教學(xué)目標(biāo)1、通過觀察、操作,使學(xué)生體會所學(xué)平面圖形的特征,并能用自己的語言描述長方形、正方形的邊的特征。2、通過觀察、操作,使學(xué)生初步感知所學(xué)圖形之間的關(guān)系。3、通過數(shù)學(xué)活動,培養(yǎng)學(xué)生用數(shù)學(xué)進行交流、合作探究和創(chuàng)新的意識。教具、學(xué)具準(zhǔn)備 實物風(fēng)車、圖形卡片、剪刀、膠水教學(xué)過程一、創(chuàng)設(shè)情境,生成問題(課前播放《大風(fēng)車》主題曲)小朋友,喜歡剛才聽到的歌嗎?那是少兒頻道《大風(fēng)車》節(jié)目的主題曲。今天,老師不但給大家?guī)砹艘皇状箫L(fēng)車的歌,還帶來了一個漂亮的大風(fēng)車。(老師拿風(fēng)車并讓它轉(zhuǎn)起來)想玩嗎?不過大家得自己做,能行嗎?二、探索交流,解決問題1、觀察比較誰來說說做風(fēng)車都需要哪些材料?不錯,除了小棒、大頭針,還需要一張紙做風(fēng)車的風(fēng)葉,需要什么形狀的紙呢?你們說得很對,做風(fēng)車的風(fēng)葉要用一張正方形的紙(課件出示),正方形跟我們見過面了,是個老朋友了?;貞浺幌?,除了正方形,我們還學(xué)過哪些平面圖形?
出示例6掛圖。教師試問:誰知道0.50元是幾角?2.00元是幾角?你是怎么知道?以元為單位小數(shù)點左邊是幾就是幾元,右邊第一位是幾就是幾角,右邊第二位是幾就是幾分。1.20元是1元2角。35.90元是35元9角。(這部分知識學(xué)生知道它表示幾元幾角就可以了,至于1.20元是個什么數(shù),怎么讀、寫不需要學(xué)生掌握)3、教學(xué)例7。(1) 課件演示例7第一小題。教師:0.5元是幾角?(5角)0.80元是幾角?(8角)學(xué)生回答。5角+8角是幾角?(5角+8角=13角教師板書)教師問:多少角是1元?13角里面拿出10角還剩多少角?(3角)所以13角等于1元3角。教師板書:5角+8角=13角=1元3角。(2)例7第二小題(課件演示,提出問題:我買這兩個氣球要多少錢)學(xué)生嘗試完成,然后提問:你是怎么想的?教師強調(diào):元、角計算,只有在相同單位的情況下,才能相加。
二、教學(xué)目標(biāo)1、知識與技能:使學(xué)生經(jīng)歷探索加法交換律的過程,理解并掌握加法交換律,初步感知加法交換律的價值,發(fā)展應(yīng)用意識。2、數(shù)學(xué)思考:使學(xué)生在學(xué)習(xí)用符號、字母表示加法交換律的過程中,初步發(fā)展學(xué)生的符號感,逐步提高歸納、推理的抽象思維能力。3、解決問題:運用加法交換律的思想探索其他運算中的交換律。4、情感與態(tài)度:使學(xué)生在數(shù)學(xué)活動中獲得成功的體驗,進一步增強對數(shù)學(xué)學(xué)習(xí)的興趣和信心,初步形成獨立思考和探究問題的意識和習(xí)慣。三、教學(xué)重點:理解并運用加法交換律。四、教學(xué)難點:在學(xué)生已有知識經(jīng)驗的基礎(chǔ)上引導(dǎo)學(xué)生歸納出加法交換律。五、教學(xué)關(guān)鍵:引導(dǎo)學(xué)生運用各種不同的表達方法理解加法交換律的思想。六、教學(xué)過程(一)情境,形成問題1、談話:同學(xué)們喜歡運動嗎?你最喜歡哪項體育運動?李叔叔是一個自行車旅行愛好者,咱們一起去了解一下李叔叔的情況。1、出示李叔叔騎車旅行的情境圖。仔細觀察這幅圖,你從圖上知道哪些信息?
【設(shè)計意圖】以課文為本,積累知識,領(lǐng)會其寫法,提高閱讀鑒賞能力是必須的,但文中的知識點很多,時間有限,教師不可能面面俱到。故本板塊設(shè)計側(cè)重反語的表達效果,教師啟發(fā)引路為輔,學(xué)生合作探究為主。三、總結(jié)交流,拓展延伸學(xué)完本文,我們思緒萬千,有對雨果的欽佩,有對英法聯(lián)軍的痛恨,有對清政府的憤懣,有對戰(zhàn)爭的厭惡……請以《,我想對你說》為題,說一段話,談?wù)勀愕母邢??!驹O(shè)計意圖】學(xué)以致用,才是教學(xué)的最好歸宿。引導(dǎo)學(xué)生與文本中的人、事對話,既可加深學(xué)生對所學(xué)知識的理解,又可鍛煉學(xué)生運用知識、獨立思考的能力,還能激發(fā)為振興中華而發(fā)憤圖強的愛國激情。結(jié)束語:一代名園圓明園毀滅了,它毀于英法侵略者之手,也毀于清政府的腐敗無能。它的毀滅,既是西方侵略者野蠻摧殘人類文化的見證,又是文明古國落后也要挨打的證明,我們中華民族不想欺侮其他民族,但也決不能允許別人欺侮我們。少年強,則中國強!同學(xué)們,為了中華民族的偉大復(fù)興,為了圓明園類似的悲劇不再發(fā)生,我們要勤奮學(xué)習(xí),努力奮斗!
1.會用二次根式的四則運算法則進行簡單地運算;(重點)2.靈活運用二次根式的乘法公式.(難點)一、情境導(dǎo)入下面正方形的邊長分別是多少?這兩個數(shù)之間有什么關(guān)系,你能借助什么運算法則或運算律解釋它?二、合作探究探究點一:二次根式的乘除運算【類型一】 二次根式的乘法計算:(1)3×5; (2)13×27;(3)2xy×1x; (4)14×7.解:(1)3×5=15;(2)13×27=13×27=9=3;(3)2xy×1x=2xy×1x=2y;(4)14×7=14×7=72×2=72.方法總結(jié):幾個二次根式相乘,把它們的被開方數(shù)相乘,根指數(shù)不變,如果積含有能開得盡方的因數(shù)或因式,一定要化簡.【類型二】 二次根式的除法計算a2-2a÷a的結(jié)果是()A.-a-2 B.--a-2C.a-2 D.-a-2解析:原式=a2-2aa=a(a-2)a=a-2.故選C.
屬于此類問題一般有以下三種情況①具體數(shù)字,此時化簡的條件已暗中給定,②恒為非負(fù)值或根據(jù)題中的隱含條件,如(1)小題。③給出明確的條件,如(2)小題。第二類,需討論后再化簡。當(dāng)題目中給定的條件不能判定絕對值符號內(nèi)代數(shù)式值的符號時,則需討論后化簡,如(4)小題。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同號,又∵a+b=-6<0,∴a<0,b<0∴ .說明:此題中的隱含條件a<0,b<0不能忽視。否則會出現(xiàn)錯誤。例4.化簡: 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.這樣x=6, ,x=-5,把數(shù)軸分成四段(四個區(qū)間)在這五段里分別討論如下:當(dāng)x≥6時,原式=(x-6)-(1+2x)+(x+5)=-2.當(dāng) 時,原式=-(x-6)-(1+2x)+(x+5)=-2x+10.當(dāng) 時,原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.當(dāng)x<-5時,原式=-(x-6)+(1+2x)-(x+5)=2.說明:利用公式 ,如果絕對值符號里面的代數(shù)式的值的符號無法決定,則需要討論。方法是:令每一個絕對值內(nèi)的代數(shù)式為零,求出對應(yīng)的“零點”,再用這些“零點”把數(shù)軸分成若干個區(qū)間,再在每個區(qū)間內(nèi)進行化簡。
本節(jié)課開始時,首先由一個要在一塊長方形木板上截出兩塊面積不等的正方形,引導(dǎo)學(xué)生得出兩個二次根式求和的運算。從而提出問題:如何進行二次根式的加減運算?這樣通過問題指向本課研究的重點,激發(fā)學(xué)生的學(xué)習(xí)興趣和強烈的求知欲望。本節(jié)課是二次根式加減法,目的是探索二次根式加減法運算法則,在設(shè)計本課時教案時,著重從以下幾點考慮:1.先通過對實際問題的解決來引入二次根式的加減運算,再由學(xué)生自主討論并總結(jié)二次根式的加減運算法則。2.四人小組探索、發(fā)現(xiàn)、解決問題,培養(yǎng)學(xué)生用數(shù)學(xué)方法解決實際問題的能力。3.對法則的教學(xué)與整式的加減比較學(xué)習(xí)。在理解、掌握和運用二次根式的加減法運算法則的學(xué)習(xí)過程中,滲透了分析、概括、類比等數(shù)學(xué)思想方法,提高學(xué)生的思維品質(zhì)和興趣。
方法總結(jié):(1)若被開方數(shù)中含有負(fù)因數(shù),則應(yīng)先化成正因數(shù),如(3)題.(2)將二次根式盡量化簡,使被開方數(shù)(式)中不含能開得盡方的因數(shù)(因式),即化為最簡二次根式(后面學(xué)到).探究點三:最簡二次根式在二次根式8a,c9,a2+b2,a2中,最簡二次根式共有()A.1個 B.2個C.3個 D.4個解析:8a中有因數(shù)4;c9中有分母9;a3中有因式a2.故最簡二次根式只有a2+b2.故選A.方法總結(jié):只需檢驗被開方數(shù)是否還有分母,是否還有能開得盡方的因數(shù)或因式.三、板書設(shè)計二次根式定義形如a(a≥0)的式子有意義的條件:a≥0性質(zhì):(a)2=a(a≥0),a2=a(a≥0)最簡二次根式本節(jié)經(jīng)歷從具體實例到一般規(guī)律的探究過程,運用類比的方法,得出實數(shù)運算律和運算法則,使學(xué)生清楚新舊知識的區(qū)別和聯(lián)系,加深學(xué)生對運算法則的理解,能否根據(jù)問題的特點,選擇合理、簡便的算法,能否確認(rèn)結(jié)果的合理性等等.
1.關(guān)于二次根式的概念,要注意以下幾點:(1)從形式上看,二次根式是以根號“ ”表示的代數(shù)式,這里的開方運算是最后一步運算。如 , 等不是二次根式,而是含有二次根式的代數(shù)式或二次根式的運算;(2)當(dāng)一個二次根式前面乘有一個有理數(shù)或有理式(整式或分式)時,雖然最后運算不是開方而是乘法,但為了方便起見,我們把它看作一個整體仍叫做二次根式,而前面與其相乘的有理數(shù)或有理式就叫做二次根式的系數(shù);(3)二次根式的被開方數(shù),可以是某個確定的非負(fù)實數(shù),也可以是某個代數(shù)式表示的數(shù),但其中所含字母的取值必須使得該代數(shù)式的值為非負(fù)實數(shù);(4)像“ , ”等雖然可以進行開方運算,但它們?nèi)詫儆诙胃健?.二次根式的主要性質(zhì)(1) ; (2) ; (3) ;(4)積的算術(shù)平方根的性質(zhì): ;(5)商的算術(shù)平方根的性質(zhì): ;
5、學(xué)唱歌曲。學(xué)生用聽唱發(fā)跟鋼琴學(xué)唱。強調(diào):切分節(jié)奏與后起八分符唱法。6、完整演唱教師引導(dǎo)學(xué)生注意二聲部合唱的和諧與統(tǒng)一。7、歌曲處理通過學(xué)生分組討論,邊總結(jié)邊實踐體驗,引導(dǎo)學(xué)生從速度、力度、情緒,三方面入手表現(xiàn)歌曲,指導(dǎo)學(xué)生二聲部要唱得清晰、和諧,要用富有彈性的聲音演唱歌唱,結(jié)束句表現(xiàn)出春雨越來越弱、聲音越來越小。使感情在此得到升華。8、帶感情完整演唱歌曲(設(shè)計意圖:通過學(xué)習(xí)學(xué)生對歌曲的旋律已經(jīng)很熟悉了,因此結(jié)合本課的教學(xué)重點挖掘歌曲意境,體驗合唱之美。教學(xué)中教師通過多媒體畫面營造美的意境,使學(xué)生視聽結(jié)合,產(chǎn)生美的感受。引導(dǎo)學(xué)生輕聲哼唱體會歌曲意境,通過歌曲處理、二聲部合唱表現(xiàn)歌曲寧靜、幻想的意境。教學(xué)中充分體現(xiàn)了學(xué)生的主體地位,學(xué)生從聽到說到唱,身體和心理都參與了教學(xué)的每個過程,達到了“身動”與“心動”的統(tǒng)一。)
(四)、鞏固練習(xí)1.操場上打籃球的有4人,打籃球的人數(shù)是踢足球的 ,踢足球的有多少人?2.踢毽子的人數(shù)是踢足球人數(shù)的 ,踢毽子的有多少人?引導(dǎo)學(xué)生找出等量關(guān)系式,然后再解答。指名板演。3.某月雙休日共有9天,是這個月總天數(shù)的 ,這個月有多少天?(課件展示完整過程)(五)、課堂小結(jié),整理內(nèi)化1.我們這節(jié)課學(xué)習(xí)了用方程解決一類分?jǐn)?shù)除法應(yīng)用題的方法,你能來總結(jié)一下這類方法的一般步驟嗎?(師生回顧解決問題的步驟并總結(jié))2.課件展示一般步驟:用方程解答分?jǐn)?shù)除法應(yīng)用題的一般步驟:(1)分析題意,判斷單位“1”(即“總量”)。(2)寫出等量關(guān)系式。(3)設(shè)未知數(shù),列出方程。(4)解方程。(5)寫答語并檢驗。(六)、作業(yè):30頁2、3題
1、說課內(nèi)容:北師大版小學(xué)數(shù)學(xué)教科書四年級上冊第80-81頁2、教學(xué)內(nèi)容的地位、作用和意義本課的教學(xué)內(nèi)容是北師大版數(shù)學(xué)四年級上冊第六單元內(nèi)容,之前已經(jīng)學(xué)習(xí)了前后,左右,上下等表示物體具體位置及簡單路線等知識的基礎(chǔ)上,讓學(xué)生在具體的情境中,進一步探索確定位置的方法,并能在方格紙上用“數(shù)對”確定位置,是以前內(nèi)容的發(fā)展,它對提高學(xué)生的空間觀念,認(rèn)識周圍環(huán)境都有較大的作用,因此,針對本節(jié)課的特點我制定了如下的教學(xué)目標(biāo):3、教學(xué)目標(biāo)(1)能在具體的情境中,探索確定位置的方法,說出某一物體的位置。(2)能在方格紙上用“數(shù)對”確定位置。(3)在合作與交流的過程中獲得良好的情感體驗。4、教學(xué)重點:學(xué)會用數(shù)對的方法在方格紙上確定能夠事物的位置,理解數(shù)對的意義及方法。5、教學(xué)難點:正確地用數(shù)對描述物體的具體位置。
依據(jù)本節(jié)課的知識結(jié)構(gòu)與學(xué)生的認(rèn)知規(guī)律,這節(jié)課我是這樣安排的:第一個環(huán)節(jié):談話交流,引入課題。先出示一個正方體。讓學(xué)生說一說對正方體的認(rèn)識,再讓學(xué)生觀察能看到幾個面?分別是什么面?接著教師引出,既然同學(xué)們最多只能看見正方體的3個面,所以老師說這個正方體只有3個面露在外面。經(jīng)過學(xué)生思考,確定還有兩個面露在外面,然后出示課題-----露在外面的面。第二個環(huán)節(jié):探索新知,發(fā)現(xiàn)規(guī)律。在這個環(huán)節(jié)中,我首先呈現(xiàn)一個擺放在墻角的小正方體:讓孩子們觀察有幾個面露在外面,是哪幾個面?這是一個簡單的問題,學(xué)生通過觀察都可以看到露在外面的面分別是上面,前面和側(cè)面。然后計算露在外面的面的面積。學(xué)生自己嘗試計算時,都能找到方法:計算一個小正方形的面積再乘以露在外面的面數(shù)就可以了。
學(xué)生掌握數(shù)學(xué)概念過程的本身就是一個把教材知識結(jié)構(gòu)轉(zhuǎn)化成自己認(rèn)知結(jié)構(gòu)的過程,這一過程的結(jié)果可能形成正確的數(shù)學(xué)概念,也可能由于主、客觀原因而形成一些錯誤的數(shù)學(xué)概念。因此,在這一階段有兩大任務(wù)要完成,一是強化已經(jīng)形成的正確認(rèn)識,二是修正某些錯誤認(rèn)識,使掌握的概念都能正確反映數(shù)學(xué)對象的本質(zhì)屬性。在情境中解決問題是從新課教學(xué)到學(xué)生獨立作業(yè)之間的一個重要環(huán)節(jié),目的在于鞏固所學(xué)知識,并把知識轉(zhuǎn)化為技能。教材“試一試”和“練一練”的第1、2題,讓學(xué)生通過觀察、思考,并且在有了比較充分的感性體驗的基礎(chǔ)上揭示體積概念及讓學(xué)生充分感受同一物體形狀變了,但體積保持不變,增強實際體驗?!熬氁痪殹钡?題,讓學(xué)生體會到如果每個杯子的大小不同,那么3杯就可能等于2杯,這是為后面體積單位作鋪墊。
經(jīng)過探究發(fā)現(xiàn)只有10與11出現(xiàn)的概率最大且相等(在探究的過程中提醒學(xué)生按求等可能性事件的概率步驟來做,在判斷是否等可能和求某個事件的基本數(shù)上多啟發(fā)和引導(dǎo),幫助學(xué)生順利突破難點。)及時表揚答對的學(xué)生,因為這個問題整整過了三個世紀(jì),才被意大利著名的天文學(xué)家伽利略解決。后來法國數(shù)學(xué)家拉普拉斯在他的著作《分析概率論》中,把伽利略的這個解答作為概率的一個基本原理來引用。(適當(dāng)?shù)臐B透一些數(shù)學(xué)史,學(xué)生對學(xué)習(xí)的興趣更濃厚,可以激發(fā)學(xué)生課后去進一步的探究前輩們是如何從不考慮順序到想到考慮順序的)8、課堂小結(jié):通過這節(jié)課的學(xué)習(xí),同學(xué)們回想一下有什么收獲?1、基本事件和等可能性事件的定義。2、等可能性事件的特征:(1)、一次試驗中有可能出現(xiàn)的結(jié)果是有限的。(2)、每一結(jié)果出現(xiàn)的可能性相等。3、求等可能性事件概率的步驟:(1)審清題意,判斷本試驗是否為等可能性事件。
6、袋子里有8個紅球,m個白球,3個黑球,每個球除顏色外都相同,從中任意摸出一個球,若摸到紅球的可能性最大,則m的值不可能是( )A.1 B.3 C. 5 D.10活動目的:拓寬學(xué)生的思路,對本節(jié)知識進行查缺補漏,并進一步的鞏固加深,鼓勵學(xué)生大膽猜測,培養(yǎng)學(xué)生勤于動腦、勇于探究的精神. 注意事項:對于第4題與第5題可適當(dāng)?shù)恼f出事件發(fā)生的可能性的大小,即概率的大小,為今后學(xué)習(xí)概率做鋪墊;對于第6題可根據(jù)回答情況講解.七、學(xué)習(xí)小結(jié):師生共同回顧新知探究的整個過程,互相交流總結(jié)本節(jié)的知識點:(1)理解確定事件與不確定事件;(2)知道不確定事件發(fā)生的可能性有大有小;(3)合理運用所學(xué)知識分析解決相關(guān)問題.目的:鍛煉學(xué)生的口頭表達能力,體會學(xué)習(xí)的成果,感受成功的喜悅,增強學(xué)好數(shù)學(xué)的信心.(學(xué)生暢所欲言,教師給予鼓勵)
練習(xí)3、先化簡,再求值:2a(a-b)-b(2a-b)+2ab,其中a=2,b=-3.(通過例題和聯(lián)系將所學(xué)知識升華,提升)練習(xí)4、動動腦。(讓學(xué)生進一步感知生活中處處有數(shù)學(xué))(四)、暢談收獲、拓展升華1、本節(jié)課你學(xué)到了什么?依據(jù)是什么?整式的乘法存在什么沒有解決的問題?(同桌互講,師生共同小結(jié))2、布置作業(yè):習(xí)題1.9知識技能1四、說課小結(jié)本堂課我主要采用引導(dǎo)探索法教學(xué),倡導(dǎo)學(xué)生自主學(xué)習(xí)、嘗試學(xué)習(xí)、探究學(xué)習(xí)、合作交流學(xué)習(xí),鼓勵學(xué)生用所學(xué)的知識解決身邊的問題,注重教學(xué)效果的有效性。學(xué)生在合作學(xué)習(xí)中,可以活躍課堂氣氛,消除心理壓力,在愉快的環(huán)境中學(xué)習(xí)知識,有效地拓展學(xué)生思維,成功地培養(yǎng)學(xué)生的觀察能力、思維能力、合作探究能力、交流能力和數(shù)學(xué)學(xué)習(xí)能力。但由于本人對新課標(biāo)和新教材的理解不一定十分到位,所以在教材本身內(nèi)在規(guī)律的把握上,會存在一定的偏差;另外,由于對學(xué)生的認(rèn)知規(guī)律認(rèn)識不夠,所以教學(xué)活動的設(shè)計不一定十分有效。所有這些都有待教學(xué)實踐的檢驗。
二、教法分析為了讓學(xué)生較好掌握本課內(nèi)容,本節(jié)課主要采用觀察法、討論法等教學(xué)方法,通過創(chuàng)設(shè)情境,使學(xué)生由淺到深,由易到難分層次對本節(jié)課內(nèi)容進行掌握。三、學(xué)法分析本課要求學(xué)生通過自主地觀察、討論、反思來參與學(xué)習(xí),認(rèn)識和理解數(shù)學(xué)知識,學(xué)會發(fā)現(xiàn)問題并嘗試解決問題,在學(xué)習(xí)活動中進一步提升自己的能力。四、教學(xué)過程創(chuàng)設(shè)問題情景,引入新課活動內(nèi)容:尋找不等的量 課本例一,例二設(shè)計目的:學(xué)生體會在現(xiàn)實生活中除了存在許多等量關(guān)系外,更多的是不等關(guān)系的存在,并通過感受生活中的大量不等關(guān)系,初步體會不等式是刻畫量與量之間關(guān)系的重要數(shù)學(xué)模型。經(jīng)歷由具體實例建立不等式模型的過程,進一步發(fā)展學(xué)生的符號感與數(shù)學(xué)化的能力。課本例四,例五設(shè)計目的:培養(yǎng)學(xué)生數(shù)學(xué)抽象能力,提高把實際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力。六.課堂小結(jié)體會 常量與常量間的不等關(guān)系變量與常量間的不等關(guān)系變量與變量間的不等關(guān)系
一、說教材《分式的加減法》是本冊教材第三章《分式》重要內(nèi)容,是進一步學(xué)習(xí)分式方程、反比例函數(shù)以及其它數(shù)學(xué)知識的基礎(chǔ),同時也是學(xué)習(xí)物理、化學(xué)等學(xué)科不可缺少的工具。與其它數(shù)學(xué)知識一樣,它在實際生活中有著廣泛的應(yīng)用。學(xué)習(xí)分式的加減法并熟練地進行運算是學(xué)好分式運算的關(guān)鍵,為學(xué)生綜合運用多種運算法則拓寬了空間,有利于學(xué)生對雙基的掌握,在綜合運用多種運算法則的過程中,逐漸形成運算能力。同時本節(jié)課的教學(xué)難度有所增加,學(xué)生通過觀察、類比、猜想、嘗試等一系列思維活動中,發(fā)現(xiàn)規(guī)則、理解規(guī)則、應(yīng)用規(guī)則??紤]到以上這些因素,確定本節(jié)課的目標(biāo)和重點、難點如下:(一)說教學(xué)目標(biāo):1.知識與技能目標(biāo):理解并掌握異分母分式加減法的法則;經(jīng)歷異分母分式的加減運算和通分的過程,訓(xùn)練學(xué)生的分式運算能力,培養(yǎng)學(xué)生在學(xué)習(xí)中轉(zhuǎn)化未知問題為已知問題的能力;進一步通過實例發(fā)展學(xué)生的符號感。
一、關(guān)于教學(xué)目標(biāo)的確定:第五章的主要內(nèi)容是一元一次不等式(組)的解法及其在簡單實際問題中的探索與應(yīng)用。探索不等式的基本性質(zhì)是在為本章的重點一元一次不等式的解法作準(zhǔn)備。不等式的基本性質(zhì)3更是本章的難點。可是說不等式的基本性質(zhì)這個概念既是不等式這一章的基礎(chǔ)概念又是學(xué)生學(xué)習(xí)的難點。因此我選擇此節(jié)課說課。教參指導(dǎo)我們:教學(xué)要注重和學(xué)生已有的學(xué)習(xí)經(jīng)驗和生活實際相聯(lián)系,注重讓學(xué)生經(jīng)歷和體會“從實際問題中抽象出數(shù)學(xué)模型,并回到實際問題中解釋和檢驗”的過程。注重“概念的實際背景與形成過程”的教學(xué)。使學(xué)生在熟悉的實際問題中,在已有的學(xué)習(xí)經(jīng)驗的基礎(chǔ)上,經(jīng)歷“嘗試—猜想—驗證”的探索過程,體會“轉(zhuǎn)化”的思想方法,體會數(shù)學(xué)的價值,激發(fā)學(xué)習(xí)興趣。在教學(xué)中要滲透函數(shù)思想。運用數(shù)學(xué)中歸納、類比的方法,理解方程與不等式的異同點。