本節(jié)課是學(xué)習(xí)兩位數(shù)乘兩位數(shù)的乘法豎式計(jì)算,掌握其計(jì)算程序,理解其計(jì)算的道理;特別要理解兩位數(shù)乘兩位數(shù)的乘法豎式與一位數(shù)乘兩位數(shù)乘法豎式從內(nèi)容到形式之間的實(shí)質(zhì)性的聯(lián)系。這樣就為四年級(jí)學(xué)習(xí)兩位數(shù)乘三位數(shù)的乘法打好了基礎(chǔ),即把兩位數(shù)乘兩位數(shù)的豎式乘法的計(jì)算程序遷移到兩位數(shù)乘三位數(shù)的情形。本節(jié)課是在上節(jié)課學(xué)習(xí)14×12的橫式筆算的基礎(chǔ)上,繼續(xù)學(xué)習(xí)14×12的豎式計(jì)算。教科書中提出了三個(gè)問題。第一個(gè)問題嘗試用豎式計(jì)算14×12;第二個(gè)問題結(jié)合點(diǎn)子圖解釋第一個(gè)問題中豎式每一步和意思,促進(jìn)對(duì)豎式的理解;第三個(gè)問題總結(jié)兩位數(shù)乘兩位數(shù)豎式筆算的程序(法則),能根據(jù)計(jì)算程序正確地進(jìn)行計(jì)算。綜上所述,本節(jié)課的難點(diǎn)和關(guān)鍵就是將計(jì)算步驟與點(diǎn)子圖相對(duì)應(yīng),直觀理解豎式筆算的算理。豎式計(jì)算時(shí),每一次數(shù)字運(yùn)算的結(jié)果都應(yīng)該寫一它合適的位置上。
一、說教材【設(shè)計(jì)理念及意圖】新一輪課程改革的一個(gè)重要特征是以學(xué)生的學(xué)習(xí)方式作為一個(gè)突破口。在靈活多樣的學(xué)習(xí)方式中,新課程提倡和凸顯“自主、合作、探究”學(xué)習(xí),使學(xué)生在玩中學(xué)、做中學(xué)、思中學(xué)、合作中學(xué),親身經(jīng)歷將實(shí)際問題抽象為數(shù)學(xué)模型,并進(jìn)行解釋與應(yīng)用的過程。使學(xué)生更好地理解數(shù)學(xué)、運(yùn)用數(shù)學(xué),獲得學(xué)習(xí)中的樂趣與全面和諧的發(fā)展,從而使“知識(shí)與技能、過程與方法、情感態(tài)度與價(jià)值觀”的三維課程目標(biāo)得以實(shí)現(xiàn)。一、說教材【設(shè)計(jì)理念及意圖】新一輪課程改革的一個(gè)重要特征是以學(xué)生的學(xué)習(xí)方式作為一個(gè)突破口。在靈活多樣的學(xué)習(xí)方式中,新課程提倡和凸顯“自主、合作、探究”學(xué)習(xí),使學(xué)生在玩中學(xué)、做中學(xué)、思中學(xué)、合作中學(xué),親身經(jīng)歷將實(shí)際問題抽象為數(shù)學(xué)模型,并進(jìn)行解釋與應(yīng)用的過程。使學(xué)生更好地理解數(shù)學(xué)、運(yùn)用數(shù)學(xué),獲得學(xué)習(xí)中的樂趣與全面和諧的發(fā)展,從而使“知識(shí)與技能、過程與方法、情感態(tài)度與價(jià)值觀”的三維課程目標(biāo)得以實(shí)現(xiàn)。
這道題的設(shè)計(jì),一方面培養(yǎng)了學(xué)生解決實(shí)際問題的能力,另一方面也加深了對(duì)圓柱體積計(jì)算公式的理解,同時(shí)數(shù)學(xué)知識(shí)也和學(xué)生的生活實(shí)際結(jié)合起來,使學(xué)生明白,我們所學(xué)的數(shù)學(xué)是身邊的數(shù)學(xué),是有趣的、有用的數(shù)學(xué),從而激發(fā)學(xué)生的學(xué)習(xí)興趣。(五)總結(jié)全課,深化教學(xué)目標(biāo)結(jié)合板書,引導(dǎo)學(xué)生說出本課所學(xué)的內(nèi)容,我們是這樣設(shè)計(jì)的:這節(jié)課我們學(xué)習(xí)了哪些內(nèi)容?圓柱體積的計(jì)算公式是怎樣推導(dǎo)出來的?你有什么收獲?然后教師歸納,通過本節(jié)課的學(xué)習(xí),我們懂得了新知識(shí)的得來是通過已學(xué)的知識(shí)來解決的,以后希望同學(xué)們多動(dòng)腦,勤思考,在我們的生活中還有好多問題需要利用所學(xué)知識(shí)來解決的,望同學(xué)們能學(xué)會(huì)運(yùn)用,善于用轉(zhuǎn)化的思想來武裝自己的頭腦,思考問題。
1.教學(xué)內(nèi)容:本節(jié)教材是北師大版六年級(jí)下冊(cè)第一單元《圓柱和圓錐》,《圓錐體積》的第一課時(shí)。教學(xué)內(nèi)容為圓錐體積計(jì)算公式的推導(dǎo),學(xué)生嘗試題、練習(xí)、試一試、練一練第一題。2.教材分析本節(jié)教材是在學(xué)生已經(jīng)掌握了圓柱體積計(jì)算及其應(yīng)用和認(rèn)識(shí)了圓錐的基本特征的基礎(chǔ)上學(xué)習(xí)的,是小學(xué)階段學(xué)習(xí)幾何知識(shí)的最后一課時(shí)內(nèi)容。讓學(xué)生學(xué)好這一部分內(nèi)容,有利于進(jìn)一步發(fā)展學(xué)生的空間觀念,為進(jìn)一步解決一些實(shí)際問題打下基礎(chǔ)。教材按照實(shí)驗(yàn)、觀察、推導(dǎo)、歸納、實(shí)際應(yīng)用的程序進(jìn)行安排。3.教學(xué)重點(diǎn):能正確運(yùn)用圓錐體積計(jì)算公式求圓錐的體積。教學(xué)難點(diǎn):理解圓錐體積公式的推導(dǎo)過程。4.教學(xué)目標(biāo):(1)知識(shí)方面:理解并掌握?qǐng)A錐體積公式的推導(dǎo)過程,學(xué)會(huì)運(yùn)用圓錐體積計(jì)算公式求圓錐的體積;
活動(dòng)四:自主學(xué)習(xí),尺規(guī)作圖先閱讀,再嘗試作圖,思考作圖道理,小組討論,“為什么作圖過程中必須以大于1/2AB的長為半徑畫弧?”同桌演示尺規(guī)作圖。最后折紙驗(yàn)證,使整個(gè)學(xué)習(xí)過程更加嚴(yán)謹(jǐn)。我將用下面這個(gè)課件給學(xué)生展示作圖過程。再次回顧情境,讓學(xué)生完成情境中的問題。(三)講練結(jié)合,鞏固新知第一個(gè)題目是直接運(yùn)用性質(zhì)解決問題,比較簡單,面向全體學(xué)生。我還設(shè)計(jì)了第二個(gè)題目,想訓(xùn)練學(xué)生審題的能力。(四)課堂小結(jié)在學(xué)生們共同歸納總結(jié)本節(jié)課的過程中,讓學(xué)生獲得數(shù)學(xué)思考上的提高和感受成功的喜悅并進(jìn)一步系統(tǒng)地完善本節(jié)課的知識(shí)。(五)當(dāng)堂檢測為了檢測學(xué)生學(xué)習(xí)情況,我設(shè)計(jì)了當(dāng)堂檢測。第一個(gè)題目,讓學(xué)生學(xué)會(huì)轉(zhuǎn)化的思想來解決問題;第二個(gè)題目練習(xí)尺規(guī)作圖。
設(shè)計(jì)意圖:考慮學(xué)生的個(gè)別差異,分層次布置作業(yè),讓基礎(chǔ)差的學(xué)生能夠吃飽,基礎(chǔ)好的學(xué)生吃好,使每位學(xué)生都感到學(xué)有所獲。五、評(píng)價(jià)分析數(shù)學(xué)課程標(biāo)準(zhǔn)指出:學(xué)生的數(shù)學(xué)學(xué)習(xí)內(nèi)容應(yīng)當(dāng)是現(xiàn)實(shí)的、有意義的、富有挑戰(zhàn)性的,而動(dòng)手實(shí)踐、自主探究與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。本著這一理念,在本課的教學(xué)過程中,我嚴(yán)格遵循由感性到理性,將數(shù)學(xué)知識(shí)始終與現(xiàn)實(shí)生活中學(xué)生熟悉的實(shí)際問題相結(jié)合,不斷提高他們應(yīng)用數(shù)學(xué)方法分析問題、解決問題的能力。在重視課本基礎(chǔ)知識(shí)的基礎(chǔ)上,適當(dāng)進(jìn)行拓展延伸,培養(yǎng)學(xué)生的創(chuàng)新意識(shí),同時(shí)根據(jù)新課程標(biāo)準(zhǔn)的評(píng)價(jià)理念,在教學(xué)過程中,不僅注重學(xué)生的參與意識(shí),而且注重學(xué)生對(duì)待學(xué)習(xí)的態(tài)度是否積極。課堂中也盡量給學(xué)生更多的空間、更多展示自我的機(jī)會(huì),讓學(xué)生在和諧的氛圍中認(rèn)識(shí)自我、找到自信、體驗(yàn)成功的樂趣。使學(xué)生的主體地位得到充分的體現(xiàn),使教學(xué)過程成為一個(gè)在發(fā)現(xiàn)在創(chuàng)造的認(rèn)知過程。
回顧整節(jié)課的設(shè)計(jì),我主要著力于以下三個(gè)方面:1.關(guān)于教材處理:認(rèn)真處理教材,目的只有一個(gè)——為我的學(xué)生盡可能多地提供參與活動(dòng)的機(jī)會(huì),在本節(jié)課中主要體現(xiàn)在以下幾點(diǎn):(1)通過“合成代數(shù)式”、“賦予分式實(shí)際意義”兩個(gè)活動(dòng),激發(fā)興趣,吸引學(xué)生參與活動(dòng);(2)通過“互舉例子”、“填表探究”兩個(gè)活動(dòng),鼓勵(lì)學(xué)生主動(dòng)參與活動(dòng);(3)通過“應(yīng)用新知”這個(gè)環(huán)節(jié),促進(jìn)學(xué)生參與活動(dòng)。2.關(guān)于教與學(xué)方法的選擇:我在設(shè)計(jì)中始終關(guān)注:如何精心組織活動(dòng),讓學(xué)生在豐富的活動(dòng)中探索、交流與創(chuàng)新,因此我選擇了“引導(dǎo)——發(fā)現(xiàn)教學(xué)法”,具體做法如下: (1)用數(shù)、式通性的思想,類比分?jǐn)?shù),引導(dǎo)學(xué)生獨(dú)立思考、小組協(xié)作,完成對(duì)分式概念及意義的自主建構(gòu),突出數(shù)學(xué)合情推理能力的養(yǎng)成;(2)加強(qiáng)應(yīng)用性,通過“應(yīng)用新知”、“深化拓展”兩個(gè)環(huán)節(jié),密切分式與現(xiàn)實(shí)生活及其他學(xué)科的聯(lián)系,發(fā)展數(shù)學(xué)應(yīng)用意識(shí),突出分式的模型思想。
情景感知概括運(yùn)用設(shè)疑誘導(dǎo)動(dòng)手操作合作交流嘗試活動(dòng)啟發(fā)引導(dǎo)類比發(fā)現(xiàn)演練結(jié)合觀察分析自主探索問題討論利用嘗試活動(dòng)“我來當(dāng)老師!”給學(xué)生提供設(shè)計(jì)問題的機(jī)會(huì),培養(yǎng)他們實(shí)事求是的科學(xué)態(tài)度,勇于質(zhì)疑、敢于創(chuàng)新的良好習(xí)慣及數(shù)學(xué)應(yīng)用能力。例1、根據(jù)因式分解的概念,判斷下列由左邊到右邊的變形,哪些是因式分解,哪些不是,為什么?通過羅列一些似是而非、容易產(chǎn)生錯(cuò)誤的對(duì)象讓學(xué)生辨析,促使他們認(rèn)識(shí)概念的本質(zhì)、確定概念的外延,從而形成良好的認(rèn)知結(jié)構(gòu)。例2:解答下列問題:(1)993-99能被99整除嗎?能被98整除嗎?能被100整除嗎?(2)求代數(shù)式IR1+IR2+IR3的值,其中R1=19.2,R2=35.4,R3=32.4,I=2.5。讓學(xué)生進(jìn)一步體會(huì)用分解因式解決相關(guān)問題的簡捷性。例3、填空:若x2+mx-n能分解成(x-2)(x-5),則m=,n=。
通過以上例題幫助學(xué)生總結(jié)出分式乘除法的運(yùn)算步驟(當(dāng)分式的分子與分母都是單項(xiàng)式時(shí)和當(dāng)分式的分子、分母中有多項(xiàng)式兩種情況)4、隨堂練習(xí)。(約5分鐘)76頁第一題,共3個(gè)小題。教學(xué)效果:在總結(jié)出分式乘除法的運(yùn)算步驟后,大部分學(xué)生能很好的掌握,但是還有些學(xué)生忘記運(yùn)算結(jié)果要化成最簡形式,老師要及時(shí)提醒學(xué)生。 分解因式的知識(shí)沒掌握好,將會(huì)影響到分式的運(yùn)算,所以有的學(xué)生有必要復(fù)習(xí)和鞏固一下分解因式的知識(shí)。5、數(shù)學(xué)理解(約5分鐘)教材77頁的數(shù)學(xué)理解,學(xué)生很容易出現(xiàn)像小明那樣的錯(cuò)誤。但是也很容易找出錯(cuò)誤的原因。補(bǔ)充例3 計(jì)算(xy-x2)÷ ? 教學(xué)效果:鞏固分式乘除法法則,掌握分式乘除法混合運(yùn)算的方法。提醒學(xué)生,負(fù)號(hào)要提到分式前面去。6、課堂小結(jié)(約3分鐘)先學(xué)生分組小結(jié),在全班交流,最后老師總結(jié)。
一、說教材《分式的加減法》是本冊(cè)教材第三章《分式》重要內(nèi)容,是進(jìn)一步學(xué)習(xí)分式方程、反比例函數(shù)以及其它數(shù)學(xué)知識(shí)的基礎(chǔ),同時(shí)也是學(xué)習(xí)物理、化學(xué)等學(xué)科不可缺少的工具。與其它數(shù)學(xué)知識(shí)一樣,它在實(shí)際生活中有著廣泛的應(yīng)用。學(xué)習(xí)分式的加減法并熟練地進(jìn)行運(yùn)算是學(xué)好分式運(yùn)算的關(guān)鍵,為學(xué)生綜合運(yùn)用多種運(yùn)算法則拓寬了空間,有利于學(xué)生對(duì)雙基的掌握,在綜合運(yùn)用多種運(yùn)算法則的過程中,逐漸形成運(yùn)算能力。同時(shí)本節(jié)課的教學(xué)難度有所增加,學(xué)生通過觀察、類比、猜想、嘗試等一系列思維活動(dòng)中,發(fā)現(xiàn)規(guī)則、理解規(guī)則、應(yīng)用規(guī)則??紤]到以上這些因素,確定本節(jié)課的目標(biāo)和重點(diǎn)、難點(diǎn)如下:(一)說教學(xué)目標(biāo):1.知識(shí)與技能目標(biāo):理解并掌握異分母分式加減法的法則;經(jīng)歷異分母分式的加減運(yùn)算和通分的過程,訓(xùn)練學(xué)生的分式運(yùn)算能力,培養(yǎng)學(xué)生在學(xué)習(xí)中轉(zhuǎn)化未知問題為已知問題的能力;進(jìn)一步通過實(shí)例發(fā)展學(xué)生的符號(hào)感。
對(duì)比分析為什么剛才咱們從不同的3個(gè)數(shù)字中選出兩個(gè),可以擺成6個(gè)不同的兩位數(shù),而現(xiàn)在三個(gè)同學(xué)每兩個(gè)握一次手,就一共只握了3次呢?(學(xué)生討論,發(fā)表意見)(握手不存在調(diào)換位置的情況,跟順序無關(guān),而排列數(shù),位置調(diào)換就變成另一個(gè)數(shù),與順序有關(guān)。)三、實(shí)踐應(yīng)用,鞏固新知師引導(dǎo):同學(xué)們今天說得太精彩了!那我們就進(jìn)數(shù)學(xué)廣角痛痛快快地玩玩吧?。ǔ鍪菊n件)問:進(jìn)去嗎?(再次打開課件,欣賞)1、快樂狗活動(dòng)室(練習(xí)二十三第2題)質(zhì)疑:咦,機(jī)靈貓,蘭蘭他們?nèi)ツ牧耍亢?,機(jī)靈貓貓想要運(yùn)動(dòng)運(yùn)動(dòng),就來到了快樂狗活動(dòng)室。(課件展示)機(jī)靈貓就是機(jī)靈貓,看他們打球還想到問題了:如果每兩個(gè)人打一場乒乓球比賽,他們?nèi)艘还惨蚨嗌賵霰荣惸??誰能很快說出來!(學(xué)生分析,指名說說)2、小喜鵲超市(練習(xí)二十三第1題)
以引導(dǎo)學(xué)生的餓練習(xí)興趣,再讓學(xué)生根據(jù)畫面內(nèi)容提出用乘法計(jì)算的問題,之后再讓學(xué)生小組合作交流。然后匯集學(xué)生提出的問題,并和學(xué)生一起評(píng)價(jià)提出的問題。再讓學(xué)生獨(dú)立解決提出的用乘法計(jì)算的問題。并在組內(nèi)進(jìn)行交流評(píng)價(jià)。讓學(xué)生積極主動(dòng)地經(jīng)歷觀察發(fā)現(xiàn)問題——提出問題——解決問題的過程,感受數(shù)學(xué)在日常生活中的作用,獲得一些初步的提出用乘法計(jì)算的問題和解決問題實(shí)踐活動(dòng)的經(jīng)驗(yàn)。5,讓學(xué)生充分說說你有什么收獲。整堂課的設(shè)計(jì),著重體現(xiàn)了以學(xué)生為主體,教師是學(xué)生的組織者、引導(dǎo)者、合作者。在整個(gè)教學(xué)過程中,主要讓學(xué)生樂學(xué),愛學(xué),使學(xué)生從學(xué)會(huì)變成“我要學(xué),我會(huì)學(xué),”激發(fā)了學(xué)生的學(xué)習(xí)興趣,培養(yǎng)其探究能力和自主學(xué)習(xí)的意識(shí),同時(shí),在不斷運(yùn)用數(shù)學(xué)知識(shí)解決身邊的數(shù)學(xué)問題中,逐步發(fā)展學(xué)生的應(yīng)用意識(shí)。
(一)教學(xué)內(nèi)容:我說課的內(nèi)容是第5單元中內(nèi)容,(二)教材地位:加法是數(shù)學(xué)中最基本的運(yùn)算之一。從教材的縱向聯(lián)系來看,幾年前已學(xué)過整數(shù)加法和小數(shù)加法,以及加法的運(yùn)算定律,知道它不僅適用于整數(shù)加法,而且也適用于小數(shù)加法。那么是否也適用于現(xiàn)在所學(xué)習(xí)的分?jǐn)?shù)加法呢?這就是我們這節(jié)課要研究的問題,當(dāng)然,結(jié)果是肯定的。通過本課的學(xué)習(xí),將整數(shù)加法的運(yùn)算定律推廣到分?jǐn)?shù)加法,可使學(xué)生對(duì)加法的認(rèn)識(shí)從感性上升到理性。為后面學(xué)習(xí)分?jǐn)?shù)加法的簡便計(jì)算打好基礎(chǔ),同時(shí)也為學(xué)習(xí)小數(shù)、分?jǐn)?shù)混合運(yùn)算奠定基礎(chǔ)。其次,將整數(shù)加法的運(yùn)算定律推廣到分?jǐn)?shù)加法,也拓展了加法運(yùn)算定律的使用范圍,豐富其內(nèi)涵。而且加法運(yùn)算定律字母表示形式,為以后代數(shù)知識(shí)的學(xué)習(xí)奠定了初步基礎(chǔ)。
煤的價(jià)格為400元/噸,生產(chǎn)1噸甲產(chǎn)品除需原料費(fèi)用外,還需其他費(fèi)用400元,甲產(chǎn)品每噸售價(jià)4600元;生產(chǎn)1噸乙產(chǎn)品除原料費(fèi)用外,還需其他費(fèi)用500元,乙產(chǎn)品每噸售價(jià)5500元.現(xiàn)將該礦石原料全部用完,設(shè)生產(chǎn)甲產(chǎn)品x噸,乙產(chǎn)品m噸,公司獲得的總利潤為y元.(1)寫出m與x的關(guān)系式;(2)寫出y與x的函數(shù)關(guān)系式.(不要求寫自變量的取值范圍)解析:(1)因?yàn)榈V石的總量一定,當(dāng)生產(chǎn)的甲產(chǎn)品的數(shù)量x變化時(shí),那么乙產(chǎn)品的產(chǎn)量m將隨之變化,m和x是動(dòng)態(tài)變化的兩個(gè)量;(2)題目中的等量關(guān)系為總利潤y=甲產(chǎn)品的利潤+乙產(chǎn)品的利潤.解:(1)因?yàn)?m+10x=300,所以m=150-5x2.(2)生產(chǎn)1噸甲產(chǎn)品獲利為4600-10×200-4×400-400=600(元);生產(chǎn)1噸乙產(chǎn)品獲利為5500-4×200-8×400-500=1000(元).所以y=600x+1000m.將m=150-5x2代入,得y=600x+1000×150-5x2,即y=-1900x+75000.方法總結(jié):根據(jù)條件求一次函數(shù)的關(guān)系式時(shí),要找準(zhǔn)題中所給的等量關(guān)系,然后求解.
解:∵y=23x+a與y=-12x+b的圖象都過點(diǎn)A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴兩個(gè)一次函數(shù)分別是y=32x+6和y=-12x-2.y=32x+6與y軸交于點(diǎn)B,則y=32×0+6=6,∴B(0,6);y=-12x-2與y軸交于點(diǎn)C,則y=-2,∴C(0,-2).如圖所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法總結(jié):解此類題要先求得頂點(diǎn)的坐標(biāo),即兩個(gè)一次函數(shù)的交點(diǎn)和它們分別與x軸、y軸交點(diǎn)的坐標(biāo).三、板書設(shè)計(jì)兩個(gè)一次函數(shù)的應(yīng)用實(shí)際生活中的問題幾何問題進(jìn)一步訓(xùn)練學(xué)生的識(shí)圖能力,能通過函數(shù)圖象獲取信息,解決簡單的實(shí)際問題,在函數(shù)圖象信息獲取過程中,進(jìn)一步培養(yǎng)學(xué)生的數(shù)形結(jié)合意識(shí),發(fā)展形象思維.在解決實(shí)際問題的過程中,進(jìn)一步發(fā)展學(xué)生的分析問題、解決問題的能力和數(shù)學(xué)應(yīng)用意識(shí).
(4)從平均分看,兩隊(duì)的平均分相同,實(shí)力大體相當(dāng);從折線的走勢看,甲隊(duì)比賽成績呈上升趨勢,而乙隊(duì)比賽成績呈下降趨勢;從獲勝場數(shù)看,甲隊(duì)勝三場,乙隊(duì)勝兩場,甲隊(duì)成績較好;從方差看,甲隊(duì)比賽成績比乙隊(duì)比賽成績波動(dòng)小,甲隊(duì)成績較穩(wěn)定.綜上所述,選派甲隊(duì)參賽更能取得好成績.方法總結(jié):本題是反映數(shù)據(jù)集中程度與離散程度的綜合題.從圖形中得到兩隊(duì)的成績,然后從平均數(shù)、方差的角度來考慮,在平均數(shù)相同的情況下,方差越小的越穩(wěn)定.三、板書設(shè)計(jì)數(shù)據(jù)的離散程度極差:一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差方差:各個(gè)數(shù)據(jù)與平均數(shù)差的平方的平均數(shù) s2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2]標(biāo)準(zhǔn)差:方差的算術(shù)平方根 公式:s=s2經(jīng)歷表示數(shù)據(jù)離散程度的幾個(gè)量的探索過程,通過實(shí)例體會(huì)用樣本估計(jì)總體的統(tǒng)計(jì)思想,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用能力.通過小組合作,培養(yǎng)學(xué)生的合作意識(shí);通過解決實(shí)際問題,讓學(xué)生體會(huì)數(shù)學(xué)與生活的密切聯(lián)系.
(1)請(qǐng)你用代數(shù)式表示水渠的橫斷面面積;(2)計(jì)算當(dāng)a=3,b=1時(shí),水渠的橫斷面面積.解析:(1)根據(jù)梯形面積=12(上底+下底)×高,即可用含有a、b的代數(shù)式表示水渠橫斷面面積;(2)把a(bǔ)=3、b=1帶入到(1)中求出的代數(shù)式中,其結(jié)果即為水渠的橫斷面面積.解:(1)∵梯形面積=12(上底+下底)×高,∴水渠的橫斷面面積為:12(a+b)b(m2);(2)當(dāng)a=3,b=1時(shí)水渠的橫斷面面積為12(3+1)×1=2(m2).方法總結(jié):解答本題時(shí)需搞清下列幾個(gè)問題:(1)題目中給出的是什么圖形?(2)這種圖形的面積公式是什么?(3)根據(jù)公式求圖形的面積需要知道哪幾個(gè)量?(4)這些量是否已知或能求出?搞清楚了這些問題,求解就水到渠成.三、板書設(shè)計(jì)教學(xué)過程中,應(yīng)通過活動(dòng)使學(xué)生感知代數(shù)式運(yùn)算在判斷和推理上的意義,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生積極的情感和態(tài)度,為進(jìn)一步學(xué)習(xí)奠定堅(jiān)實(shí)的基礎(chǔ).
解 由題意可得,今年的年產(chǎn)值為a·(1+10%) 億元,于是明年的年產(chǎn)值為a·(1+10%)·(1+10%)= 1.21a(億元).若去年的年產(chǎn)值為2億元,則明年的年產(chǎn)值為1.21a =1.21×2 = 2.42(億元).答:該企業(yè)明年的年產(chǎn)值將能達(dá)到1.21a億元.由去年的年產(chǎn)值是2億元,可以預(yù)計(jì)明年的年產(chǎn)值是2.42億元.例3 當(dāng)x=-3時(shí),多項(xiàng)式mx3+nx-81的值是10,當(dāng)x = 3時(shí),求該代數(shù)式的值.解 當(dāng)x=-3時(shí),多項(xiàng)式mx3+nx-81=-27m-3n-81, 此時(shí)-27m-3n-81=10, 所以27m+3n=-91.則當(dāng)x=3,mx3+nx-81 =( 27m+3n )-81=-91-81=-172.注:本題采用了一種重要的數(shù)學(xué)思想——“整體思想”.即是考慮問題時(shí)不是著眼于他的局部特征,而是把注意力和著眼點(diǎn)放在問題的整體結(jié)構(gòu)上,把一些彼此獨(dú)立,但實(shí)質(zhì)上又相互緊密聯(lián)系著的量作為整體來處理的思想方法.
分析:(1)(2)用乘法的交換、結(jié)合律;(3)(4)用分配律,4.99寫成5-0.01學(xué)生板書完成,并說明根據(jù)什么?略例3、某校體育器材室共有60個(gè)籃球。一天課外活動(dòng),有3個(gè)班級(jí)分別計(jì)劃借籃球總數(shù)的 , 和 。請(qǐng)你算一算,這60個(gè)籃球夠借嗎?如果夠了,還多幾個(gè)籃球?如果不夠,還缺幾個(gè)?解:=60-30-20-15 =-5答:不夠借,還缺5個(gè)籃球。練習(xí)鞏固:第41頁1、2、7、探究活動(dòng) (1)如果2個(gè)數(shù)的積為負(fù)數(shù),那么這2個(gè)數(shù)中有幾個(gè)負(fù)數(shù)?如果3個(gè)數(shù)的積為負(fù)數(shù),那么這3個(gè)數(shù)中有幾個(gè)負(fù)數(shù)?4個(gè)數(shù)呢?5個(gè)數(shù)呢?6個(gè)數(shù)呢?有什么規(guī)律? (2)逆用分配律 第42頁 5、用簡便方法計(jì)算(三)課堂小結(jié)通過本節(jié)課的學(xué)習(xí),大家學(xué)會(huì)了什么?本節(jié)課我們探討了有理數(shù)乘法的運(yùn)算律及其應(yīng)用.乘法的運(yùn)算律有:乘法交換律:a×b=b×a;乘法結(jié)合律:(a×b)×c=a×(b×c);分配律:a×(b+c)=a×b+a×c.在有理數(shù)的運(yùn)算中,靈活運(yùn)用運(yùn)算律可以簡化運(yùn)算.(四)作業(yè):課本42頁作業(yè)題
解:原式=(-47)×(3.94+2.41-6.35)=(-47)×0=0.方法總結(jié):如果按照先算乘法,再算加減,則運(yùn)算較繁瑣,且符號(hào)容易出錯(cuò),但如果逆用乘法對(duì)加法的分配律,則可使運(yùn)算簡便.探究點(diǎn)三:有理數(shù)乘法的運(yùn)算律的實(shí)際應(yīng)用甲、乙兩地相距480千米,一輛汽車從甲地開往乙地,已經(jīng)行駛了全程的13,再行駛多少千米就可以到達(dá)中點(diǎn)?解析:把兩地間的距離看作單位“1”,中點(diǎn)即全程12處,根據(jù)題意用乘法分別求出480千米的12和13,再求差.解:480×12-480×13=480×(12-13)=80(千米).答:再行80千米就可以到達(dá)中點(diǎn).方法總結(jié):解答本題的關(guān)鍵是根據(jù)題意列出算式,然后根據(jù)乘法的分配律進(jìn)行簡便計(jì)算.新課程理念要求把學(xué)生“學(xué)”數(shù)學(xué)放在教師“教”之前,“導(dǎo)學(xué)”是教學(xué)的重點(diǎn).因此,在本節(jié)課的教學(xué)中,不要直接將結(jié)論告訴學(xué)生,而是引導(dǎo)學(xué)生從大量的實(shí)例中尋找解決問題的規(guī)律.學(xué)生經(jīng)歷積極探索知識(shí)的形成過程,最后總結(jié)得出有理數(shù)乘法的運(yùn)算律.整個(gè)教學(xué)過程要讓學(xué)生積極參與,獨(dú)立思考和合作探究相結(jié)合,教師適當(dāng)點(diǎn)評(píng),以達(dá)到預(yù)期的教學(xué)效果.