提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

北師大版小學數(shù)學五年級上冊《2、5的倍數(shù)特征》說課稿

  • 北師大版小學數(shù)學三年級上冊《貨比三家》說課稿

    北師大版小學數(shù)學三年級上冊《貨比三家》說課稿

    一、說教材貨比三家是北師大版小學數(shù)學三年級上冊第八單元第二小節(jié)的內容。本節(jié)課是在學生學習了小數(shù)的意義和讀法、寫法的基礎上展開的,也是上節(jié)課“買文具”這一情境的延續(xù)。教材中安排了學生熟悉的主題圖,從標價牌上的價格入手,由“去哪個文具店買鉛筆盒、買橡皮最便宜?”這一情境問題,自然地進入比較小數(shù)大小的教學,使學生經歷把表示價格的小數(shù)進行比較的過程,也為后續(xù)學習小數(shù)的四則混合運算進行了必要的鋪墊。針對學情,教材的實際特點及新課程理念,我們初步擬訂了兩個教學目標:1、探索并掌握比較小數(shù)大小的方法,會正確熟練地比較小數(shù)的大小。2、通過觀察、比較、交流,學會獨立思考,并能表達自己的想法。

  • 北師大版小學數(shù)學三年級上冊《看日歷》說課稿

    北師大版小學數(shù)學三年級上冊《看日歷》說課稿

    (3)課堂拓展:是通過提供的三個鏈接,讓學生了解更多的日歷。便于學生直接快捷地獲取相關信息。鍛煉了學生運用網絡資源自主學習的能力,使其變?yōu)閷W習的一種新方式。(4)課后作業(yè):充分發(fā)揮學生的主動性,創(chuàng)造能力,同時也把所學的數(shù)學問題延伸到了課外。通過課后師生的交流,從時間和空間上形成了立體網狀的交流信息渠道,促進了學生的發(fā)展。最后以時間老人的分別贈言結尾,首尾呼應,對學生進行珍惜時間的教育。五、教學反思本節(jié)課我以建構主義理論為指導。依據新課程標準中“重過程,輕結論”的教育理念。嘗試在網絡環(huán)境下,運用設疑激趣、直觀演示,實際操作等教學方法,引導學生動手操作、觀察辨析、推理驗證、自主探究。意在通過信息技術與學科整合,充分發(fā)揮網絡資源的優(yōu)勢,為學生創(chuàng)設動腦思考、動手嘗試、動口表達的時間和空間,把學習的主動權還給學生,在師生互動的動態(tài)生成中共同推進學習過程。

  • 北師大版小學數(shù)學三年級上冊《買礦泉水》說課稿

    北師大版小學數(shù)學三年級上冊《買礦泉水》說課稿

    探索完估算以后,再解決問題二“買2箱礦泉水共花多少錢”學生在列式計算的過程中可能會因習慣采用分步計算,我就會讓學生回憶在復習舊知階段采用的方法,鼓勵他們嘗試列綜合算式,引入本節(jié)課的另一個教學目標:連乘式題的運算順序,并且要求學生能說明每一步計算的意義。學生普遍會先計算“1箱需要多少錢”,這時我會這樣問:“除了可以先算出1箱礦泉水的錢,還可以先算出什么呢?看誰能想出第二種方法”小學生的競爭意識和愛表現(xiàn)的心理會促使他們去開動腦筋,發(fā)現(xiàn)更多的解答方式。因為連乘的算式以前已經學過,只是數(shù)學比以前大一些而已,所以這里只簡要點撥后,讓學生獨立完成課本第45頁“試一試”第一題,也就是進入了練習鞏固階段。

  • 北師大版小學數(shù)學三年級上冊《去游樂場》說課稿

    北師大版小學數(shù)學三年級上冊《去游樂場》說課稿

    根據學生的認知規(guī)律和學習心理,我設計并將按如下教學程序進行教學。(一)、創(chuàng)設情境,激趣促學恰逢六一節(jié)即將來臨,根據學生的喜好,創(chuàng)設了到游樂場去玩的情景,(出示一段錄像,內容是小朋友們在游樂場玩的歡快場面。)這個活動由導游帶領大家到售票處買票,太空船4元,蹦蹦床3元,電動火車2元,然后提出“仔細觀察主題圖,你能發(fā)現(xiàn)哪些數(shù)學信息?”接著又提出“你能根據這些數(shù)學信息,提出一些數(shù)學問題嗎?”接下來,小組匯報,老師給予及時表揚。信息由學生發(fā)現(xiàn),問題由學生提出,始終置學生于主人翁的地位,學生置于情景之中,仿佛是其中的一員,那么專注,那么投入,主體意識得到充分發(fā)揮。(二)、探究發(fā)現(xiàn),激趣促學皮亞杰認為:“一切真知都應由學生自己獲得,或由他重新發(fā)明,至少由他重新構建,而不是草率地傳遞給他。”而對于小學生來說,通過自己的探索而獲得新知,就是一種"再創(chuàng)造",因此,在第二階段的教學中,我將從如下幾個層次展開:

  • 北師大版小學數(shù)學三年級上冊《文具點》說課稿

    北師大版小學數(shù)學三年級上冊《文具點》說課稿

    (三)深化運用,鞏固新知在這個環(huán)節(jié),我設計四組闖關題。第一關是試一試:①買3支鉛筆需要多少元?②買兩把直尺需要多少元?這關是模仿性練習,讓學生運用已學的數(shù)學知識解決實際問題。第二關是說一說,在學生初步感知了小數(shù)乘法的意義后,我給出了6個算式,讓學生說一說他們所表示的意義。第三關是填一填,即根據加法算式寫乘法算式和根據乘法算式寫加法算式,這兩關是提高性練習。第四關是涂一涂,即根據算式涂涂得出結果。是為了進一步加深學生對小數(shù)乘法意義的理解。第五關是想一想:0.3×4=0.6,4×0.3=?這關是深化性練習,一是讓學生明白整數(shù)乘法的交換律在小數(shù)乘法中同樣適用,二是讓學生體會一個整數(shù)乘小數(shù)的意義也是求幾個幾是多少。第六關是兩組口算練習。第七關是兩道解決問題。主要是在學生理解小數(shù)乘整數(shù)的意義的基礎上復習以前所學的數(shù)量關系。

  • 北師大版小學數(shù)學四年級上冊《秋游》說課稿

    北師大版小學數(shù)學四年級上冊《秋游》說課稿

    我說課的內容是北師大版四年級上冊第68-70頁的《秋游》,我將從教材、教法、學法、教學過程四個方面對本節(jié)課進行說課:一.說教材本節(jié)課是在學生掌握四舍五入法試商的基礎上進行教學的。此前,學生學習的除法都是一次試商成功不需要調商的。本課由秋游搭車的事件引出計算:每個年級各需幾輛車?先讓學生運用已有知識進行計算,發(fā)現(xiàn)不是所有的除法計算一次試商就能成功,需要對所估得的商進行調試,從而掌握除數(shù)是兩位數(shù)的除法筆算。結合教材的特點和學生的實際情況,我確定了如下教學目標:1、知識與技能:讓學生在具體情境中,經歷四舍五入法試商后進行調商的探索過程,理解試商后調商的原因。并能正確地進行除數(shù)是兩位數(shù)(商是一位數(shù))的筆算。2、過程與方法:讓學生在探索計算方法和解決問題的過程中,感受數(shù)學與生活的聯(lián)系,提高學生的估算能力。

  • 北師大版小學數(shù)學四年級上冊《去圖書館》說課稿

    北師大版小學數(shù)學四年級上冊《去圖書館》說課稿

    一、說教材本單元是圖形與位置方面的相關內容,本課結合學生熟悉的情景,經歷探索描述簡單的路線圖的過程,對提高學生的空間觀念,認識周圍的生活環(huán)境,都有重要的作用。二、說學情學生已經學習了兩種表示物體的位置的方法,一種是用“上下、前后、左右”描述物體的相對位置,另一種是用“東、西、南、北”來描述物體的相對位置,知道東北、西北、東南、西南四個方向。教學中借助學生已有的知識和生活經驗創(chuàng)設情境,讓所有同學都參加到教學活動之中,進一步體會方向與距離對確定路線的重要作用。三、說教學目標1、知識與技能:能根據路線圖描述從一個地方到另一個地方的具體路線,體會方向、距離和轉彎地點對確定路線的重要作用,從而發(fā)展空間觀念。2、過程與方法:在描述簡單路線圖的探索與應用中,體會方向與位置知識的價值。3、情感、態(tài)度和價值觀:體會方向與位置在生活中的廣泛應用,培養(yǎng)學生在生活中尋找數(shù)學信息的意識和能力。

  • 北師大初中數(shù)學八年級上冊應用二元一次方程組——里程碑上的數(shù)1教案

    北師大初中數(shù)學八年級上冊應用二元一次方程組——里程碑上的數(shù)1教案

    A、B兩碼頭相距140km,一艘輪船在其間航行,順水航行用了7h,逆水航行用了10h,求這艘輪船在靜水中的速度和水流速度.解析:設這艘輪船在靜水中的速度為xkm/h,水流速度為ykm/h,列表如下,路程 速度 時間順流 140km (x+y)km/h 7h逆流 140km (x-y)km/h 10h解:設這艘輪船在靜水中的速度為xkm/h,水流速度為ykm/h.由題意,得7(x+y)=140,10(x-y)=140.解得x=17,y=3.答:這艘輪船在靜水中的速度為17km/h,水流速度為3km/h.方法總結:本題關鍵是找到各速度之間的關系,順速=靜速+水速,逆速=靜速-水速;再結合公式“路程=速度×時間”列方程組.三、板書設計“里程碑上的數(shù)”問題數(shù)字問題行程問題數(shù)學思想方法是數(shù)學學習的靈魂.教學中注意關注蘊含其中的數(shù)學思想方法(如化歸方法),介紹化歸思想及其運用,既可提高學生的學習興趣,開闊視野,同時也提高學生對數(shù)學思想的認識,提升解題能力.

  • 北師大初中數(shù)學九年級上冊反比例函數(shù)的圖象1教案

    北師大初中數(shù)學九年級上冊反比例函數(shù)的圖象1教案

    解:(1)∵點(1,5)在反比例函數(shù)y=kx的圖象上,∴5=k1,即k=5,∴反比例函數(shù)的解析式為y=5x.又∵點(1,5)在一次函數(shù)y=3x+m的圖象上,∴5=3+m,即m=2,∴一次函數(shù)的解析式為y=3x+2;(2)由題意,聯(lián)立y=5x,y=3x+2.解得x1=1,y1=5或x2=-53,y2=-3.∴這兩個函數(shù)圖象的另一個交點的坐標為(-53,-3).三、板書設計反比例函數(shù)的圖象形狀:雙曲線位置當k>0時,兩支曲線分別位于   第一、三象限內當k<0時,兩支曲線分別位于   第二、四象限內畫法:列表、描點、連線(描點法)通過學生自己動手列表、描點、連線,提高學生的作圖能力.理解函數(shù)的三種表示方法及相互轉換,對函數(shù)進行認識上的整合,逐步明確研究函數(shù)的一般要求.反比例函數(shù)的圖象具體展現(xiàn)了反比例函數(shù)的整體直觀形象,為學生探索反比例函數(shù)的性質提供了思維活動的空間.

  • 北師大初中數(shù)學九年級上冊反比例函數(shù)的性質1教案

    北師大初中數(shù)學九年級上冊反比例函數(shù)的性質1教案

    如圖,四邊形OABC是邊長為1的正方形,反比例函數(shù)y=kx的圖象經過點B(x0,y0),則k的值為.解析:∵四邊形OABC是邊長為1的正方形,∴它的面積為1,且BA⊥y軸.又∵點B(x0,y0)是反比例函數(shù)y=kx圖象上的一點,則有S正方形OABC=|x0y0|=|k|,即1=|k|.∴k=±1.又∵點B在第二象限,∴k=-1.方法總結:利用正方形或矩形或三角形的面積確定|k|的值之后,要注意根據函數(shù)圖象所在位置或函數(shù)的增減性確定k的符號.三、板書設計反比例函數(shù)的性質性質當k>0時,在每一象限內,y的值隨x的值的增大而減小當k<0時,在每一象限內,y的值隨x的值的增大而增大反比例函數(shù)圖象中比例系數(shù)k的幾何意義通過對反比例函數(shù)圖象的全面觀察和比較,發(fā)現(xiàn)函數(shù)自身的規(guī)律,概括反比例函數(shù)的有關性質,進行語言表述,訓練學生的概括、總結能力,在相互交流中發(fā)展從圖象中獲取信息的能力.讓學生積極參與到數(shù)學學習活動中,增強他們對數(shù)學學習的好奇心與求知欲.

  • 北師大初中數(shù)學九年級上冊反比例函數(shù)的應用1教案

    北師大初中數(shù)學九年級上冊反比例函數(shù)的應用1教案

    因為反比例函數(shù)的圖象經過點A(1.5,400),所以有k=600.所以反比例函數(shù)的關系式為p=600S(S>0);(2)當S=0.2時,p=6000.2=3000,即壓強是3000Pa;(3)由題意知600S≤6000,所以S≥0.1,即木板面積至少要有0.1m2.方法總結:本題滲透了物理學中壓強、壓力與受力面積之間的關系p= ,當壓力F一定時,p與S成反比例.另外,利用反比例函數(shù)的知識解決實際問題時,要善于發(fā)現(xiàn)實際問題中變量之間的關系,從而進一步建立反比例函數(shù)模型.三、板書設計反比例函數(shù)的應用實際問題與反比例函數(shù)反比例函數(shù)與其他學科知識的綜合經歷分析實際問題中變量之間的關系,建立反比例函數(shù)模型,進而解決問題的過程,提高運用代數(shù)方法解決問題的能力,體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系,增強應用意識.通過反比例函數(shù)在其他學科中的運用,體驗學科整合思想.

  • 北師大初中數(shù)學九年級上冊簡單圖形的三視圖1教案

    北師大初中數(shù)學九年級上冊簡單圖形的三視圖1教案

    故最少由9個小立方體搭成,最多由11個小立方體搭成;(3)左視圖如右圖所示.方法點撥:這類問題一般是給出一個由相同的小正方體搭成的立體圖形的兩種視圖,要求想象出這個幾何體可能的形狀.解答時可以先由三種視圖描述出對應的該物體,再由此得出組成該物體的部分個體的個數(shù).三、板書設計視圖概念:用正投影的方法繪制的物體在投影 面上的圖形三視圖的組成主視圖:從正面得到的視圖左視圖:從左面得到的視圖俯視圖:從上面得到的視圖三視圖的畫法:長對正,高平齊,寬相等由三視圖推斷原幾何體的形狀通過觀察、操作、猜想、討論、合作等活動,使學生體會到三視圖中位置及各部分之間大小的對應關系.通過具體活動,積累學生的觀察、想象物體投影的經驗,發(fā)展學生的動手實踐能力、數(shù)學思考能力和空間觀念.

  • 北師大初中數(shù)學九年級上冊投影的概念與中心投影1教案

    北師大初中數(shù)學九年級上冊投影的概念與中心投影1教案

    ∴∠AEP=∠ACB,∠APE=∠ABC,∴△AEP∽△ACB.∴PECB=APAB,即1.89=2AB,解得AB=10(m).∴QB=AB-AP-PQ=10-2-6.5=1.5(m),即小明站在點Q時在路燈AD下影子的長度為1.5m;(2)同理可證△HQB∽△DAB,∴HQDA=QBAB,即1.8AD=1.510,解得AD=12(m).即路燈AD的高度為12m.方法總結:解決本題的關鍵是構造相似三角形,然后利用相似三角形的性質求出對應線段的長度.三、板書設計投影的概念與中心投影投影的概念:物體在光線的照射下,會    在地面或其他平面上留    下它的影子,這就是投影    現(xiàn)象中心投影概念:點光源的光線形成的 投影變化規(guī)律影子是生活中常見的現(xiàn)象,在探索物體與其投影關系的活動中,體會立體圖形與平面圖形的相互轉化關系,發(fā)展學生的空間觀念.通過在燈光下擺弄小棒、紙片,體會、觀察影子大小和形狀的變化情況,總結規(guī)律,培養(yǎng)學生觀察問題、分析問題的能力.

  • 北師大初中數(shù)學九年級上冊線段的比和成比例線段1教案

    北師大初中數(shù)學九年級上冊線段的比和成比例線段1教案

    故線段d的長度為94cm.方法總結:利用比例線段關系求線段長度的方法:根據線段的關系寫出比例式,并把它作為相等關系構造關于要求線段的方程,解方程即可求出線段的長.已知三條線段長分別為1cm,2cm,2cm,請你再給出一條線段,使得它的長與前面三條線段的長能夠組成一個比例式.解析:因為本題中沒有明確告知是求1,2,2的第四比例項,因此所添加的線段長可能是前三個數(shù)的第四比例項,也可能不是前三個數(shù)的第四比例項,因此應進行分類討論.解:若x:1=2:2,則x=22;若1:x=2:2,則x=2;若1:2=x:2,則x=2;若1:2=2:x,則x=22.所以所添加的線段的長有三種可能,可以是22cm,2cm,或22cm.方法總結:若使四個數(shù)成比例,則應滿足其中兩個數(shù)的比等于另外兩個數(shù)的比,也可轉化為其中兩個數(shù)的乘積恰好等于另外兩個數(shù)的乘積.

  • 北師大初中數(shù)學九年級上冊一元二次方程的解及其估算1教案

    北師大初中數(shù)學九年級上冊一元二次方程的解及其估算1教案

    首先列表,利用未知數(shù)的取值,根據一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進一步在這個范圍內取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計一元二次方程根的取值范圍時,當ax2+bx+c(a≠0)的值由正變負或由負變正時,x的取值范圍很重要,因為只有在這個范圍內,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設計一元二次方程的解的估算,采用“夾逼法”:(1)先根據實際問題確定其解的大致范圍;(2)再通過列表,具體計算,進行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實際生活中一些較為復雜的方程時應用廣泛.在本節(jié)課中讓學生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學設計上,強調自主學習,注重合作交流,在探究過程中獲得數(shù)學活動的經驗,提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.

  • 北師大初中數(shù)學九年級上冊復雜圖形的三視圖1教案

    北師大初中數(shù)學九年級上冊復雜圖形的三視圖1教案

    解析:熟記常見幾何體的三種視圖后首先可排除選項A,因為長方體的三視圖都是矩形;因為所給的主視圖中間是兩條虛線,故可排除選項B;選項D的幾何體中的俯視圖應為一個梯形,與所給俯視圖形狀不符.只有C選項的幾何體與已知的三視圖相符.故選C.方法總結:由幾何體的三種視圖想象其立體形狀可以從如下途徑進行分析:(1)根據主視圖想象物體的正面形狀及上下、左右位置,根據俯視圖想象物體的上面形狀及左右、前后位置,再結合左視圖驗證該物體的左側面形狀,并驗證上下和前后位置;(2)從實線和虛線想象幾何體看得見部分和看不見部分的輪廓線.在得出原立體圖形的形狀后,也可以反過來想象一下這個立體圖形的三種視圖,看與已知的三種視圖是否一致.探究點四:三視圖中的計算如圖所示是一個工件的三種視圖,圖中標有尺寸,則這個工件的體積是()A.13πcm3 B.17πcm3C.66πcm3 D.68πcm3解析:由三種視圖可以看出,該工件是上下兩個圓柱的組合,其中下面的圓柱高為4cm,底面直徑為4cm;上面的圓柱高為1cm,底面直徑為2cm,則V=4×π×22+1×π×12=17π(cm3).故選B.

  • 北師大初中數(shù)學九年級上冊一元二次方程的解及其估算1教案

    北師大初中數(shù)學九年級上冊一元二次方程的解及其估算1教案

    方法總結:(1)利用列表法估算一元二次方程根的取值范圍的步驟是:首先列表,利用未知數(shù)的取值,根據一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進一步在這個范圍內取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計一元二次方程根的取值范圍時,當ax2+bx+c(a≠0)的值由正變負或由負變正時,x的取值范圍很重要,因為只有在這個范圍內,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設計一元二次方程的解的估算,采用“夾逼法”:(1)先根據實際問題確定其解的大致范圍;(2)再通過列表,具體計算,進行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實際生活中一些較為復雜的方程時應用廣泛.在本節(jié)課中讓學生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學設計上,強調自主學習,注重合作交流,在探究過程中獲得數(shù)學活動的經驗,提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.

  • 北師大初中數(shù)學九年級上冊相似三角形的周長和面積之比1教案

    北師大初中數(shù)學九年級上冊相似三角形的周長和面積之比1教案

    解:∵CF平分∠ACB,DC=AC,∴CF是△ACD的中線,即F是AD的中點.∵點E是AB的中點,∴EF∥BD,且EFBD=12.∴∠B=∠AEF,∠ADB=∠AFE,∴△AEF∽△ABD.∴S△AEFS△ABD=(12)2=14.∵S△AEF=S△ABD-S四邊形BDFE=S△ABD-6,∴S△ABD-6S△ABD=14.∴S△ABD=8,即△ABD的面積為8.易錯提醒:在運用“相似三角形的面積比等于相似比的平方”這一性質時,同樣要注意是對應三角形的面積比,在本題中不要犯由EF:BD=1:2得S△AEF:S△ABD=1:2,或S△AEF:S四邊形BDFE=1:2之類的錯誤.三、板書設計相似三角形的周長和面積之比:相似三角形的周長比等于相似比,面積比等于相似比的平方.經歷相似三角形的性質的探索過程,培養(yǎng)學生的探索能力.通過交流、歸納,總結相似三角形的周長比、面積比與相似比的關系,體驗化歸思想.運用相似多邊形的周長比,面積比解決實際問題,訓練學生的運用能力,增強學生對知識的應用意識.

  • 北師大初中數(shù)學九年級上冊正方形的判定1教案

    北師大初中數(shù)學九年級上冊正方形的判定1教案

    ∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結:對角線互相垂直平分且相等的四邊形是正方形.探究點二:正方形、菱形、矩形與平行四邊形之間的關系填空:(1)對角線________________的四邊形是矩形;(2)對角線____________的平行四邊形是矩形;(3)對角線__________的平行四邊形是正方形;(4)對角線________________的矩形是正方形;(5)對角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結:從對角線上分析特殊四邊形之間的關系應充分考慮特殊四邊形的性質與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.

  • 北師大初中數(shù)學九年級上冊正方形的性質1教案

    北師大初中數(shù)學九年級上冊正方形的性質1教案

    在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結:正方形被對角線分成4個等腰直角三角形,因此在正方形中解決問題時常用到等腰三角形的性質與直角三角形的性質.【類型三】 利用正方形的性質證明線段相等如圖,已知過正方形ABCD的對角線BD上一點P,作PE⊥BC于點E,PF⊥CD于點F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時只需說明AP=CP,由正方形對角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結:(1)在正方形中,常利用對角線互相垂直平分證明線段相等;(2)無論是正方形還是矩形,經常連接對角線,這樣可以使分散的條件集中.

上一頁123...111213141516171819202122下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!