一次方程的解法,借此探索二元一次方程組的解法,使得學(xué)生的探究有很好的認(rèn)知基礎(chǔ),探究顯得十分自然流暢.充分體現(xiàn)了轉(zhuǎn)化與化歸思想.引導(dǎo)學(xué)生充分思考和體驗(yàn)轉(zhuǎn)化與化歸思想,增強(qiáng)學(xué)生的觀察歸納能力,提高學(xué)生的學(xué)習(xí)能力.
在探究估算方法的時(shí)候,教師要注重適時(shí)的引導(dǎo),以免讓學(xué)生無(wú)從下手.在教學(xué)過(guò)程中一定要讓學(xué)生體會(huì)估算的實(shí)用價(jià)值,了解到“數(shù)學(xué)既來(lái)源與生活,又回歸到生活為生活服務(wù)”.(二)課堂評(píng)價(jià)的一些思考在教學(xué)中要多鼓勵(lì)學(xué)生用自己的語(yǔ)言表達(dá)他們的想法,在估算的過(guò)程中多給予適當(dāng)?shù)囊龑?dǎo)和評(píng)價(jià),讓學(xué)生逐步把握估算的方法,找到解決問(wèn)題的信心.比如對(duì)“畫(huà)能掛上去嗎”這個(gè)問(wèn)題情境,學(xué)生可能提出不同的看法,有些學(xué)生可能認(rèn)為可以掛上去,因?yàn)槿诉€有身高,完全可以彌補(bǔ)梯子穩(wěn)定擺放的高度和掛畫(huà)位置的高度之間的差距,有些學(xué)生可能認(rèn)為,人不可能爬到梯子的頂部,加上人如果本來(lái)比較矮,畫(huà)就不能掛上去等等想法,教師都應(yīng)該給予肯定,這樣才能激發(fā)學(xué)生思考問(wèn)題的熱情,調(diào)動(dòng)學(xué)生探究問(wèn)題的積極性.作為教師,一定要尊重學(xué)生的個(gè)體差異,滿足多樣化的學(xué)習(xí)需要,鼓勵(lì)探究方式、表達(dá)方式和解題方法的多樣化.
一、情境導(dǎo)入上一節(jié)課我們做過(guò):由兩個(gè)邊長(zhǎng)為1的小正方形,通過(guò)剪一剪,拼一拼,得到一個(gè)邊長(zhǎng)為a的大正方形,那么有a2=2,a=________,2是有理數(shù),而a是無(wú)理數(shù).在前面我們學(xué)過(guò)若x2=a,則a叫做x的平方,反過(guò)來(lái)x叫做a的什么呢?二、合作探究探究點(diǎn)一:算術(shù)平方根的概念【類型一】 求一個(gè)數(shù)的算術(shù)平方根求下列各數(shù)的算術(shù)平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根據(jù)算術(shù)平方根的定義求非負(fù)數(shù)的算術(shù)平方根,只要找到一個(gè)非負(fù)數(shù)的平方等于這個(gè)非負(fù)數(shù)即可.解:(1)∵82=64,∴64的算術(shù)平方根是8;(2)∵(32)2=94=214,∴214的算術(shù)平方根是32;(3)∵0.62=0.36,∴0.36的算術(shù)平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算術(shù)平方根是3.方法總結(jié):(1)求一個(gè)數(shù)的算術(shù)平方根時(shí),首先要弄清是求哪個(gè)數(shù)的算術(shù)平方根,分清求81與81的算術(shù)平方根的不同意義,不要被表面現(xiàn)象迷惑.(2)求一個(gè)非負(fù)數(shù)的算術(shù)平方根常借助平方運(yùn)算,因此熟記常用平方數(shù)對(duì)求一個(gè)數(shù)的算術(shù)平方根十分有用.
2.法解二元一次方程組,是提升學(xué)生求解二元一次方程的基本技能課,在例題的設(shè)置上充分體現(xiàn)化歸思想.2.在學(xué)習(xí)二元一次方程組的解法中,關(guān)鍵是領(lǐng)會(huì)其本質(zhì)思想——消元,體會(huì)“化未知為已知”的化歸思想.因而在教學(xué)過(guò)程中教師通過(guò)對(duì)問(wèn)題的創(chuàng)設(shè),鼓勵(lì)學(xué)生去觀察方程的特點(diǎn),在過(guò)手訓(xùn)練中提高學(xué)生的解答正確率和表達(dá)規(guī)范性,提升學(xué)生學(xué)會(huì)數(shù)學(xué)的信心,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣.3.通過(guò)精心設(shè)計(jì)的問(wèn)題,引導(dǎo)學(xué)生在已有知識(shí)的基礎(chǔ)上,自己比較、分析得出二元一次方程組的解法,在鞏固訓(xùn)練活動(dòng)中,加深學(xué)生對(duì)“化未知為已知”的化歸思想的理解.特別是如何由代入消元法到加減消元法,過(guò)渡自然。讓學(xué)生深刻的體會(huì)到二元一次方程是一元一次方程的拓展,二元一次方程組又要通過(guò)“消元”,轉(zhuǎn)化為一元一次方程求解,這樣的轉(zhuǎn)化,不僅有助于學(xué)生掌握知識(shí)、技能和方法,提高學(xué)習(xí)效率,而且還加深了對(duì)數(shù)學(xué)中通性和通法的認(rèn)識(shí),體會(huì)學(xué)習(xí)數(shù)學(xué)和研究數(shù)學(xué)的規(guī)律,提升數(shù)學(xué)思維能力.
已知xm-n+1y與-2xn-1y3m-2n-5是同類項(xiàng),求m和n的值.解析:根據(jù)同類項(xiàng)的概念,可列出含字母m和n的方程組,從而求出m和n.解:因?yàn)閤m-n+1y與-2xn-1y3m-2n-5是同類項(xiàng),所以m-n+1=n-1,①3m-2n-5=1.②整理,得m-2n+2=0,③3m-2n-6=0.④④-③,得2m=8,所以m=4.把m=4代入③,得2n=6,所以n=3.所以當(dāng)m=4,n=3時(shí),xm-n+1y與-2xn-1y3m-2n-5是同類項(xiàng).方法總結(jié):解這類題,就是根據(jù)同類項(xiàng)的定義,利用相同字母的指數(shù)分別相等,列方程組求字母的值.三、板書(shū)設(shè)計(jì)用加減法解二元一次方程組的步驟:①變形,使某個(gè)未知數(shù)的系數(shù)絕對(duì)值相等;②加減消元;③解一元一次方程;④求另一個(gè)未知數(shù)的值,得方程組的解.進(jìn)一步理解二元一次方程組的“消元”思想,初步體會(huì)數(shù)學(xué)研究中“化未知為已知”的化歸思想.選擇恰當(dāng)?shù)姆椒ń舛淮畏匠探M,培養(yǎng)學(xué)生的觀察、分析問(wèn)題的能力.
1.細(xì)講概念、強(qiáng)化訓(xùn)練要想讓學(xué)生正確、牢固地樹(shù)立起算術(shù)平方根的概念,需要由淺入深、不斷深化的過(guò)程.概念是由具體到抽象、由特殊到一般,經(jīng)過(guò)分析、綜合去掉非本質(zhì)特征,保持本質(zhì)屬性而形成的.概念的形成過(guò)程也是思維過(guò)程,加強(qiáng)概念形成過(guò)程的教學(xué),對(duì)提高學(xué)生的思維水平是很有必要的.概念教學(xué)過(guò)程中要做到:講清概念,加強(qiáng)訓(xùn)練,逐步深化.“講清概念”就是通過(guò)具體實(shí)例揭露算術(shù)平方根的本質(zhì)特征.算術(shù)平方根的本質(zhì)特征就是定義中指出的:“如果一個(gè)正數(shù) 的平方等于 ,即 ,那么這個(gè)正數(shù) 就叫做 的算術(shù)平方根,”的“正數(shù) ”,即被開(kāi)方數(shù)是正的,由平方的意義, 也是正數(shù),因此算術(shù)平方根也必須是正的.當(dāng)然零的算術(shù)平方根是零.
第五環(huán)節(jié):課堂小結(jié)內(nèi)容:師生相互交流總結(jié)解二元一次方程組的基本思路是“消元”,即把“二元”變?yōu)椤耙辉保?解二元一次方程組的第一種解法——代入消元法,其主要步驟是:將其中的一個(gè)方程中的某個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的代數(shù)式表示出來(lái),并代入另一個(gè)方程中,從而消去一個(gè)未知數(shù),化二元一次方程組為一元一次方程.解這個(gè)一元一次方程,便可得到一個(gè)未知數(shù)的值,再將所求未知數(shù)的值代入變形后的方程,便求出了一對(duì)未知數(shù)的值.即求得了方程組的解.目的:鼓勵(lì)學(xué)生通過(guò)本節(jié)課的學(xué)習(xí),談?wù)勛约旱氖斋@與感受,加深對(duì) “溫故而知新” 的體會(huì),知道“學(xué)而時(shí)習(xí)之”.設(shè)計(jì)效果:學(xué)生能夠在課堂上暢所欲言,并通過(guò)自己的歸納總結(jié),進(jìn)一步鞏固了所學(xué)知識(shí).第六環(huán)節(jié):布置作業(yè)課本習(xí)題5.2教學(xué)設(shè)計(jì)反思1.引入自然.二元一次方程組的解法是學(xué)習(xí)二元一次方程組的重要內(nèi)容.教材通過(guò)上一小節(jié)的實(shí)際問(wèn)題,比較一元一次方程的列法和解法,從而自然引入二元一次方程組的代入消元解法.
解析:要在地球儀上確定南昌市的位置,需要知道它的經(jīng)緯度,故選D.方法總結(jié):本題考查了坐標(biāo)確定位置,熟記位置的確定需要橫向與縱向的兩個(gè)數(shù)據(jù)是解題的關(guān)鍵.【類型二】 用“區(qū)域定位法”確定位置如圖所示是某市區(qū)的部分簡(jiǎn)圖,文化宮在D2區(qū),體育場(chǎng)在C4區(qū),據(jù)此說(shuō)明醫(yī)院在________區(qū),陽(yáng)光中學(xué)在________區(qū).解析:本題首先給出的是表示文化宮和體育場(chǎng)的位置,即D2區(qū)和C4區(qū),這就確定了本題中表示建筑物位置的方法,即字母表示列數(shù),數(shù)字表示行數(shù).故填A(yù)3,D5.方法總結(jié):解此類題先要弄清區(qū)域定位法中字母及數(shù)字各自表示的含義,再用已知的表示方法來(lái)確定相關(guān)位置.三、板書(shū)設(shè)計(jì)確定位置有序?qū)崝?shù)對(duì)方位法經(jīng)緯度區(qū)域定位法將現(xiàn)實(shí)生活中常用的定位方法呈現(xiàn)給學(xué)生,進(jìn)一步豐富學(xué)生的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),培養(yǎng)學(xué)生觀察、分析、歸納、概括的能力.教學(xué)過(guò)程中創(chuàng)設(shè)生動(dòng)活潑、直觀形象、且貼近他們生活的問(wèn)題情境;另一方面,為學(xué)生創(chuàng)造自主學(xué)習(xí)、合作交流的機(jī)會(huì),促使他們主動(dòng)參與、積極探究.
第一環(huán)節(jié)感受生活中的情境,導(dǎo)入新課通過(guò)若干圖片,引導(dǎo)學(xué)生感受生活中常常需要確定位置.導(dǎo)入新課:怎樣確定位置呢?——§3.1確定位置。第二環(huán)節(jié)分類討論,探索新知1.溫故啟新(1)溫故:在數(shù)軸上,確定一個(gè)點(diǎn)的位置需要幾個(gè)數(shù)據(jù)呢? 答:一個(gè),例如,若A點(diǎn)表示-2,B點(diǎn)表示3,則由-2和3就可以在數(shù)軸上找到A點(diǎn)和B點(diǎn)的位置??偨Y(jié)得出結(jié)論:在直線上, 確定一個(gè)點(diǎn)的位置一般需要一個(gè)數(shù)據(jù).(2)啟新:在平面內(nèi),又如何確定一個(gè)點(diǎn)的位置呢?請(qǐng)同學(xué)們根據(jù)生活中確定位置的實(shí)例,請(qǐng)談?wù)勛约旱目捶?2.舉例探究Ⅰ. 探究1(1)在電影院內(nèi)如何找到電影票上指定的位置?(2)在電影票上“6排3號(hào)”與“3排6號(hào)”中的“6”的含義有什么不同?(3)如果將“6排3號(hào)”簡(jiǎn)記作(6,3),那么“3排6號(hào)”如何表示?(5,6)表示什么含義? (4) 在只有一層的電影院內(nèi),確定一個(gè)座位一般需要幾個(gè)數(shù)據(jù)?結(jié)論:生活中常常用“排數(shù)”和“號(hào)數(shù)”來(lái)確定位置. Ⅱ. 學(xué)有所用(1) 你能用兩個(gè)數(shù)據(jù)表示你現(xiàn)在所坐的位置嗎?
五、課堂設(shè)計(jì)理念本節(jié)課著力體現(xiàn)以下幾個(gè)方面:1、突出問(wèn)題的應(yīng)用意識(shí)。在各個(gè)環(huán)節(jié)的安排上都設(shè)計(jì)成一個(gè)個(gè)問(wèn)題,使學(xué)生能圍繞問(wèn)題展開(kāi)討思考、討論,進(jìn)行學(xué)習(xí)。2、體現(xiàn)學(xué)生的主體意識(shí)。讓學(xué)生通過(guò)列算式與列方程的比較,分別歸納出它們的特點(diǎn),從而感受到從算術(shù)方法到代數(shù)方法是數(shù)學(xué)的進(jìn)步;讓學(xué)生通過(guò)合作交流,得出問(wèn)題的不同解法;讓學(xué)生對(duì)一節(jié)課的學(xué)習(xí)內(nèi)容、方法、注意點(diǎn)等進(jìn)行歸納。3、體現(xiàn)學(xué)生思維的層次性。教師首先引導(dǎo)學(xué)生嘗試用算術(shù)方法解決問(wèn)題,然后再引導(dǎo)學(xué)生列出含未知數(shù)的式了,尋找相等關(guān)系列出方程,在尋找相等關(guān)系、設(shè)未知數(shù)及作業(yè)的布置等環(huán)節(jié)中都注意了學(xué)生思維的層次性。4、滲透建模思想。把實(shí)際問(wèn)題中的數(shù)量關(guān)系用方程形式表示出來(lái),就是建立一種數(shù)學(xué)模型,教師有意識(shí)地按設(shè)未知數(shù)、列方程等步驟組織學(xué)生學(xué)習(xí),就是培養(yǎng)學(xué)生由實(shí)際問(wèn)題抽象出方程模型的能力。
(3)若要滿足結(jié)論,則∠BFO=∠GFC,根據(jù)切線長(zhǎng)定理得∠BFO=∠EFO,從而得到這三個(gè)角應(yīng)是60°,然后結(jié)合已知的正方形的邊長(zhǎng),也是圓的直徑,利用30°的直角三角形的知識(shí)進(jìn)行計(jì)算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長(zhǎng)為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設(shè)存在點(diǎn)P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問(wèn)題的結(jié)論有兩種可能,所以具有開(kāi)放的特征,在假設(shè)存在性以后進(jìn)行的推理或計(jì)算.一般思路是:假設(shè)存在——推理論證——得出結(jié)論.若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,若導(dǎo)出矛盾,就做出“不存在”的判斷.
解析:首先求得圓的半徑長(zhǎng),然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點(diǎn)P在⊙O′的外部;QO′=1<2,則點(diǎn)Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點(diǎn)R在圓上.方法總結(jié):注意運(yùn)用平面內(nèi)兩點(diǎn)之間的距離公式,設(shè)平面內(nèi)任意兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點(diǎn)與圓的位置關(guān)系的實(shí)際應(yīng)用如圖,城市A的正北方向50千米的B處,有一無(wú)線電信號(hào)發(fā)射塔.已知,該發(fā)射塔發(fā)射的無(wú)線電信號(hào)的有效半徑為100千米,AC是一條直達(dá)C城的公路,從A城發(fā)往C城的客車車速為60千米/時(shí).(1)當(dāng)客車從A城出發(fā)開(kāi)往C城時(shí),某人立即打開(kāi)無(wú)線電收音機(jī),客車行駛了0.5小時(shí)的時(shí)候,接收信號(hào)最強(qiáng).此時(shí),客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號(hào)越強(qiáng))?(2)客車從A城到C城共行駛2小時(shí),請(qǐng)你判斷到C城后還能接收到信號(hào)嗎?請(qǐng)說(shuō)明理由.
新建成的紅星中學(xué),首次招收七年級(jí)新生12個(gè)班共500人,學(xué)校準(zhǔn)備修建一個(gè)自行車車棚.請(qǐng)問(wèn)需要修建多大面積的自行車車棚?請(qǐng)你設(shè)計(jì)一個(gè)調(diào)查方案解決這個(gè)問(wèn)題.解析:決定自行車車棚面積的因素有兩個(gè),即自行車的數(shù)量與每輛自行車的占地面積.因此收集數(shù)據(jù)的重點(diǎn)應(yīng)圍繞這兩個(gè)因素進(jìn)行.解:調(diào)查方案如下:(1)對(duì)全體新生的到校方式進(jìn)行問(wèn)卷調(diào)查.調(diào)查問(wèn)卷如下:你到校的方式是騎自行車嗎?A.經(jīng)常是 B.不經(jīng)常是C.很少是 D.從不是(2)根據(jù)調(diào)查問(wèn)卷結(jié)果分類統(tǒng)計(jì)騎自行車的人數(shù);(3)實(shí)際測(cè)量或估計(jì)存放1輛自行車的大約占地面積;(4)根據(jù)學(xué)校的建設(shè)規(guī)劃、財(cái)力等因素確定自行車車棚的面積.方法總結(jié):確定調(diào)查方案時(shí)必須明確兩個(gè)問(wèn)題:(1)需要收集哪些數(shù)據(jù)?(2)采用什么方式進(jìn)行調(diào)查可以獲得這些數(shù)據(jù)?探究點(diǎn)三:從圖表中獲取信息小冰就公眾對(duì)在餐廳吸煙的態(tài)度進(jìn)行了調(diào)查,并將調(diào)查結(jié)果制作成如圖所示的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息回答下列問(wèn)題: