問題導學類比橢圓幾何性質(zhì)的研究,你認為應該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點的坐標( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點都是對稱。x軸、y軸是雙曲線的對稱軸,原點是對稱中心,又叫做雙曲線的中心。3、頂點(1)雙曲線與對稱軸的交點,叫做雙曲線的頂點 .頂點是A_1 (-a,0)、A_2 (a,0),只有兩個。(2)如圖,線段A_1 A_2 叫做雙曲線的實軸,它的長為2a,a叫做實半軸長;線段B_1 B_2 叫做雙曲線的虛軸,它的長為2b,b叫做雙曲線的虛半軸長。(3)實軸與虛軸等長的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準確的畫出雙曲線的草圖
問題導學類比用方程研究橢圓雙曲線幾何性質(zhì)的過程與方法,y2 = 2px (p>0)你認為應研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開口向右,這條拋物線上的任意一點M 的坐標 (x, y) 的橫坐標滿足不等式 x ≥ 0;當x 的值增大時,|y| 也增大,這說明拋物線向右上方和右下方無限延伸.拋物線是無界曲線.2. 對稱性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對稱,我們把拋物線的對稱軸叫做拋物線的軸.拋物線只有一條對稱軸. 3. 頂點拋物線和它軸的交點叫做拋物線的頂點.拋物線的頂點坐標是坐標原點 (0, 0) .4. 離心率拋物線上的點M 到焦點的距離和它到準線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標準方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當Δ>0時,直線與拋物線相交,有兩個交點;當Δ=0時,直線與拋物線相切,有一個切點;當Δ<0時,直線與拋物線相離,沒有公共點.(2)若k=0,直線與拋物線有一個交點,此時直線平行于拋物線的對稱軸或與對稱軸重合.因此直線與拋物線有一個公共點是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點F的直線交拋物線于A、B兩點,通過點A和拋物線頂點的直線交拋物線的準線于點D,求證:直線DB平行于拋物線的對稱軸.【分析】設(shè)拋物線的標準方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,
本節(jié)課選自《2019人教A版高中數(shù)學選擇性必修第一冊》第二章《直線和圓的方程》,本節(jié)課主要學習拋物線及其標準方程在經(jīng)歷了橢圓和雙曲線的學習后再學習拋物線,是在學生原有認知的基礎(chǔ)上從幾何與代數(shù)兩 個角度去認識拋物線.教材在拋物線的定義這個內(nèi)容的安排上是:先從直觀上認識拋物線,再從畫法中提煉出拋物線的幾何特征,由此抽象概括出拋物線的定義,最后是拋物線定義的簡單應用.這樣的安排不僅體現(xiàn)出《課程標準》中要求通過豐富的實例展開教學的理念,而且符合學生從具體到抽象的認知規(guī)律,有利于學生對概念的學習和理解.坐標法的教學貫穿了整個“圓錐曲線方程”一章,是學生應重點掌握的基本數(shù)學方法 運動變化和對立統(tǒng)一的思想觀點在這節(jié)知識中得到了突出體現(xiàn),我們必須充分利用好這部分教材進行教學
二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標高112.5m,試建立適當?shù)淖鴺讼担蟪龃穗p曲線的標準方程(精確到1m)解:設(shè)雙曲線的標準方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標為塔頂直徑的一半即 ,其縱坐標為塔的總高度與喉部標高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點 到定點 的距離和它到定直線l: 的距離的比是 ,則點 的軌跡方程為?解:設(shè)點 ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點F2,傾斜角為30度的直線交雙曲線于A,B兩點,求|AB|.分析:求弦長問題有兩種方法:法一:如果交點坐標易求,可直接用兩點間距離公式代入求弦長;法二:但有時為了簡化計算,常設(shè)而不求,運用韋達定理來處理.解:由雙曲線的方程得,兩焦點分別為F1(-3,0),F2(3,0).因為直線AB的傾斜角是30°,且直線經(jīng)過右焦點F2,所以,直線AB的方程為
∵在△EFP中,|EF|=2c,EF上的高為點P的縱坐標,∴S△EFP=4/3c2=12,∴c=3,即P點坐標為(5,4).由兩點間的距離公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求雙曲線的方程為x^2/5-y^2/4=1.5.求適合下列條件的雙曲線的標準方程.(1)兩個焦點的坐標分別是(-5,0),(5,0),雙曲線上的點與兩焦點的距離之差的絕對值等于8;(2)以橢圓x^2/8+y^2/5=1長軸的端點為焦點,且經(jīng)過點(3,√10);(3)a=b,經(jīng)過點(3,-1).解:(1)由雙曲線的定義知,2a=8,所以a=4,又知焦點在x軸上,且c=5,所以b2=c2-a2=25-16=9,所以雙曲線的標準方程為x^2/16-y^2/9=1.(2)由題意得,雙曲線的焦點在x軸上,且c=2√2.設(shè)雙曲線的標準方程為x^2/a^2 -y^2/b^2 =1(a>0,b>0),則有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求雙曲線的標準方程為x^2/3-y^2/5=1.(3)當焦點在x軸上時,可設(shè)雙曲線方程為x2-y2=a2,將點(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的雙曲線的標準方程為x^2/8-y^2/8=1.當焦點在y軸上時,可設(shè)雙曲線方程為y2-x2=a2,將點(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦點不可能在y軸上.綜上,所求雙曲線的標準方程為x^2/8-y^2/8=1.
1.判斷 (1)橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的長軸長是a. ( )(2)若橢圓的對稱軸為坐標軸,長軸長與短軸長分別為10,8,則橢圓的方程為x^2/25+y^2/16=1. ( )(3)設(shè)F為橢圓x^2/a^2 +y^2/b^2 =1(a>b>0)的一個焦點,M為其上任一點,則|MF|的最大值為a+c(c為橢圓的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知橢圓C:x^2/a^2 +y^2/4=1的一個焦點為(2,0),則C的離心率為( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故選C.答案:C 三、典例解析例1已知橢圓C1:x^2/100+y^2/64=1,設(shè)橢圓C2與橢圓C1的長軸長、短軸長分別相等,且橢圓C2的焦點在y軸上.(1)求橢圓C1的半長軸長、半短軸長、焦點坐標及離心率;(2)寫出橢圓C2的方程,并研究其性質(zhì).解:(1)由橢圓C1:x^2/100+y^2/64=1,可得其半長軸長為10,半短軸長為8,焦點坐標為(6,0),(-6,0),離心率e=3/5.(2)橢圓C2:y^2/100+x^2/64=1.性質(zhì)如下:①范圍:-8≤x≤8且-10≤y≤10;②對稱性:關(guān)于x軸、y軸、原點對稱;③頂點:長軸端點(0,10),(0,-10),短軸端點(-8,0),(8,0);④焦點:(0,6),(0,-6);⑤離心率:e=3/5.
二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過對稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個焦點F_1上,片門位另一個焦點F_2上,由橢圓一個焦點F_1 發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個橢圓焦點F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當?shù)钠矫嬷苯亲鴺讼?,求截口ABC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標系,設(shè)所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標準方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標準方程時,通常采用待定系數(shù)法,其步驟是:(1)確定焦點位置;(2)設(shè)出相應橢圓的標準方程(對于焦點位置不確定的橢圓可能有兩種標準方程);(3)根據(jù)已知條件構(gòu)造關(guān)于參數(shù)的關(guān)系式,利用方程(組)求參數(shù),列方程(組)時常用的關(guān)系式有b2=a2-c2等.
二、探究新知一、點到直線的距離、兩條平行直線之間的距離1.點到直線的距離已知直線l的單位方向向量為μ,A是直線l上的定點,P是直線l外一點.設(shè)(AP) ?=a,則向量(AP) ?在直線l上的投影向量(AQ) ?=(a·μ)μ.點P到直線l的距離為PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.兩條平行直線之間的距離求兩條平行直線l,m之間的距離,可在其中一條直線l上任取一點P,則兩條平行直線間的距離就等于點P到直線m的距離.點睛:點到直線的距離,即點到直線的垂線段的長度,由于直線與直線外一點確定一個平面,所以空間點到直線的距離問題可轉(zhuǎn)化為空間某一個平面內(nèi)點到直線的距離問題.1.已知正方體ABCD-A1B1C1D1的棱長為2,E,F分別是C1C,D1A1的中點,則點A到直線EF的距離為 . 答案: √174/6解析:如圖,以點D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸建立空間直角坐標系,則A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
二、探究新知一、空間中點、直線和平面的向量表示1.點的位置向量在空間中,我們?nèi)∫欢cO作為基點,那么空間中任意一點P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設(shè)P是直線l上的任意一點,則點P在直線l上的充要條件是存在實數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點O,可以得到點P在直線l上的充要條件是存在實數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項正確.
跟蹤訓練1在正方體ABCD-A1B1C1D1中,E為AC的中點.求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系.設(shè)正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點.求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標系,通過坐標運算證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因為E,F,M分別為棱AB,BC,B1B的中點,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因為(B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.
問題1. 用一個大寫的英文字母或一個阿拉伯數(shù)字給教室里的一個座位編號,總共能編出多少種不同的號碼?因為英文字母共有26個,阿拉伯數(shù)字共有10個,所以總共可以編出26+10=36種不同的號碼.問題2.你能說說這個問題的特征嗎?上述計數(shù)過程的基本環(huán)節(jié)是:(1)確定分類標準,根據(jù)問題條件分為字母號碼和數(shù)字號碼兩類;(2)分別計算各類號碼的個數(shù);(3)各類號碼的個數(shù)相加,得出所有號碼的個數(shù).你能舉出一些生活中類似的例子嗎?一般地,有如下分類加法計數(shù)原理:完成一件事,有兩類辦法. 在第1類辦法中有m種不同的方法,在第2類方法中有n種不同的方法,則完成這件事共有:N= m+n種不同的方法.二、典例解析例1.在填寫高考志愿時,一名高中畢業(yè)生了解到,A,B兩所大學各有一些自己感興趣的強項專業(yè),如表,
當A,C顏色相同時,先染P有4種方法,再染A,C有3種方法,然后染B有2種方法,最后染D也有2種方法.根據(jù)分步乘法計數(shù)原理知,共有4×3×2×2=48(種)方法;當A,C顏色不相同時,先染P有4種方法,再染A有3種方法,然后染C有2種方法,最后染B,D都有1種方法.根據(jù)分步乘法計數(shù)原理知,共有4×3×2×1×1=24(種)方法.綜上,共有48+24=72(種)方法.故選B.答案:B5.某藝術(shù)小組有9人,每人至少會鋼琴和小號中的一種樂器,其中7人會鋼琴,3人會小號,從中選出會鋼琴與會小號的各1人,有多少種不同的選法?解:由題意可知,在藝術(shù)小組9人中,有且僅有1人既會鋼琴又會小號(把該人記為甲),只會鋼琴的有6人,只會小號的有2人.把從中選出會鋼琴與會小號各1人的方法分為兩類.第1類,甲入選,另1人只需從其他8人中任選1人,故這類選法共8種;第2類,甲不入選,則會鋼琴的只能從6個只會鋼琴的人中選出,有6種不同的選法,會小號的也只能從只會小號的2人中選出,有2種不同的選法,所以這類選法共有6×2=12(種).因此共有8+12=20(種)不同的選法.
萬眾支援,勇做戰(zhàn)“疫”的“守護者”。我們的祖國在危難之際,有一群無私奉獻的人,他們盡己所有捐贈著醫(yī)療物資。韓紅東奔西走募集捐款約一億元,眾多明星網(wǎng)紅紛紛慷慨解囊;有為抗戰(zhàn)親自押送物資的汽車司機;有為抗戰(zhàn)抗戰(zhàn)甘當志愿的青年戰(zhàn)士;有為抗戰(zhàn)投筆宣傳防疫知識的文人墨士,他們一切行動寄托他們美好的祝愿,愛與善良無關(guān)階層、無關(guān)年紀,在災難面前,他們都是大美之人,都是敢于為國家奉獻的人,他們是最美的戰(zhàn)“疫”“守護者”,我們這個充滿愛與力量的國家,在戰(zhàn)“疫”面前,大家精誠團結(jié),萬眾一心共抗戰(zhàn),眾志成城戰(zhàn)疫情,用無私無畏的“大愛”續(xù)寫著中國故事。
整體感知 齊誦詩歌,說說這首詩歌緊扣“土地”,作了哪些形象性的描述?! 窘涣鼽c撥】點出土地情結(jié)。起始兩句,詩人對土地的熱愛,已到了不知道如何傾訴的地步,于是他舍棄人的思維語言而借用鳥的簡單樸素的語言傾瀉他的感情?!八粏 钡母杪曊苁惆l(fā)作者對土地的義無反顧的眷戀和執(zhí)著,于是土地情結(jié)的激越歌聲由此響起。 傾吐土地情結(jié)。“被暴風雨所打擊著的土地”“悲憤的河流”“激怒的風”“無比溫柔的黎明”是作者所歌唱的對象,詩人沒有沉溺于對“溫柔”恬靜的“黎明”的欣賞中,為了讓自己的愛永遠留給土地,他做出了莊嚴鄭重的選擇?! ∩A土地情結(jié)。一問一答,詩人由借鳥抒情轉(zhuǎn)入直抒胸臆。太“深沉”太強烈的土地情結(jié),已使人難以訴諸語言,只能凝成晶瑩的淚水?!吧畛痢币辉~也許達不到與實際感情相適應的強度,于是其后緊跟著沉重的省略號。省略號中似乎涌動著潛流地火一般的激情,更為沉重地叩擊著讀者的心房,激起讀者持續(xù)的共鳴。
活動準備:1、環(huán)境創(chuàng)設(shè):開設(shè)“綠色餐廳”豐富幼兒飲食經(jīng)驗“小小配菜師”的區(qū)域數(shù)活動環(huán)境、“國慶節(jié)日美食”大調(diào)查主題墻面2、前期經(jīng)驗:通過資料收集、家庭調(diào)查、參觀食堂、解讀菜譜等形式幫助幼兒積累了初步的配菜經(jīng)驗3、教學具:菜譜一份、一周菜譜空白表格4張、美工操作材料若干(各色色紙、固體膠、剪刀、抹布,垃圾盒等)活動過程:一、情景導入、經(jīng)驗重現(xiàn)又是星期五了,每個星期五都是我們保健老師為我們制定下周菜譜的日子,我剛剛拿到一份下星期的菜譜,我們一起來看看。(出示菜譜)1、菜名我來起。引導幼兒為下周的菜品起菜名,要求簡單清楚。2、菜肴我推薦。鼓勵幼兒說說自己最喜歡哪道菜?并說出推薦的理由?!镄〗Y(jié):原來我們在制定菜譜的時候既要考慮顏色上的搭配,還要注意菜的味道和營養(yǎng)。
重點難點1.欣賞和感知理解漫畫作品.需要幼兒集中注意觀察,這也是能否達到目標的重要條件。因此,我從活動開始便設(shè)置了一個個懸念,直到結(jié)尾也就是高潮部分,我沒有直接揭曉答案,而是留給幼兒一個充分的想像空間。這樣,使幼兒的注意得以長久保持。2.了解漫畫特點對幼兒是有一定難度的,當然也不是一次活動所能完成的。因此,在活動中,我們不能空洞地將一些抽象的詞匯灌輸給孩子們聽,而是通過精心設(shè)計的提問和讓幼兒欣賞一些有代表性的漫畫作品,有機滲透在活動中。我還設(shè)置了漫畫墻作為準備和延伸活動,長期貼在教室里,使幼兒自己從中慢慢體會,不斷深入地了解漫畫。 活動目標1.理解漫畫作品內(nèi)容,嘗試運用語言和圖畫刨編故事結(jié)尾。2.通過漫畫欣賞、初步了解漫畫的基本特點,更加喜歡漫畫這一藝術(shù)形式。3.養(yǎng)成細致觀察和大膽想像的習慣。 活動準備1.漫畫書《父與子》一本,完整的4幅漫畫作品、不加背景的圖4一幅。2.供幼兒續(xù)編添畫的作業(yè)紙每人一張、黑色水筆每人一根。3.布置一個漫畫墻,上面貼有許多有代表性的漫畫作品(單幅的、連環(huán)的、黑白的、彩色的、有趣可笑的、充滿幻想的、諷刺褒貶的)。
【主題目標】1、培養(yǎng)良好的生活習慣、衛(wèi)生習慣和參加體育活動的興趣?!?、充分挖掘各種現(xiàn)有的或潛在的教育資源,配合幼兒,為教育教學的順利開展起到了很好的促進、整合作用。3、喜歡參加體育活動,動作協(xié)調(diào)、靈活,能與同伴協(xié)商共同完成目標與任務(wù)。4、利用圖書、圖片、網(wǎng)絡(luò)進行提問、查找、調(diào)查、歸納,注意運動安全,有初步保護自己的意識,知道自我保護的簡單方法?!净顒訙蕚洹客ㄟ^談話了解幼兒喜歡的各種體育項目,根據(jù)需要從網(wǎng)上、圖書里細致了解有關(guān)運動的各種名稱與玩法,并充分發(fā)揮家長、社區(qū)資源。在家長方面,我們根據(jù)幼兒園家長情況,采用幼兒寫信的方法,將我們活動的設(shè)想與要求,用孩子的話來告訴他們,讓他們能全面地了解并支持我們活動的開展。【活動過程】1、教師通過談話,了解幼兒最喜歡的體育運動。幼兒:我喜歡踢足球。幼兒:我喜歡跑步。
(四)反思總結(jié),當堂檢測。本節(jié)內(nèi)容講述了價格變動對人們生活、生產(chǎn)的影響作用,主要知識框架如下:(1)、價格變動會影響人們的消費需求,商品價格上漲,人需求就減少,反之,則增大。價格變動對不同商品需求影響程度是不一樣的,對生活必需品的需求量影響較小,對高檔耐用品的需求量影響較大。相關(guān)商品價格變動對消費需求的影響不同,某種商品價格上漲,就會減少需求量,其替代品需求量增加,其互補品需求量則減少。(2)、價格變化也會影響生產(chǎn)經(jīng)營,價格變動會調(diào)節(jié)生產(chǎn),刺激生產(chǎn)者改進技術(shù),提高勞動生產(chǎn)率,促使生產(chǎn)者生產(chǎn)適銷對路的高 質(zhì)量產(chǎn)品。(五)發(fā)導學案、布置預習。預習第三課第一框《消費及其類型》,完成預習導學案練習題九、板書設(shè)計《價格變動的影響》1、對人們生活的影響(1)商品價格變動與消費需求量之間的關(guān)系(2)不同商品的需求量對價格變動的反應程度不同
二、做理智的消費者1、量入為出,適度消費2、避免盲從,理性消費3、保護環(huán)境,綠色消費4、勤儉節(jié)約,艱苦奮斗十、教學反思本課的設(shè)計采用了課前下發(fā)預習學案,學生預習本節(jié)內(nèi)容,找出自己迷惑的地方。課堂上師生主要解決重點、難點、疑點、考點、探究點以及學生學習過程中易忘、易混點等,最后進行當堂檢測,課后進行延伸拓展,以達到提高課堂效率的目的。這節(jié)課我們主要學習了影響人們消費的幾種消費心理和幾種科學的消費觀。本節(jié)課與學生生活十分貼近所以這節(jié)課充分的調(diào)動了學生學習的興趣和積極性,并且讓學生針對案例進行充分的分組討論分析,通過學生的展示分析和補充可以知道學生們不但深層次分析了教學原理也透徹理解了教學重難點大大提高了課堂效率.。通過案例的分析進一步領(lǐng)會了教材原理突破了本節(jié)課的難點——樹立正確的消費觀。整堂課學生求知旺盛,復雜的知識變得簡單化,從閱讀教材到獨立思考分析再到合作討論最后的展示質(zhì)疑答疑,加深了印象,提高了能力。