提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

幼教大班數(shù)學(xué)教案學(xué)習(xí)2—9的相鄰數(shù)

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)六年級上冊分?jǐn)?shù)除法的意義和分?jǐn)?shù)除以整數(shù)說課稿

    人教版新課標(biāo)小學(xué)數(shù)學(xué)六年級上冊分?jǐn)?shù)除法的意義和分?jǐn)?shù)除以整數(shù)說課稿

    師:這是一種較為簡便、應(yīng)用廣泛的方法,但有時候也要具體問題具體分析,做題時要合理靈活地選擇計算方法?!堆芯繉W(xué)生如何學(xué)比研究教師如何教更重要。學(xué)生對新知識的學(xué)習(xí)必須以已有的知識和學(xué)習(xí)經(jīng)驗作為基礎(chǔ),因此正確分析學(xué)生的知識基礎(chǔ)和學(xué)習(xí)經(jīng)驗就顯得格外重要。我認(rèn)為分?jǐn)?shù)除以整數(shù)的教學(xué)基礎(chǔ)在于以下幾點:分?jǐn)?shù)與小數(shù)的轉(zhuǎn)化;分?jǐn)?shù)的意義;分?jǐn)?shù)乘法的意義;倒數(shù)的知識;商不變的性質(zhì)等。這些知識在以前的學(xué)習(xí)中,學(xué)都有了足夠的掌握。有了上面的分析基礎(chǔ),我覺得把研究新知識的權(quán)力教給學(xué)生,是完全可以的?!?、質(zhì)疑與反思。師:對于這些方法,盡管大家的思維角度不盡相同,但是基本的想法是相同的,想一想我們是怎樣解決問題的?生:用學(xué)過的倒數(shù)、商不變的性質(zhì)解決的。師:對。用一句話概括就是運用舊知識解決新新問題。這是一種很重要的學(xué)習(xí)方法。5、實踐體驗練習(xí)鞏固。

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)六年級上冊分?jǐn)?shù)除法的意義和整數(shù)除以分?jǐn)?shù)說課稿

    人教版新課標(biāo)小學(xué)數(shù)學(xué)六年級上冊分?jǐn)?shù)除法的意義和整數(shù)除以分?jǐn)?shù)說課稿

    一.說教材。我說課的內(nèi)容是人教版課程標(biāo)準(zhǔn)實驗教科書六年級上冊的分?jǐn)?shù)除法單元中的例1和例2。例1是分?jǐn)?shù)除法的意義認(rèn)識,例2是分?jǐn)?shù)除以整數(shù)的計算。在這之前學(xué)生已經(jīng)掌握了整數(shù)除法的意義和分?jǐn)?shù)乘法的意義及計算,而本課的學(xué)習(xí)將為統(tǒng)一分?jǐn)?shù)除法計算法則打下基礎(chǔ)。例1先是整數(shù)除法回顧,再由100克=1/10千克,從而引出分?jǐn)?shù)除法算式,通過類比使學(xué)生認(rèn)識到分?jǐn)?shù)除法的意義與整數(shù)除法的意義相同,都是‘已知兩個因數(shù)的積和其中一個因數(shù),求另一個因數(shù)的運算’。例2是分?jǐn)?shù)除以整數(shù)的計算教學(xué),意在通過讓學(xué)生進行折紙實驗、驗證,引導(dǎo)學(xué)生將‘圖’和‘式’進行對照分析,從而發(fā)現(xiàn)算法,感悟算理,同時也初步感受數(shù)形結(jié)合的思想方法。根據(jù)剛才對教材的理解,本節(jié)課的教學(xué)目標(biāo)是:1、理解分?jǐn)?shù)除法的意義與整數(shù)除法的意義相同。2.理解分?jǐn)?shù)除以整數(shù)的計算原理,掌握計算方法,并能正確的進行計算。

  • 【高教版】中職數(shù)學(xué)基礎(chǔ)模塊上冊:5.3任意角的正弦函數(shù)、余弦函數(shù)和正切函數(shù)

    【高教版】中職數(shù)學(xué)基礎(chǔ)模塊上冊:5.3任意角的正弦函數(shù)、余弦函數(shù)和正切函數(shù)

    【教學(xué)目標(biāo)】知識目標(biāo):⑴ 理解任意角的三角函數(shù)的定義及定義域;⑵ 理解三角函數(shù)在各象限的正負(fù)號;⑶掌握界限角的三角函數(shù)值.能力目標(biāo):⑴會利用定義求任意角的三角函數(shù)值;⑵會判斷任意角三角函數(shù)的正負(fù)號;⑶培養(yǎng)學(xué)生的觀察能力.【教學(xué)重點】⑴ 任意角的三角函數(shù)的概念;⑵ 三角函數(shù)在各象限的符號;⑶特殊角的三角函數(shù)值.【教學(xué)難點】任意角的三角函數(shù)值符號的確定.【教學(xué)設(shè)計】(1)在知識回顧中推廣得到新知識;(2)數(shù)形結(jié)合探求三角函數(shù)的定義域;(3)利用定義認(rèn)識各象限角三角函數(shù)的正負(fù)號;(4)數(shù)形結(jié)合認(rèn)識界限角的三角函數(shù)值;(5)問題引領(lǐng),師生互動.在問題的思考和交流中,提升能力.

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)六年級上冊求一個數(shù)是另一個數(shù)的百分之幾的應(yīng)用題說課稿

    人教版新課標(biāo)小學(xué)數(shù)學(xué)六年級上冊求一個數(shù)是另一個數(shù)的百分之幾的應(yīng)用題說課稿

    第二階段從具體步驟上的感知到解題方法的抽象概括,讓學(xué)生結(jié)合板書的解題步驟,說出百分?jǐn)?shù)應(yīng)用題的解題方法及與分?jǐn)?shù)應(yīng)用題的區(qū)別與聯(lián)系,通過這一階段明確了百分?jǐn)?shù)應(yīng)用題的解答方法。有水到渠成之效。(三)鞏固練習(xí),促進知識內(nèi)化教師出示書中的練習(xí)二十九的第1題及補充題,練習(xí)后說說理由。這一環(huán)節(jié)可以看出學(xué)生是否掌握了解答百分?jǐn)?shù)應(yīng)用題的方法,是否會用百分?jǐn)?shù)的意義去檢驗結(jié)果的合理性。(四)通過出示思考題,發(fā)展提高教師在學(xué)生注意力高度集中、思維活躍的情況下引出思考題:不改變補充題的兩個已知條件,你還可以提出哪些問題呢?是學(xué)習(xí)例1后知識的運用與延伸,也為今后學(xué)習(xí)求一個數(shù)比另一個數(shù)多百分之幾的應(yīng)用題做了鋪墊。五、教學(xué)效果(一)進入六年級,進一步提高學(xué)生解答應(yīng)用題的能力,并能夠運用所學(xué)知識解答生活中的實際問題。

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)六年級上冊已知一個數(shù)的幾分之幾是多少求這個數(shù)的應(yīng)用題說課稿

    人教版新課標(biāo)小學(xué)數(shù)學(xué)六年級上冊已知一個數(shù)的幾分之幾是多少求這個數(shù)的應(yīng)用題說課稿

    (1)啟發(fā)學(xué)生找到分率句,確定單位“1”。(2)讓學(xué)生選擇一種自己喜愛的解法進行計算,獨立解決第二個問題。(3)指名說說自己是怎樣理解題意的,并與其他同學(xué)交流自己的解題思路。(出示線段圖)爸爸的體重×7/15=小明的體重方程解算術(shù)解3、鞏固練習(xí):P38“做一做”(學(xué)生先獨立審題完成,然后全班再一起分析題意、評講)三、練習(xí)1、練習(xí)十第1—3題。(先分析數(shù)量關(guān)系式,然后確定單位“1”,最后再進行解答。第二題注意引導(dǎo)學(xué)生發(fā)現(xiàn)250ml的鮮牛奶是多余條件)2、練習(xí)十第6題(引導(dǎo)學(xué)生先求出單位“1”——爸爸媽媽兩人的工資和1500+1000,再根據(jù)數(shù)量關(guān)系式進行計算)四、總結(jié)這節(jié)課我們學(xué)習(xí)了分?jǐn)?shù)應(yīng)用題中“已知一個數(shù)的幾分之幾是多少求這個數(shù)的應(yīng)用題”,我們知道了,如果分率句中的單位“1”是未知的話,可以用方程或除法進行解答。

  • 高中數(shù)學(xué)對數(shù)函數(shù)教師說課稿

    高中數(shù)學(xué)對數(shù)函數(shù)教師說課稿

    一、 教學(xué)目標(biāo)根據(jù)教學(xué)大綱的要求以及本節(jié)課的地位與作用,結(jié)合高一學(xué)生的認(rèn)知特點確定教學(xué)目標(biāo)如下:學(xué)習(xí)目標(biāo):1、復(fù)習(xí)鞏固對數(shù)函數(shù)的圖像及性質(zhì)2、運用對數(shù)函數(shù)的性質(zhì)比較兩個數(shù)的大小能力目標(biāo):1、 培養(yǎng)學(xué)生運用圖形解決問題的意識即數(shù)形結(jié)合能力2、學(xué)生運用已學(xué)知識,已有經(jīng)驗解決新問題的能力3、 探索出方法,有條理闡述自己觀點的能力

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)三年級下冊一位數(shù)除三位數(shù)(商是兩位數(shù)且有余數(shù))教案2篇

    人教版新課標(biāo)小學(xué)數(shù)學(xué)三年級下冊一位數(shù)除三位數(shù)(商是兩位數(shù)且有余數(shù))教案2篇

    二、互動交流,理解算法1.出示教科書第22頁的情境圖,提問:他們在干什么?你獲得了什么信息?能提出什么問題?怎樣列式?2.師:今天我們就學(xué)習(xí)一位數(shù)除三位數(shù)的計算方法。(板書課題:一位數(shù)除三位數(shù))3.師:怎樣計算238÷6呢?你能用估算的方法估計出大致結(jié)果嗎?4.學(xué)生嘗試獨立完成例3的豎式計算。師:在這道題中被除數(shù)最高位上是2個百,2個百除以6,商不夠1個百怎么辦?師:誰能說一說商3個十的3寫在商的什么位置上?為什么?教師邊板演邊說明:用除數(shù)6去乘3個十,積是18個十,表示被除數(shù)中已經(jīng)分掉的數(shù),寫在23的下面。23減18得5,表示十位上還剩5個十。師:接下來該怎么辦?(把被除數(shù)個位上的8落下來,與十位上的5合起來繼續(xù)除。)師:最后結(jié)果是多少?5.啟發(fā)學(xué)生想一想:如果一本相冊有24頁,一本相冊能插得下這些照片嗎?2本呢?

  • 北師大版小學(xué)數(shù)學(xué)五年級上冊《2、5的倍數(shù)特征》說課稿

    北師大版小學(xué)數(shù)學(xué)五年級上冊《2、5的倍數(shù)特征》說課稿

    1、走進課堂、匯報總結(jié)因為是預(yù)習(xí)后的課,所以我直接問“昨天老師布置了預(yù)習(xí)作業(yè),你都學(xué)會了什么”從孩子們掌握的知識切入,進行新授。讓學(xué)生總結(jié)出2、5的倍數(shù)的特征,奇數(shù)與偶數(shù)的概念,以及既是2的倍數(shù),又是5的倍數(shù)的特征。二、嘗試練習(xí)檢驗學(xué)生預(yù)習(xí)效果,這是數(shù)學(xué)預(yù)習(xí)不可缺少的過程。數(shù)學(xué)學(xué)科有別于其他學(xué)科的一大特點就是要用數(shù)學(xué)知識解決問題。學(xué)生經(jīng)過自己的努力初步理解和掌握了新的數(shù)學(xué)知識,要讓學(xué)生通過做練習(xí)或解決簡單的問題來檢驗自己預(yù)習(xí)的效果。既能讓學(xué)生反思預(yù)習(xí)過程中的漏洞,又能讓老師發(fā)現(xiàn)學(xué)生學(xué)習(xí)新知識時較集中的問題,以便課堂教學(xué)時抓住重、難點。因為是預(yù)習(xí)之后的課,所以練習(xí)題的難度比較高,安排了不同難度的練習(xí)題來鞏固新知識。三、設(shè)置下節(jié)課預(yù)習(xí)任務(wù)設(shè)置下節(jié)課的預(yù)習(xí)任務(wù),是進行下節(jié)課內(nèi)容的鋪墊,讓孩子們按著一定的方案有計劃、有目標(biāo)地對下節(jié)課進行預(yù)習(xí),以便下節(jié)課的教學(xué)活動。

  • 北師大版初中七年級數(shù)學(xué)下冊同底數(shù)冪的除法說課稿2篇

    北師大版初中七年級數(shù)學(xué)下冊同底數(shù)冪的除法說課稿2篇

    設(shè)計意圖:知識的掌握需要由淺到深,由易到難.我所設(shè)計的三個例題難度依次上升,根據(jù)由簡到難的原則,先讓學(xué)生學(xué)會熟悉選用公式,再進一步到公式的變形應(yīng)用,鞏固知識.特別是第三題特別強調(diào)了運用法則的前提:必需要底數(shù)相同.為加深學(xué)生對法則的理解記憶,形成“學(xué)以致用”的思想.同時為了調(diào)動學(xué)生思考,接下來讓學(xué)生進入反饋練習(xí)階段,進一步鞏固記憶.4、知識反饋,提高反思練習(xí)1(1)口答設(shè)計意圖:根據(jù)夸美紐斯的教學(xué)鞏固性原則,為了培養(yǎng)學(xué)生獨立解決問題的能力,在例題講解后,通過讓個別同學(xué)上黑板演演,其余同學(xué)在草稿本上完成練習(xí)的方式來掌握學(xué)生的學(xué)習(xí)情況,從而對講解內(nèi)容作適當(dāng)?shù)难a充提醒.同時,在活動中引起學(xué)生的好奇心和強烈的求知欲,在獲得經(jīng)驗和策略的同時,獲得良好的情感體驗.

  • 北師大版初中七年級數(shù)學(xué)下冊同底數(shù)冪的乘法說課稿2篇

    北師大版初中七年級數(shù)學(xué)下冊同底數(shù)冪的乘法說課稿2篇

    4、鞏固新知,拓展新知(羊羊競技場)本環(huán)節(jié)在學(xué)生對性質(zhì)基本熟悉后安排了四組訓(xùn)練題,為避免學(xué)生應(yīng)用性質(zhì)的粗糙感,以小羊展開競技表演為背景,讓學(xué)生在輕松愉快的氛圍中層層遞進,不斷深入,達到強化性質(zhì),拓展性質(zhì)的目的。提高學(xué)生的辨別力;進一步增強學(xué)生運用性質(zhì)解決問題的能力;訓(xùn)練學(xué)生的逆向思維能力,增強學(xué)生應(yīng)變能力和解題靈活性.5、提煉小結(jié)完善結(jié)構(gòu)(羊羊總結(jié)會)“通過本節(jié)課的學(xué)習(xí),你在知識上有哪些收獲,你學(xué)到了哪些方法?”引導(dǎo)學(xué)生自主總結(jié)。設(shè)計意圖:使學(xué)生對本節(jié)課所學(xué)知識的結(jié)構(gòu)有一個清晰的認(rèn)識,能抓住重點進行課后復(fù)習(xí)。以及通過對學(xué)習(xí)過程的反思,掌握學(xué)習(xí)與研究的方法,學(xué)會學(xué)習(xí),學(xué)會思考。6、課堂檢測,發(fā)展?jié)撃埽ù髴?zhàn)灰太狼)

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)六年級下冊郵票中的數(shù)學(xué)問題說課稿

    人教版新課標(biāo)小學(xué)數(shù)學(xué)六年級下冊郵票中的數(shù)學(xué)問題說課稿

    (2)請你思考:師:這樣就需要設(shè)計一張其他面值的郵票,如果最高的資費是6元,那么用3張郵票來支付時,面值對大的郵票是幾元?可增加什么面值的郵票?(學(xué)生分組討論設(shè)計思考)生:6元除以3元就是2元,可增加的郵票面值可為2.0元,2.4元或4.0元。(3)小結(jié):雖然滿足條件的郵票組合很多,但郵政部門在發(fā)行郵票時,還要從經(jīng)濟、合理等角度考慮?!驹O(shè)計意圖:大膽放手,讓學(xué)生參與數(shù)學(xué)活動。讓學(xué)生成為課堂的主體,讓他們在動手、動腦、動口的過程中學(xué)到知識和思維的方法,知識的獲得和學(xué)習(xí)方法的形成都是在學(xué)生“做”的過程中形成的。】四、鞏固深化:1、如果小明的爸爸要給小明回一封不足20g的信,他該貼多少錢的郵票?2、如果小明的好朋友要寄一封39g的信,他該貼多少錢的郵票?五、課后實踐:課后給你的親戚或者好朋友寄封信。

  • 【高教版】中職數(shù)學(xué)基礎(chǔ)模塊上冊:3.3《函數(shù)的實際應(yīng)用舉例》教學(xué)設(shè)計

    【高教版】中職數(shù)學(xué)基礎(chǔ)模塊上冊:3.3《函數(shù)的實際應(yīng)用舉例》教學(xué)設(shè)計

    課程分析中專數(shù)學(xué)課程教學(xué)是專業(yè)建設(shè)與專業(yè)課程體系改革的一部分,應(yīng)與專業(yè)課教學(xué)融為一體,立足于為專業(yè)課服務(wù),解決實際生活中常見問題,結(jié)合中專學(xué)生的實際,強調(diào)數(shù)學(xué)的應(yīng)用性,以滿足學(xué)生在今后的工作崗位上的實際應(yīng)用為主,這也體現(xiàn)了新課標(biāo)中突出應(yīng)用性的理念。分段函數(shù)的實際應(yīng)用在本課程中的地位:(1) 函數(shù)是中專數(shù)學(xué)學(xué)習(xí)的重點和難點,函數(shù)的思想貫穿于整個中專數(shù)學(xué)之中,分段函數(shù)在科技和生活的各個領(lǐng)域有著十分廣泛的應(yīng)用。(2) 本節(jié)所探討學(xué)習(xí)分段函數(shù)在生活生產(chǎn)中的實際問題上應(yīng)用,培養(yǎng)學(xué)生分析與解決問題的能力,養(yǎng)成正確的數(shù)學(xué)化理性思維的同時,形成一種意識,即數(shù)學(xué)“源于生活、寓于生活、用于生活”。教材分析 教材使用的是中等職業(yè)教育課程改革國家規(guī)劃教材,依照13級教學(xué)計劃,函數(shù)的實際應(yīng)用舉例內(nèi)容安排在第三章函數(shù)的最后一部分講解。本節(jié)內(nèi)容是在學(xué)生熟知函數(shù)的概念,表示方法和對函數(shù)性質(zhì)有一定了解的基礎(chǔ)上研究分段函數(shù),同時深化學(xué)生對函數(shù)概念的理解和認(rèn)識,也為接下來學(xué)習(xí)指數(shù)函數(shù)和對數(shù)函數(shù)作了良好鋪墊。根據(jù)13級學(xué)生實際情況,由生活生產(chǎn)中的實際問題入手,求得分段函數(shù)此部分知識以學(xué)生生活常識為背景,可以引導(dǎo)學(xué)生分析得出。

  • 人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的概念 (1) 教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的概念 (1) 教學(xué)設(shè)計

    新知探究我們知道,等差數(shù)列的特征是“從第2項起,每一項與它的前一項的差都等于同一個常數(shù)” 。類比等差數(shù)列的研究思路和方法,從運算的角度出發(fā),你覺得還有怎樣的數(shù)列是值得研究的?1.兩河流域發(fā)掘的古巴比倫時期的泥版上記錄了下面的數(shù)列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《莊子·天下》中提到:“一尺之錘,日取其半,萬世不竭.”如果把“一尺之錘”的長度看成單位“1”,那么從第1天開始,每天得到的“錘”的長度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在營養(yǎng)和生存空間沒有限制的情況下,某種細(xì)菌每20 min 就通過分裂繁殖一代,那么一個這種細(xì)菌從第1次分裂開始,各次分裂產(chǎn)生的后代個數(shù)依次是2,4,8,16,32,64,… ⑤4.某人存入銀行a元,存期為5年,年利率為 r ,那么按照復(fù)利,他5年內(nèi)每年末得到的本利和分別是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥

  • 人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的前n項和公式(1)教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二等差數(shù)列的前n項和公式(1)教學(xué)設(shè)計

    高斯(Gauss,1777-1855),德國數(shù)學(xué)家,近代數(shù)學(xué)的奠基者之一. 他在天文學(xué)、大地測量學(xué)、磁學(xué)、光學(xué)等領(lǐng)域都做出過杰出貢獻. 問題1:為什么1+100=2+99=…=50+51呢?這是巧合嗎?試從數(shù)列角度給出解釋.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法實際上解決了求等差數(shù)列:1,2,3,…,n,"… " 前100項的和問題.等差數(shù)列中,下標(biāo)和相等的兩項和相等.設(shè) an=n,則 a1=1,a2=2,a3=3,…如果數(shù)列{an} 是等差數(shù)列,p,q,s,t∈N*,且 p+q=s+t,則 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51問題2: 你能用上述方法計算1+2+3+… +101嗎?問題3: 你能計算1+2+3+… +n嗎?需要對項數(shù)的奇偶進行分類討論.當(dāng)n為偶數(shù)時, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2當(dāng)n為奇數(shù)數(shù)時, n-1為偶數(shù)

  • 人教版高中數(shù)學(xué)選擇性必修二導(dǎo)數(shù)的概念及其幾何意義教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二導(dǎo)數(shù)的概念及其幾何意義教學(xué)設(shè)計

    新知探究前面我們研究了兩類變化率問題:一類是物理學(xué)中的問題,涉及平均速度和瞬時速度;另一類是幾何學(xué)中的問題,涉及割線斜率和切線斜率。這兩類問題來自不同的學(xué)科領(lǐng)域,但在解決問題時,都采用了由“平均變化率”逼近“瞬時變化率”的思想方法;問題的答案也是一樣的表示形式。下面我們用上述思想方法研究更一般的問題。探究1: 對于函數(shù)y=f(x) ,設(shè)自變量x從x_0變化到x_0+ ?x ,相應(yīng)地,函數(shù)值y就從f(x_0)變化到f(〖x+x〗_0) 。這時, x的變化量為?x,y的變化量為?y=f(x_0+?x)-f(x_0)我們把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函數(shù)從x_0到x_0+?x的平均變化率。1.導(dǎo)數(shù)的概念如果當(dāng)Δx→0時,平均變化率ΔyΔx無限趨近于一個確定的值,即ΔyΔx有極限,則稱y=f (x)在x=x0處____,并把這個________叫做y=f (x)在x=x0處的導(dǎo)數(shù)(也稱為__________),記作f ′(x0)或________,即

  • 人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的前n項和公式   (1) 教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二等比數(shù)列的前n項和公式 (1) 教學(xué)設(shè)計

    新知探究國際象棋起源于古代印度.相傳國王要獎賞國際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請在棋盤的第1個格子里放上1顆麥粒,第2個格子里放上2顆麥粒,第3個格子里放上4顆麥粒,依次類推,每個格子里放的麥粒都是前一個格子里放的麥粒數(shù)的2倍,直到第64個格子.請給我足夠的麥粒以實現(xiàn)上述要求.”國王覺得這個要求不高,就欣然同意了.假定千粒麥粒的質(zhì)量為40克,據(jù)查,2016--2017年度世界年度小麥產(chǎn)量約為7.5億噸,根據(jù)以上數(shù)據(jù),判斷國王是否能實現(xiàn)他的諾言.問題1:每個格子里放的麥粒數(shù)可以構(gòu)成一個數(shù)列,請判斷分析這個數(shù)列是否是等比數(shù)列?并寫出這個等比數(shù)列的通項公式.是等比數(shù)列,首項是1,公比是2,共64項. 通項公式為〖a_n=2〗^(n-1)問題2:請將發(fā)明者的要求表述成數(shù)學(xué)問題.

  • 人教版高中數(shù)學(xué)選擇性必修二數(shù)列的概念(1)教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二數(shù)列的概念(1)教學(xué)設(shè)計

    情景導(dǎo)學(xué)古語云:“勤學(xué)如春起之苗,不見其增,日有所長”如果對“春起之苗”每日用精密儀器度量,則每日的高度值按日期排在一起,可組成一個數(shù)列. 那么什么叫數(shù)列呢?二、問題探究1. 王芳從一歲到17歲,每年生日那天測量身高,將這些身高數(shù)據(jù)(單位:厘米)依次排成一列數(shù):75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①記王芳第i歲的身高為 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我們發(fā)現(xiàn)h_i中的i反映了身高按歲數(shù)從1到17的順序排列時的確定位置,即h_1=75 是排在第1位的數(shù),h_2=87是排在第2位的數(shù)〖"…" ,h〗_17 =168是排在第17位的數(shù),它們之間不能交換位置,所以①具有確定順序的一列數(shù)。2. 在兩河流域發(fā)掘的一塊泥板(編號K90,約生產(chǎn)于公元前7世紀(jì))上,有一列依次表示一個月中從第1天到第15天,每天月亮可見部分的數(shù):5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②

  • 人教版高中數(shù)學(xué)選擇性必修二函數(shù)的單調(diào)性(1)  教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二函數(shù)的單調(diào)性(1) 教學(xué)設(shè)計

    1.判斷正誤(正確的打“√”,錯誤的打“×”)(1)函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數(shù)f (x)在這個區(qū)間上單調(diào)遞減. ( )(2)函數(shù)在某一點的導(dǎo)數(shù)越大,函數(shù)在該點處的切線越“陡峭”. ( )(3)函數(shù)在某個區(qū)間上變化越快,函數(shù)在這個區(qū)間上導(dǎo)數(shù)的絕對值越大.( )(4)判斷函數(shù)單調(diào)性時,在區(qū)間內(nèi)的個別點f ′(x)=0,不影響函數(shù)在此區(qū)間的單調(diào)性.( )[解析] (1)√ 函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數(shù)f (x)在這個區(qū)間上單調(diào)遞減,故正確.(2)× 切線的“陡峭”程度與|f ′(x)|的大小有關(guān),故錯誤.(3)√ 函數(shù)在某個區(qū)間上變化的快慢,和函數(shù)導(dǎo)數(shù)的絕對值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數(shù)f (x)在區(qū)間內(nèi)單調(diào)遞增(減),故f ′(x)=0不影響函數(shù)單調(diào)性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因為f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數(shù)在R上單調(diào)遞增,如圖(1)所示

  • 人教版高中數(shù)學(xué)選修3二項式系數(shù)的性質(zhì)教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選修3二項式系數(shù)的性質(zhì)教學(xué)設(shè)計

    1.對稱性與首末兩端“等距離”的兩個二項式系數(shù)相等,即C_n^m=C_n^(n"-" m).2.增減性與最大值 當(dāng)k(n+1)/2時,C_n^k隨k的增加而減小.當(dāng)n是偶數(shù)時,中間的一項C_n^(n/2)取得最大值;當(dāng)n是奇數(shù)時,中間的兩項C_n^((n"-" 1)/2) 與C_n^((n+1)/2)相等,且同時取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二項式系數(shù)的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展開式的各二項式系數(shù)之和為2^n1. 在(a+b)8的展開式中,二項式系數(shù)最大的項為 ,在(a+b)9的展開式中,二項式系數(shù)最大的項為 . 解析:因為(a+b)8的展開式中有9項,所以中間一項的二項式系數(shù)最大,該項為C_8^4a4b4=70a4b4.因為(a+b)9的展開式中有10項,所以中間兩項的二項式系數(shù)最大,這兩項分別為C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4與126a4b5 2. A=C_n^0+C_n^2+C_n^4+…與B=C_n^1+C_n^3+C_n^5+…的大小關(guān)系是( )A.A>B B.A=B C.A<B D.不確定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B

  • 人教版高中數(shù)學(xué)選擇性必修二導(dǎo)數(shù)的四則運算法則教學(xué)設(shè)計

    人教版高中數(shù)學(xué)選擇性必修二導(dǎo)數(shù)的四則運算法則教學(xué)設(shè)計

    求函數(shù)的導(dǎo)數(shù)的策略(1)先區(qū)分函數(shù)的運算特點,即函數(shù)的和、差、積、商,再根據(jù)導(dǎo)數(shù)的運算法則求導(dǎo)數(shù);(2)對于三個以上函數(shù)的積、商的導(dǎo)數(shù),依次轉(zhuǎn)化為“兩個”函數(shù)的積、商的導(dǎo)數(shù)計算.跟蹤訓(xùn)練1 求下列函數(shù)的導(dǎo)數(shù):(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟蹤訓(xùn)練2 求下列函數(shù)的導(dǎo)數(shù)(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的飲用水通常是經(jīng)過凈化的,隨著水的純凈度的提高,所需進化費用不斷增加,已知將1t水進化到純凈度為x%所需費用(單位:元),為c(x)=5284/(100-x) (80<x<100)求進化到下列純凈度時,所需進化費用的瞬時變化率:(1) 90% ;(2) 98%解:凈化費用的瞬時變化率就是凈化費用函數(shù)的導(dǎo)數(shù);c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2

上一頁123...727374757677787980818283下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!