探究點二:列分式方程某工廠生產(chǎn)一種零件,計劃在20天內(nèi)完成,若每天多生產(chǎn)4個,則15天完成且還多生產(chǎn)10個.設(shè)原計劃每天生產(chǎn)x個,根據(jù)題意可列分式方程為()A.20x+10x+4=15 B.20x-10x+4=15C.20x+10x-4=15 D.20x-10x-4=15解析:設(shè)原計劃每天生產(chǎn)x個,則實際每天生產(chǎn)(x+4)個,根據(jù)題意可得等量關(guān)系:(原計劃20天生產(chǎn)的零件個數(shù)+10個)÷實際每天生產(chǎn)的零件個數(shù)=15天,根據(jù)等量關(guān)系列出方程即可.設(shè)原計劃每天生產(chǎn)x個,則實際每天生產(chǎn)(x+4)個,根據(jù)題意得20x+10x+4=15.故選A.方法總結(jié):此題主要考查了由實際問題抽象出分式方程,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系,列出方程.三、板書設(shè)計1.分式方程的概念2.列分式方程本課時的教學(xué)以學(xué)生自主探究為主,通過參與學(xué)習(xí)的過程,讓學(xué)生感受知識的形成與應(yīng)用的價值,增強(qiáng)學(xué)習(xí)的自覺性,體驗類比學(xué)習(xí)思想的重要性,然后結(jié)合生活實際,發(fā)現(xiàn)數(shù)學(xué)知識在生活中的廣泛應(yīng)用,感受數(shù)學(xué)之美.
【類型三】 分式方程無解,求字母的值若關(guān)于x的分式方程2x-2+mxx2-4=3x+2無解,求m的值.解析:先把分式方程化為整式方程,再分兩種情況討論求解:一元一次方程無解與分式方程有增根.解:方程兩邊都乘以(x+2)(x-2),得2(x+2)+mx=3(x-2),即(m-1)x=-10.①當(dāng)m-1=0時,此方程無解,此時m=1;②方程有增根,則x=2或x=-2,當(dāng)x=2時,代入(m-1)x=-10得(m-1)×2=-10,m=-4;當(dāng)x=-2時,代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.方法總結(jié):分式方程無解與分式方程有增根所表達(dá)的意義是不一樣的.分式方程有增根僅僅針對使最簡公分母為0的數(shù),分式方程無解不但包括使最簡公分母為0的數(shù),而且還包括分式方程化為整式方程后,使整式方程無解的數(shù).三、板書設(shè)計1.分式方程的解法方程兩邊同乘以最簡公分母,化為整式方程求解,再檢驗.2.分式方程的增根(1)解分式方程為什么會產(chǎn)生增根;(2)分式方程檢驗的方法.
解析:(1)首先提取公因式13,進(jìn)而求出即可;(2)首先提取公因式20.15,進(jìn)而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.方法總結(jié):在計算求值時,若式子各項都含有公因式,用提取公因式的方法可使運算簡便.三、板書設(shè)計1.公因式多項式各項都含有的相同因式叫這個多項式各項的公因式.2.提公因式法如果一個多項式的各項有公因式,可以把這個公因式提到括號外面,這種因式分解的方法叫做提公因式法.本節(jié)中要給學(xué)生留出自主學(xué)習(xí)的空間,然后引入稍有層次的例題,讓學(xué)生進(jìn)一步感受因式分解與整式的乘法是逆過程,從而可用整式的乘法檢查錯誤.本節(jié)課在對例題的探究上,提倡引導(dǎo)學(xué)生合作交流,使學(xué)生發(fā)揮群體的力量,以此提高教學(xué)效果.
證明:過點A作AF∥DE,交BC于點F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法總結(jié):利用等腰三角形“三線合一”得出結(jié)論時,先必須已知一個條件,這個條件可以是等腰三角形底邊上的高,可以是底邊上的中線,也可以是頂角的平分線.解題時,一般要用到其中的兩條線互相重合.三、板書設(shè)計1.全等三角形的判定和性質(zhì)2.等腰三角形的性質(zhì):等邊對等角3.三線合一:在等腰三角形的底邊上的高、中線、頂角的平分線中,只要知道其中一個條件,就能得出另外的兩個結(jié)論.本節(jié)課由于采用了動手操作以及討論交流等教學(xué)方法,有效地增強(qiáng)了學(xué)生的感性認(rèn)識,提高了學(xué)生對新知識的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對所學(xué)的新知識掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對等腰三角形的“三線合一”性質(zhì)理解不透徹,還需要在今后的教學(xué)和作業(yè)中進(jìn)一步鞏固和提高
分式1x2-3x與2x2-9的最簡公分母是________.解析:∵x2-3x=x(x-3),x2-9=(x+3)(x-3),∴最簡公分母為x(x+3)(x-3).方法總結(jié):最簡公分母的確定:最簡公分母的系數(shù),取各個分母的系數(shù)的最小公倍數(shù);字母及式子取各分母中所有字母和式子的最高次冪.“所有字母和式子的最高次冪”是指“凡出現(xiàn)的字母(或含字母的式子)為底數(shù)的冪的因式選取指數(shù)最大的”;當(dāng)分母是多項式時,一般應(yīng)先因式分解.【類型二】 分母是單項式分式的通分通分.(1)cbd,ac2b2;(2)b2a2c,2a3bc2;(3)45y2z,310xy2,5-2xz2.解析:先確定最簡公分母,找到各個分母應(yīng)當(dāng)乘的單項式,分子也相應(yīng)地乘以這個單項式.解:(1)最簡公分母是2b2d,cbd=2bc2b2d,ac2b2=acd2b2d;(2)最簡公分母是6a2bc2,b2a2c=3b2c6a2bc2,2a3bc2=4a36a2bc2;(3)最簡公分母是10xy2z2,45y2z=8xz10xy2z2,310xy2=3z210xy2z2,5-2xz2=--25y210xy2z2.
解析:(1)先把第二個分式的分母y-x化為-(x-y),再把分子相加減,分母不變;(2)先把第二個分式的分母a-b化為-(b-a),再把分子相加減,分母不變.解:(1)原式=2x2-3y2x-y-x2-2y2x-y=2x2-3y2-(x2-2y2)x-y=x2-y2x-y=(x+y)(x-y)x-y=x+y;(2)原式=2a+3bb-a-2bb-a-3bb-a=2a+3b-2b-3bb-a=2a-2bb-a=-2(b-a)b-a=-2.方法總結(jié):分式的分母互為相反數(shù)時,可以把其中一個分母放到帶有負(fù)號的括號內(nèi),把分母化為完全相同.再根據(jù)同分母分式相加減的法則進(jìn)行運算.三、板書設(shè)計1.同分母分式加減法法則:fg±hg=f±hg.2.分式的符號法則:fg=-f-g,-fg=f-g=-fg.本節(jié)課通過同分母分?jǐn)?shù)的加減法類比得出同分母分式的加減法.易錯點一是符號,二是結(jié)果的化簡.在教學(xué)中,讓學(xué)生參與課堂探究,進(jìn)行自主歸納,并對易錯點加強(qiáng)練習(xí).從而讓學(xué)生對知識的理解從感性認(rèn)識上升到理性認(rèn)識.
方法總結(jié):已知解集求字母系數(shù)的值,通常是先解含有字母的不等式,再利用解集唯一性列方程求字母的值.解題過程體現(xiàn)了方程思想.三、板書設(shè)計1.一元一次不等式的概念2.解一元一次不等式的基本步驟:(1)去分母;(2)去括號;(3)移項;(4)合并同類項;(5)兩邊都除以未知數(shù)的系數(shù).本節(jié)課通過類比一元一次方程的解法得到一元一次不等式的解法,讓學(xué)生感受到解一元一次不等式與解一元一次方程只是在兩邊都除以未知數(shù)的系數(shù)這一步時有所不同.如果這個系數(shù)是正數(shù),不等號的方向不變;如果這個系數(shù)是負(fù)數(shù),不等號的方向改變.這也是這節(jié)課學(xué)生容易出錯的地方.教學(xué)時要大膽放手,不要怕學(xué)生出錯,通過學(xué)生犯的錯誤引起學(xué)生注意,理解產(chǎn)生錯誤的原因,以便在以后的學(xué)習(xí)中避免出錯.
6.公平是人類歷史上一個永恒的主題?,F(xiàn)實生活中我們也常常會遇到是否公平、如何 做到公平的問題。下列對公平理解正確的是( )A.公平就是多享受權(quán)利,少履行義務(wù) B.公平就是絕對公平C.公平是一種較好的機(jī)遇和命運 D.公平意味著處理事情要合情合理7.2021年全國“兩會”期間,“兩會”特別節(jié)目《公平正義新時代》以案說法的同時, 還特別著重展示各部門如何履行職責(zé)守護(hù)社會公平正義。之所以關(guān)注公平正義,是因 為 ( )①正義是社會和諧的基本條件,能夠為社會發(fā)展注入不竭的動力②公平是個人生存和發(fā)展的重要保障,是社會穩(wěn)定和進(jìn)步的重要基礎(chǔ)③正義是社會文明的尺度,體現(xiàn)了人們對美好社會的期待和追求④公平的社會能為所有人提供同等的權(quán)利,從而激發(fā)自身潛能,提高工作效率 A .①②③ B .②③④ C .①③④ D .①②④8.教育部通知: 2018年全面取消體育特長生、中學(xué)生學(xué)科奧林匹克競賽、科技類競賽、 省級優(yōu)秀學(xué)生、思想政治品德有突出事跡等全國性高考加分項目,這一規(guī)定 ( )
本單元在整冊教材中起到了承前啟后的作用:第一單元《堅持憲法至上》主 要是培養(yǎng)學(xué)生的憲法意識,為后面的內(nèi)容打下思想基礎(chǔ),通過本單元的學(xué)習(xí),讓 學(xué)生進(jìn)一步認(rèn)識憲法規(guī)定的公民基本權(quán)利和基本義務(wù),幫助學(xué)生樹立正確的權(quán)利 觀和義務(wù)觀,是對第一單元內(nèi)容的深入和延伸;第三單元《人民當(dāng)家做主》主要 是幫助學(xué)生更多的了解我國基本制度和國家機(jī)關(guān),鼓勵學(xué)生積極參與政治生活, 增強(qiáng)對國家的認(rèn)同感和主人翁意識,學(xué)生需要學(xué)會正確行使公民的政治權(quán)利和自 由,因此,本單元又為第三單元內(nèi)容的學(xué)習(xí)打下基礎(chǔ),作好鋪墊。其中,第三課主要介紹公民的基本權(quán)利、如何正確行使權(quán)利及公民維權(quán)的途徑,幫助學(xué)生樹立正確的權(quán)利觀;第四課主要介紹公民的基本義務(wù)、如何自覺履 行義務(wù)及違反義務(wù)須承擔(dān)的責(zé)任,并在兩課的基礎(chǔ)上總結(jié)權(quán)利和義務(wù)的關(guān)系,幫 助學(xué)生樹立正確的義務(wù)觀,最終形成“權(quán)責(zé)一致”的觀念。
1.【解析】根據(jù)教材所學(xué),依法治國要求全民守法,正確行使權(quán)利,自覺履行義務(wù), A項沒有履行依法納稅的義務(wù),排除; B項沒有履行服兵役的義務(wù),排除;C項侵害救火英雄的名譽(yù)權(quán),是一種違法行為,要承擔(dān)相應(yīng)的法律責(zé)任,故排除;D項自覺履行了維護(hù)國家安全和利益的義務(wù),故符合題意。【答案】D2.【解析】該題考查公民的權(quán)利和義務(wù)的關(guān)系; 依據(jù)課本內(nèi)容,公民的權(quán)利和義務(wù)是一致的。公民的權(quán)利和義務(wù)是密不可分的, 沒有無義務(wù)的權(quán)利,也沒有無權(quán)利的義務(wù);題干中“不愿履行或輕視義務(wù)”割裂了權(quán)利與義務(wù)的關(guān)系,沒有樹立起正確的權(quán)利義務(wù)觀念。 所以A項正確; BCD錯誤?!敬鸢浮緼。3. 【解析】本題主要考查遵守憲法和法律這一公民基本義務(wù)。遵守和維護(hù)社會秩序是這一基本義務(wù)的具體要求,不服從國家疫情封控管理屬于擾亂社會秩序的違法行為, 要承擔(dān)一定的【答案】(1) 勸阻爸爸。(2) 自覺維護(hù)社會秩序, 依法履行公民義務(wù), 法律要求的必須做,禁止做的堅決不做,否則就會受到法律制裁。
②積極參與國家事務(wù)和社會事務(wù)的管理③在享有勞動權(quán)利的同時,也履行了勞動的義務(wù)④既獲得了勞動報酬,也為國家和社會作出了貢獻(xiàn) A.①② B.②③ C.①④ D.③④11.2020 年 6 月 19 日,國家林業(yè)和草原局、農(nóng)業(yè)農(nóng)村部發(fā)布通知,就《國家重點 保護(hù)野生動物名錄》公開征求意見。畫眉、啄木鳥、田螺等被增列入名錄中,55 個鯨豚類和猛禽類等物種保護(hù)等級升級。作為中學(xué)生,保護(hù)野生動物是:( ) A.法律禁止做的,我們堅決不做 B.法律要求做的,我們必須去做C.道德要求做的,我們積極去做 D. 自覺自愿行為,可做也可不做 12.遇到交通肇事,不按照正常程序處理,而是采取極端的方式解決。陜西省榆 林市公安局榆陽分局鎮(zhèn)川派出所,對涉嫌非法入侵他人住宅的 5 名嫌疑人刑拘。 這表明:( )①公民的住宅不受侵犯②禁止非法搜查或者非法侵入公民的住宅③公民權(quán)利如果受到損害,要懂得依照法定程序維護(hù)權(quán)利④我們在行使自由和權(quán)利的時候,不得損害其他公民的合法的自由和權(quán)利
作業(yè)設(shè)計是老師布置給學(xué)生學(xué)習(xí)任務(wù)的設(shè)計,是教學(xué)設(shè)計的有機(jī)組 成部分。它以學(xué)習(xí)目標(biāo)為起點,以學(xué)習(xí)內(nèi)容為依托,以學(xué)習(xí)評價為保障, 以發(fā)展學(xué)生素養(yǎng)為最高標(biāo)準(zhǔn)。作業(yè)設(shè)計的要素包括作業(yè)內(nèi)容、時間要求、 設(shè)計意圖、作業(yè)分析及作業(yè)評價。我們八年級道德與法治組將單元作業(yè) 設(shè)計為三部分,第一部分是課時作業(yè),本部分通過設(shè)置習(xí)題和活動,達(dá) 道鞏固知識立德樹人的目標(biāo)。第二部分是單元作業(yè),主要是為了檢測學(xué) 生是否達(dá)到了單元學(xué)習(xí)目標(biāo),這部分重點考查學(xué)生對基礎(chǔ)知識的掌握情 況。第三部分是特色作業(yè),增強(qiáng)家國情懷,提高主人翁意識,更加注重 學(xué)生的能力提升。進(jìn)入八年級,知識內(nèi)容不斷加深,同學(xué)們在學(xué)習(xí)方面面臨著更大的 挑戰(zhàn),一部分學(xué)生因此產(chǎn)生畏難情緒,感覺學(xué)習(xí)吃力,如果在作業(yè)設(shè)置 方面,設(shè)置的作業(yè)量過大或過難,容易讓學(xué)生徹底失去學(xué)習(xí)的興趣,從 而放棄學(xué)習(xí)。
(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n為正整數(shù)).解析:(1)根據(jù)已知計算過程直接得出因式分解的方法即可;(2)根據(jù)已知分解因式的方法可以得出答案;(3)由(1)中計算發(fā)現(xiàn)規(guī)律進(jìn)而得出答案.解:(1)因式分解的方法是提公因式法,共應(yīng)用了3次;(2)分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,需應(yīng)用上述方法2016次,結(jié)果是(1+x)2015;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.方法總結(jié):解決此類問題需要認(rèn)真閱讀,理解題意,根據(jù)已知得出分解因式的規(guī)律是解題關(guān)鍵.三、板書設(shè)計1.提公因式分解因式的一般步驟:(1)觀察;(2)適當(dāng)變形;(3)確定公因式;(4)提取公因式.2.提公因式法因式分解的應(yīng)用本課時是在上一課時的基礎(chǔ)上進(jìn)行的拓展延伸,在教學(xué)時要給學(xué)生足夠主動權(quán)和思考空間,突出學(xué)生在課堂上的主體地位,引導(dǎo)和鼓勵學(xué)生自主探究,在培養(yǎng)學(xué)生創(chuàng)新能力的同時提高學(xué)生的邏輯思維能力.
解析:由分式有意義的條件得3x-1≠0,解得x≠13.則分式無意義的條件是x=13,故選C.方法總結(jié):分式無意義的條件是分母等于0.【類型三】 分式值為0的條件若使分式x2-1x+1的值為零,則x的值為()A.-1 B.1或-1C.1 D.1和-1解析:由題意得x2-1=0且x+1≠0,解得x=1,故選C.方法總結(jié):分式的值為零的條件:(1)分子為0;(2)分母不為0.這兩個條件缺一不可.三、板書設(shè)計1.分式的概念:一般地,如果A、B表示兩個整式,并且B中含有字母,那么式子AB叫做分式.2.分式AB有無意義的條件:當(dāng)B≠0時,分式有意義;當(dāng)B=0時,分式無意義.3.分式AB值為0的條件:當(dāng)A=0,B≠0時,分式的值為0.本節(jié)采取的教學(xué)方法是引導(dǎo)學(xué)生獨立思考、小組合作,完成對分式概念及意義的自主探索.提出問題讓學(xué)生解決,問題由易到難,層層深入,既復(fù)習(xí)了舊知識又在類比過程中獲得了解決新知識的途徑.在這一環(huán)節(jié)提問應(yīng)注意循序性,先易后難、由簡到繁、層層遞進(jìn),臺階式的提問使問題解決水到渠成.
把解集在數(shù)軸上表示出來,并將解集中的整數(shù)解寫出來.解析:分別計算出兩個不等式的解集,再根據(jù)大小小大中間找確定不等式組的解集,再找出解集范圍內(nèi)的整數(shù)即可.解:x+23<1 ①,2(1-x)≤5?、?,由①得x<1,由②得x≥-32,∴不等式組的解集為-32≤x<1.則不等式組的整數(shù)解為-1,0.方法總結(jié):此題主要考查了一元一次不等式組的解法,解決此類問題的關(guān)鍵在于正確解得不等式組或不等式的解集,然后再根據(jù)題目中對于解集的限制得到下一步所需要的條件,再根據(jù)得到的條件進(jìn)而求得不等式組的整數(shù)解.三、板書設(shè)計一元一次不等式組概念解法不等式組的解集利用數(shù)軸確定解集利用口訣確定解集解一元一次不等式組是建立在解一元一次不等式的基礎(chǔ)之上.解不等式組時,先解每一個不等式,再確定各個不等式組的解集的公共部分.
有三種購買方案:購A型0臺,B型10臺;A型1臺,B型9臺;A型2臺,B型8臺;(2)240x+200(10-x)≥2040,解得x≥1,∴x為1或2.當(dāng)x=1時,購買資金為12×1+10×9=102(萬元);當(dāng)x=2時,購買資金為12×2+10×8=104(萬元).答:為了節(jié)約資金,應(yīng)選購A型1臺,B型9臺.方法總結(jié):此題將現(xiàn)實生活中的事件與數(shù)學(xué)思想聯(lián)系起來,屬于最優(yōu)化問題,在確定最優(yōu)方案時,應(yīng)把幾種情況進(jìn)行比較.三、板書設(shè)計應(yīng)用一元一次不等式解決實際問題的步驟:實際問題――→找出不等關(guān)系設(shè)未知數(shù)列不等式―→解不等式―→結(jié)合實際問題確定答案本節(jié)課通過實例引入,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生積極參與,講練結(jié)合,引導(dǎo)學(xué)生找不等關(guān)系列不等式.在教學(xué)過程中,可通過類比列一元一次方程解決實際問題的方法來學(xué)習(xí),讓學(xué)生認(rèn)識到列方程與列不等式的區(qū)別與聯(lián)系.
∵∠DAE=∠DAF,∠AED=∠AFD,AD=AD,∴△ADE≌△ADF,∴AE=AF,DE=DF,∴直線AD垂直平分線段EF.方法總結(jié):當(dāng)一條直線上有兩點都在同一線段的垂直平分線上時,這條直線就是該線段的垂直平分線,解題時常需利用此性質(zhì)進(jìn)行線段相等關(guān)系的轉(zhuǎn)化.三、板書設(shè)計1.線段的垂直平分線的性質(zhì)定理線段垂直平分線上的點到這條線段兩個端點的距離相等.2.線段的垂直平分線的判定定理到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上.本節(jié)課由于采用了直觀操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生的感性認(rèn)識,提高了學(xué)生對新知識的理解與感悟,因此本節(jié)課的教學(xué)效果較好,學(xué)生對所學(xué)的新知識掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對線段垂直平分線性質(zhì)定理的逆定理理解不透徹,還需在今后的教學(xué)和作業(yè)中進(jìn)一步進(jìn)行鞏固和提高.
(3)∵AD=4,DE=1,∴AE=42+12=17.∵對應(yīng)點到旋轉(zhuǎn)中心的距離相等且F是E的對應(yīng)點,∴AF=AE=17.(4)∵∠EAF=90°(旋轉(zhuǎn)角相等)且AF=AE,∴△EAF是等腰直角三角形.【類型二】 旋轉(zhuǎn)的性質(zhì)的運用如圖,點E是正方形ABCD內(nèi)一點,連接AE、BE、CE,將△ABE繞點B順時針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3則∠BE′C=________度.解析:連接EE′,由旋轉(zhuǎn)性質(zhì)知BE=BE′,∠EBE′=90°,∴△BEE′為等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板書設(shè)計1.旋轉(zhuǎn)的概念將一個圖形繞一個頂點按照某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn).2.旋轉(zhuǎn)的性質(zhì)一個圖形和它經(jīng)過旋轉(zhuǎn)所得的圖形中,對應(yīng)點到旋轉(zhuǎn)中心的距離相等,任意一組對應(yīng)點與旋轉(zhuǎn)中心的連線所成的角都等于旋轉(zhuǎn)角,對應(yīng)線段相等,對應(yīng)角相等.
安裝及運輸費用為600x+800(12-x),根據(jù)題意得4000x+3000(12-x)≤40000,600x+800(12-x)≤9200.解得2≤x≤4,由于x取整數(shù),所以x=2,3,4.答:有三種方案:①購買甲種設(shè)備2臺,乙種設(shè)備10臺;②購買甲種設(shè)備3臺,乙種設(shè)備9臺;③購買甲種設(shè)備4臺,乙種設(shè)備8臺.方法總結(jié):列不等式組解應(yīng)用題時,一般只設(shè)一個未知數(shù),找出兩個或兩個以上的不等關(guān)系,相應(yīng)地列出兩個或兩個以上的不等式組成不等式組求解.在實際問題中,大部分情況下應(yīng)求整數(shù)解.三、板書設(shè)計1.一元一次不等式組的解法2.一元一次不等式組的實際應(yīng)用利用一元一次不等式組解應(yīng)用題關(guān)鍵是找出所有可能表達(dá)題意的不等關(guān)系,再根據(jù)各個不等關(guān)系列成相應(yīng)的不等式,組成不等式組.在教學(xué)時要讓學(xué)生養(yǎng)成檢驗的習(xí)慣,感受運用數(shù)學(xué)知識解決問題的過程,提高實際操作能力.
2.內(nèi)容內(nèi)在邏輯本單元為八年級下冊第二單元內(nèi)容。本單元由導(dǎo)語、第三課和第四課組成、第三課“公民權(quán)利”設(shè)有兩課,分別是“公民基本權(quán)利”和“依法行使權(quán)利”、第四課“公民義務(wù)”設(shè)有兩框,分別是“公民基本義務(wù)”和“依法履行義務(wù)”。單元導(dǎo)語首先明確中學(xué)生在國家中具有公民身份,是國家的主人,依法享受公民權(quán)利并承擔(dān)公民義務(wù)。指明公民基本權(quán)利和義務(wù)是憲法的核心內(nèi)容,從而激發(fā)學(xué)生學(xué)習(xí)公民基本權(quán)利和義務(wù)具體內(nèi)容的興趣。引導(dǎo)學(xué)生進(jìn)一步探究如何依法行使公民權(quán)利、如何依法履行公民義務(wù),思考依法行使公民權(quán)利、履行義務(wù)對個人、家庭、社會及國家的重要意義。引言指明了公民權(quán)利對于我們參與社會生活、實現(xiàn)人生幸福的意義,意在引發(fā)學(xué)生對公民權(quán)利在個人成長、社會進(jìn)步與國家發(fā)展方面所具有的價值的初步思考,啟發(fā)學(xué)生思考如何依法行使和維護(hù)自身享有的公民權(quán)利,進(jìn)而導(dǎo)入新課。