因?yàn)閤3表示手機(jī)部數(shù),只能為正整數(shù),所以這種情況不合題意,應(yīng)舍去.綜上所述,商場(chǎng)共有兩種進(jìn)貨方案.方案1:購(gòu)甲型號(hào)手機(jī)30部,乙型號(hào)手機(jī)10部;方案2:購(gòu)甲型號(hào)手機(jī)20部,丙型號(hào)手機(jī)20部.(2)方案1獲利:120×30+80×10=4400(元);方案2獲利:120×20+120×20=4800(元).所以,第二種進(jìn)貨方案獲利最多.方法總結(jié):仔細(xì)讀題,找出相等關(guān)系.當(dāng)用含未知數(shù)的式子表示相等關(guān)系的兩邊時(shí),要注意不同型號(hào)的手機(jī)數(shù)量和單價(jià)要對(duì)應(yīng).三、板書設(shè)計(jì)增收節(jié)支問題分析解決列二元一次方程,組解決實(shí)際問題)增長(zhǎng)率問題利潤(rùn)問題利用圖表分析等量關(guān)系方案選擇通過問題的解決使學(xué)生進(jìn)一步認(rèn)識(shí)數(shù)學(xué)與現(xiàn)實(shí)世界的密切聯(lián)系,樂于接觸生活環(huán)境中的數(shù)學(xué)信息,愿意參與數(shù)學(xué)話題的研討,從中懂得數(shù)學(xué)的價(jià)值,逐步形成運(yùn)用數(shù)學(xué)的意識(shí);并且通過對(duì)問題的解決,培養(yǎng)學(xué)生合理優(yōu)化的經(jīng)濟(jì)意識(shí),增強(qiáng)他們的節(jié)約和有效合理利用資源的意識(shí).
一個(gè)不透明的袋子中裝有5個(gè)黑球和3個(gè)白球,這些球的大小、質(zhì)地完全相同,隨機(jī)從袋子中摸出4個(gè)球,則下列事件是必然事件的是( )A.摸出的4個(gè)球中至少有一個(gè)是白球B.摸出的4個(gè)球中至少有一個(gè)是黑球C.摸出的4個(gè)球中至少有兩個(gè)是黑球D.摸出的4個(gè)球中至少有兩個(gè)是白球解析:∵袋子中只有3個(gè)白球,而有5個(gè)黑球,∴摸出的4個(gè)球可能都是黑球,因此選項(xiàng)A是不確定事件;摸出的4個(gè)球可能都是黑球,也可以3黑1白、2黑2白、1黑3白,不管哪種情況,至少有一個(gè)球是黑球,∴選項(xiàng)B是必然事件;摸出的4個(gè)球可能為1黑3白,∴選項(xiàng)C是不確定事件;摸出的4個(gè)球可能都是黑球或1白3黑,∴選項(xiàng)D是不確定事件.故選B.方法總結(jié):事件類型的判斷首先要判斷該事件發(fā)生與否是不是確定的.若是確定的,再判斷其是必然發(fā)生的(必然事件),還是必然不發(fā)生的(不可能事件).若是不確定的,則該事件是不確定事件.
解析:(1)根據(jù)表中信息,用優(yōu)等品頻數(shù)m除以抽取的籃球數(shù)n即可;(2)根據(jù)表中數(shù)據(jù),優(yōu)等品頻率為0.94,0.95,0.93,0.94,0.94,穩(wěn)定在0.94左右,即可估計(jì)這批籃球優(yōu)等品的概率.解:(1)570600=0.95,744800=0.93,9401000=0.94,11281200=0.94,故表中依次填0.95,0.93,0.94,0.94; (2)這批籃球優(yōu)等品的概率估計(jì)值是0.94.三、板書設(shè)計(jì)1.頻率及其穩(wěn)定性:在大量重復(fù)試驗(yàn)的情況下,事件的頻率會(huì)呈現(xiàn)穩(wěn)定性,即頻率會(huì)在一個(gè)常數(shù)附近擺動(dòng).隨著試驗(yàn)次數(shù)的增加,擺動(dòng)的幅度有越來越小的趨勢(shì).2.用頻率估計(jì)概率:一般地,在大量重復(fù)實(shí)驗(yàn)下,隨機(jī)事件A發(fā)生的頻率會(huì)穩(wěn)定到某一個(gè)常數(shù)p,于是,我們用p這個(gè)常數(shù)表示隨機(jī)事件A發(fā)生的概率,即P(A)=p.教學(xué)過程中,學(xué)生通過對(duì)比頻率與概率的區(qū)別,體會(huì)到兩者間的聯(lián)系,從而運(yùn)用其解決實(shí)際生活中遇到的問題,使學(xué)生感受到數(shù)學(xué)與生活的緊密聯(lián)系
解析:①以O(shè)為圓心,任意長(zhǎng)為半徑作弧交OA于D,交OB于C;②以O(shè)′為圓心,以同樣長(zhǎng)(OC長(zhǎng))為半徑作弧,交O′B′于C′;③以C′為圓心,CD長(zhǎng)為半徑作弧交前弧于D′;④過D′作射線O′A′,∠A′O′B′為所求.解:如下圖所示.【類型三】 利用尺規(guī)作角的和或差已知∠AOB,用尺規(guī)作圖法作∠A′O′B′,使∠A′O′B′=2∠AOB.解析:先作一個(gè)角等于∠AOB,再以這個(gè)角的一邊為邊在其外部作一個(gè)角等于∠AOB,那么圖中最大的角就是所求的角.解:作法:①作∠DO′B′=∠AOB;②在∠DO′B′的外部作∠A′O′D=∠AOB,∠A′O′B′就是所求的角(如下圖).三、板書設(shè)計(jì)1.尺規(guī)作圖2.用尺規(guī)作角本節(jié)課學(xué)習(xí)了有關(guān)尺規(guī)作圖的相關(guān)知識(shí),課堂教學(xué)內(nèi)容以學(xué)生動(dòng)手操作為主,在學(xué)生動(dòng)手操作的過程中要鼓勵(lì)學(xué)生大膽動(dòng)手,培養(yǎng)學(xué)生的動(dòng)手能力和書面語言表達(dá)能力
解析:橫軸表示時(shí)間,縱軸表示溫度.溫度最高應(yīng)找到圖象的最高點(diǎn)所對(duì)應(yīng)的x值,即15時(shí),A對(duì);溫度最低應(yīng)找到圖象的最低點(diǎn)所對(duì)應(yīng)的x值,即3時(shí),B對(duì);這天最高溫度與最低溫度的差應(yīng)讓前面的兩個(gè)y值相減,即38-22=16(℃),C錯(cuò);從圖象看出,這天0~3時(shí),15~24時(shí)溫度在下降,D對(duì).故選C.方法總結(jié):認(rèn)真觀察圖象,弄清楚時(shí)間是自變量,溫度是因變量,然后由圖象上的點(diǎn)確定自變量及因變量的對(duì)應(yīng)值.三、板書設(shè)計(jì)1.用曲線型圖象表示變量間關(guān)系2.從曲線型圖象中獲取變量信息圖象法能直觀形象地表示因變量隨自變量變化的變化趨勢(shì),可通過圖象來研究變量的某些性質(zhì),這也是數(shù)形結(jié)合的優(yōu)點(diǎn),但是它也存在感性觀察不夠準(zhǔn)確,畫面局限性大的缺點(diǎn).教學(xué)中讓學(xué)生自己歸納總結(jié),回顧反思,將知識(shí)點(diǎn)串連起來,完成對(duì)該部分內(nèi)容的完整認(rèn)識(shí)和意義建構(gòu).這對(duì)學(xué)生在實(shí)際情境中根據(jù)不同需要選擇恰當(dāng)?shù)姆椒ū硎咀兞块g的關(guān)系,發(fā)展與深化思維能力是大有裨益的
解析:根據(jù)“全等三角形的對(duì)應(yīng)角相等”,可知∠EAD=∠CAB,故∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,即∠CAB=55°.然后在△ACB中利用三角形內(nèi)角和定理來求∠ACB的度數(shù).解:∵△ABC≌△ADE,∴∠CAB=∠EAD.∵∠EAB=120°,∠CAD=10°,∴∠EAB=∠EAD+∠CAD+∠CAB=2∠CAB+10°=120°,∴∠CAB=55°.∵∠B=∠D=25°,∴∠ACB=180°-∠CAB-∠B=180°-55°-25°=100°.方法總結(jié):本題將三角形內(nèi)角和與全等三角形的性質(zhì)綜合考查,解答問題時(shí)要將所求的角與已知角通過全等及三角形內(nèi)角之間的關(guān)系聯(lián)系起來.三、板書設(shè)計(jì)1.全等形與全等三角形的概念:能夠完全重合的圖形叫做全等形;能夠完全重合的三角形叫做全等三角形.2.全等三角形的性質(zhì):全等三角形的對(duì)應(yīng)角、對(duì)應(yīng)線段相等.首先展示全等形的圖片,激發(fā)學(xué)生興趣,從圖中總結(jié)全等形和全等三角形的概念.最后總結(jié)全等三角形的性質(zhì),通過練習(xí)來理解全等三角形的性質(zhì)并滲透符號(hào)語言推理.通過實(shí)例熟悉運(yùn)用全等三角形的性質(zhì)解決一些簡(jiǎn)單的實(shí)際問題
解析:(1)根據(jù)圖象的縱坐標(biāo),可得比賽的路程.根據(jù)圖象的橫坐標(biāo),可得比賽的結(jié)果;(2)根據(jù)乙加速后行駛的路程除以加速后的時(shí)間,可得答案.解:(1)由縱坐標(biāo)看出,這次龍舟賽的全程是1000米;由橫坐標(biāo)看出,乙隊(duì)先到達(dá)終點(diǎn);(2)由圖象看出,相遇是在乙加速后,加速后的路程是1000-400=600(米),加速后用的時(shí)間是3.8-2.2=1.6(分鐘),乙與甲相遇時(shí)乙的速度600÷1.6=375(米/分鐘).方法總結(jié):解決雙圖象問題時(shí),正確識(shí)別圖象,弄清楚兩圖象所代表的意義,從中挖掘有用的信息,明確實(shí)際意義.三、板書設(shè)計(jì)1.用折線型圖象表示變量間關(guān)系2.根據(jù)折線型圖象獲取信息解決問題經(jīng)歷一般規(guī)律的探索過程,培養(yǎng)學(xué)生的抽象思維能力,經(jīng)歷從實(shí)際問題中得到關(guān)系式這一過程,提升學(xué)生的數(shù)學(xué)應(yīng)用能力,使學(xué)生在探索過程中體驗(yàn)成功的喜悅,樹立學(xué)習(xí)的自信心.體驗(yàn)生活中數(shù)學(xué)的應(yīng)用價(jià)值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣
方法總結(jié):判斷軸對(duì)稱的條數(shù),仍然是根據(jù)定義進(jìn)行判斷,判斷軸對(duì)稱圖形的關(guān)鍵是尋找對(duì)稱軸,注意不要遺漏.探究點(diǎn)二:兩個(gè)圖形成軸對(duì)稱如圖所示,哪一組的右邊圖形與左邊圖形成軸對(duì)稱?解析:根據(jù)軸對(duì)稱的意義,經(jīng)過翻折,看兩個(gè)圖形能否完全重合,若能重合,則兩個(gè)圖形成軸對(duì)稱.解:(4)(5)(6).方法總結(jié):動(dòng)手操作或結(jié)合軸對(duì)稱的概念展開想象,在腦海中嘗試完成一個(gè)動(dòng)態(tài)的折疊過程,從而得到結(jié)論.三、板書設(shè)計(jì)1.軸對(duì)稱圖形的定義2.對(duì)稱軸3.兩個(gè)圖形成軸對(duì)稱這節(jié)課充分利用多媒體教學(xué),給學(xué)生以直觀指導(dǎo),主動(dòng)向?qū)W生質(zhì)疑,促使學(xué)生思考與發(fā)現(xiàn),形成認(rèn)識(shí),獨(dú)立獲取知識(shí)和技能.另外,借助多媒體教學(xué)給學(xué)生創(chuàng)設(shè)寬松的學(xué)習(xí)氛圍,使學(xué)生在學(xué)習(xí)中始終保持興奮、愉悅、渴求思索的心理狀態(tài),有利于學(xué)生主體性的發(fā)揮和創(chuàng)新能力的培養(yǎng)
探究點(diǎn)二:列分式方程某工廠生產(chǎn)一種零件,計(jì)劃在20天內(nèi)完成,若每天多生產(chǎn)4個(gè),則15天完成且還多生產(chǎn)10個(gè).設(shè)原計(jì)劃每天生產(chǎn)x個(gè),根據(jù)題意可列分式方程為()A.20x+10x+4=15 B.20x-10x+4=15C.20x+10x-4=15 D.20x-10x-4=15解析:設(shè)原計(jì)劃每天生產(chǎn)x個(gè),則實(shí)際每天生產(chǎn)(x+4)個(gè),根據(jù)題意可得等量關(guān)系:(原計(jì)劃20天生產(chǎn)的零件個(gè)數(shù)+10個(gè))÷實(shí)際每天生產(chǎn)的零件個(gè)數(shù)=15天,根據(jù)等量關(guān)系列出方程即可.設(shè)原計(jì)劃每天生產(chǎn)x個(gè),則實(shí)際每天生產(chǎn)(x+4)個(gè),根據(jù)題意得20x+10x+4=15.故選A.方法總結(jié):此題主要考查了由實(shí)際問題抽象出分式方程,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系,列出方程.三、板書設(shè)計(jì)1.分式方程的概念2.列分式方程本課時(shí)的教學(xué)以學(xué)生自主探究為主,通過參與學(xué)習(xí)的過程,讓學(xué)生感受知識(shí)的形成與應(yīng)用的價(jià)值,增強(qiáng)學(xué)習(xí)的自覺性,體驗(yàn)類比學(xué)習(xí)思想的重要性,然后結(jié)合生活實(shí)際,發(fā)現(xiàn)數(shù)學(xué)知識(shí)在生活中的廣泛應(yīng)用,感受數(shù)學(xué)之美.
∵∠DAE=∠DAF,∠AED=∠AFD,AD=AD,∴△ADE≌△ADF,∴AE=AF,DE=DF,∴直線AD垂直平分線段EF.方法總結(jié):當(dāng)一條直線上有兩點(diǎn)都在同一線段的垂直平分線上時(shí),這條直線就是該線段的垂直平分線,解題時(shí)常需利用此性質(zhì)進(jìn)行線段相等關(guān)系的轉(zhuǎn)化.三、板書設(shè)計(jì)1.線段的垂直平分線的性質(zhì)定理線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等.2.線段的垂直平分線的判定定理到一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上.本節(jié)課由于采用了直觀操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生的感性認(rèn)識(shí),提高了學(xué)生對(duì)新知識(shí)的理解與感悟,因此本節(jié)課的教學(xué)效果較好,學(xué)生對(duì)所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對(duì)線段垂直平分線性質(zhì)定理的逆定理理解不透徹,還需在今后的教學(xué)和作業(yè)中進(jìn)一步進(jìn)行鞏固和提高.
解:(1)設(shè)第一次購(gòu)買的單價(jià)為x元,則第二次的單價(jià)為1.1x元,根據(jù)題意得14521.1x-1200x=20,解得x=6.經(jīng)檢驗(yàn),x=6是原方程的解.(2)第一次購(gòu)買水果1200÷6=200(千克).第二次購(gòu)買水果200+20=220(千克).第一次賺錢為200×(8-6)=400(元),第二次賺錢為100×(9-6.6)+120×(9×0.5-6.6)=-12(元).所以兩次共賺錢400-12=388(元).答:第一次水果的進(jìn)價(jià)為每千克6元;該老板兩次賣水果總體上是賺錢了,共賺了388元.方法總結(jié):本題具有一定的綜合性,應(yīng)該把問題分解成購(gòu)買水果和賣水果兩部分分別考慮,掌握這次活動(dòng)的流程.三、板書設(shè)計(jì)列分式方程解應(yīng)用題的一般步驟是:第一步,審清題意;第二步,根據(jù)題意設(shè)未知數(shù);第三步,根據(jù)題目中的數(shù)量關(guān)系列出式子,并找準(zhǔn)等量關(guān)系,列出方程;第四步,解方程,并驗(yàn)根,還要看方程的解是否符合題意;最后作答.
【類型三】 分式方程無解,求字母的值若關(guān)于x的分式方程2x-2+mxx2-4=3x+2無解,求m的值.解析:先把分式方程化為整式方程,再分兩種情況討論求解:一元一次方程無解與分式方程有增根.解:方程兩邊都乘以(x+2)(x-2),得2(x+2)+mx=3(x-2),即(m-1)x=-10.①當(dāng)m-1=0時(shí),此方程無解,此時(shí)m=1;②方程有增根,則x=2或x=-2,當(dāng)x=2時(shí),代入(m-1)x=-10得(m-1)×2=-10,m=-4;當(dāng)x=-2時(shí),代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.方法總結(jié):分式方程無解與分式方程有增根所表達(dá)的意義是不一樣的.分式方程有增根僅僅針對(duì)使最簡(jiǎn)公分母為0的數(shù),分式方程無解不但包括使最簡(jiǎn)公分母為0的數(shù),而且還包括分式方程化為整式方程后,使整式方程無解的數(shù).三、板書設(shè)計(jì)1.分式方程的解法方程兩邊同乘以最簡(jiǎn)公分母,化為整式方程求解,再檢驗(yàn).2.分式方程的增根(1)解分式方程為什么會(huì)產(chǎn)生增根;(2)分式方程檢驗(yàn)的方法.
1:甲、乙、丙三個(gè)村莊合修一條水渠,計(jì)劃需要176個(gè)勞動(dòng)力,由于各村人口數(shù)不等,只有按2:3:6的比例攤派才較合理,則三個(gè)村莊各派多少個(gè)勞動(dòng)力?2:某校組織活動(dòng),共有100人參加,要把參加活動(dòng)的人分成兩組,已知第一組人數(shù)比第二組人數(shù)的2倍少8人,問這兩組人數(shù)各有多少人?目的:檢測(cè)學(xué)生本節(jié)課掌握知識(shí)點(diǎn)的情況,及時(shí)反饋學(xué)生學(xué)習(xí)中存在的問題.實(shí)際活動(dòng)效果:從學(xué)生做題的情況看,大部分學(xué)生都能正確地列出方程,但其中一部分人并不能有意識(shí)地用“列表格”法來分析問題,因此,教師仍需引導(dǎo)他們能學(xué)會(huì)用“列表格”這個(gè)工具,有利于以后遇上復(fù)雜問題能很靈活地得到解決.六、歸納總結(jié):活動(dòng)內(nèi)容:學(xué)生歸納總結(jié)本節(jié)課所學(xué)知識(shí):1. 兩個(gè)未知量,兩個(gè)等量關(guān)系,如何列方程;2. 尋找中間量;3. 學(xué)會(huì)用表格分析數(shù)量間的關(guān)系.
練習(xí):現(xiàn)在你能解答課本85頁的習(xí)題3.1第6題嗎?有一個(gè)班的同學(xué)去劃船,他們算了一下,如果增加一條船,正好每條船坐6人,如果送還了一條船 ,正好每條船坐9人,問這個(gè)班共多少同學(xué)?小結(jié)提問:1、今天你又學(xué)會(huì)了解方程的哪些方法?有哪些步聚?每一步的依據(jù)是什么?2、現(xiàn)在你能回答前面提到的古老的代數(shù)書中的“對(duì)消”與“還原”是什么意思嗎?3、今天討論的問題中的相等關(guān)系又有何共同特點(diǎn)?學(xué)生思考后回答、整理:① 解方程的步驟及依據(jù)分別是:移項(xiàng)(等式的性質(zhì)1)合并(分配律)系數(shù)化為1(等式的性質(zhì)2)表示同一量的兩個(gè)不同式子相等作業(yè):1、 必做題:課本習(xí)題2、 選做題:將一塊長(zhǎng)、寬、高分別為4厘米、2厘米、3厘米的長(zhǎng)方體橡皮泥捏成一個(gè)底面半徑為2厘米的圓柱,它的高是多少?(精確到0.1厘米)
從而為列方程找等量關(guān)系作了鋪墊.環(huán)節(jié)2中的表格發(fā)給每個(gè)小組,為增強(qiáng)小組討論結(jié)果的展示起到了較好的作用.環(huán)節(jié)3中通過讓學(xué)生自己設(shè)計(jì)表格為討論的得出起到輔助作用.2.相信學(xué)生并為學(xué)生提供充分展示自己的機(jī)會(huì)本節(jié)課的設(shè)計(jì)中,通過學(xué)生多次的動(dòng)手操作活動(dòng),引導(dǎo)學(xué)生進(jìn)行探索,使學(xué)生確實(shí)是在舊知識(shí)的基礎(chǔ)上探求新內(nèi)容,探索的過程是沒有難度的任何學(xué)生都會(huì)動(dòng)手操作,每個(gè)學(xué)生都有體會(huì)的過程,都有感悟的可能,這種形式讓學(xué)生切身去體驗(yàn)問題的情景,從而進(jìn)一步幫助學(xué)生理解比較復(fù)雜的問題,再把實(shí)際問題抽象成數(shù)學(xué)問題.3.注意改進(jìn)的方面本節(jié)課由于構(gòu)題新穎有趣,所以一開始就抓住了學(xué)生的求知欲望,課堂氣氛活躍,討論問題積極主動(dòng).但由于學(xué)生發(fā)表自己的想法較多,使得教學(xué)時(shí)間不能很好把握,導(dǎo)致課堂練習(xí)時(shí)間緊張,今后予以改進(jìn).
三、說教法和學(xué)法:1、說教法:本節(jié)課采用幾何畫板與電子白板相結(jié)合的教學(xué)手段,使操作過程形象、直觀呈現(xiàn),以便學(xué)生更好的理解。在教學(xué)過程中,引導(dǎo)學(xué)生去探索,使學(xué)生感受到添加輔助線的數(shù)學(xué)思想,更好地掌握三角形內(nèi)角和定理的證明及簡(jiǎn)單的應(yīng)用,2、說學(xué)法:根據(jù)本節(jié)課特點(diǎn)和學(xué)生的實(shí)際,在教學(xué)過程中給學(xué)生足夠的時(shí)間認(rèn)真、仔細(xì)地動(dòng)手書寫證明過程,使學(xué)生的學(xué)習(xí)落到實(shí)處。同時(shí),培養(yǎng)學(xué)生科學(xué)的學(xué)習(xí)方法和自信心。四、說教學(xué)過程設(shè)計(jì)教學(xué)過程的設(shè)計(jì)有:1、問題引入新課:七年級(jí)已經(jīng)學(xué)習(xí)三角形內(nèi)角和定理內(nèi)容。這樣從已經(jīng)學(xué)過的知識(shí)引入,符合學(xué)生的認(rèn)知規(guī)律。在拼圖活動(dòng)中發(fā)展思維的靈活性、創(chuàng)造性,為下一環(huán)節(jié)“說理”證明作好準(zhǔn)備,使學(xué)生體會(huì)到數(shù)學(xué)來源于實(shí)踐,同時(shí)對(duì)新知識(shí)的學(xué)習(xí)有了期待。
證明:如圖,過點(diǎn)C作CF∥PD交AB于點(diǎn)F,則BPCP=BDDF,ADDF=AECE.∵AD=AE,∴DF=CE,∴BPCP=BDCE.方法總結(jié):證明四條線段成比例時(shí),如果圖形中有平行線,則可以直接應(yīng)用平行線分線段成比例的基本事實(shí)以及推論得到相關(guān)比例式.如果圖中沒有平行線,則需構(gòu)造輔助線創(chuàng)造平行條件,再應(yīng)用平行線分線段成比例的基本事實(shí)及其推論得到相關(guān)比例式.三、板書設(shè)計(jì)平行線分線段成比例基本事實(shí):兩條直線被一組平行線所截, 所得的對(duì)應(yīng)線段成比例推論:平行于三角形一邊的直線與其他 兩邊相交,截得的對(duì)應(yīng)線段成比例通過教學(xué),培養(yǎng)學(xué)生的觀察、分析、概括能力,了解特殊與一般的辯證關(guān)系.再次鍛煉類比的數(shù)學(xué)思想,能把一個(gè)復(fù)雜的圖形分成幾個(gè)基本圖形,通過應(yīng)用鍛煉識(shí)圖能力和推理論證能力.在探索過程中,積累數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),體驗(yàn)探索結(jié)論的方法和過程,發(fā)展學(xué)生的合情推理能力和有條理的說理表達(dá)能力.
在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對(duì)角線分成4個(gè)等腰直角三角形,因此在正方形中解決問題時(shí)常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類型三】 利用正方形的性質(zhì)證明線段相等如圖,已知過正方形ABCD的對(duì)角線BD上一點(diǎn)P,作PE⊥BC于點(diǎn)E,PF⊥CD于點(diǎn)F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時(shí)只需說明AP=CP,由正方形對(duì)角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對(duì)角線互相垂直平分證明線段相等;(2)無論是正方形還是矩形,經(jīng)常連接對(duì)角線,這樣可以使分散的條件集中.
∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可證:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對(duì)角線互相垂直平分且相等的四邊形是正方形.探究點(diǎn)二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對(duì)角線________________的四邊形是矩形;(2)對(duì)角線____________的平行四邊形是矩形;(3)對(duì)角線__________的平行四邊形是正方形;(4)對(duì)角線________________的矩形是正方形;(5)對(duì)角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對(duì)角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個(gè)角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.
∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對(duì)角線互相垂直平分且相等的四邊形是正方形.探究點(diǎn)二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對(duì)角線________________的四邊形是矩形;(2)對(duì)角線____________的平行四邊形是矩形;(3)對(duì)角線__________的平行四邊形是正方形;(4)對(duì)角線________________的矩形是正方形;(5)對(duì)角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對(duì)角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個(gè)角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.