答案:銅車馬的輝煌,來自原料的精挑細選、工藝的精巧極致和工匠的精心雕琢。可以說,是精益求精的工匠精神鍛造出了“青銅之冠”的銅車馬。2.“工匠精神”如此重要,那么,你認為“工匠精神”有著怎樣的現(xiàn)實意義?觀點一:工匠精神在企業(yè)層面,可以認為是企業(yè)精神。具體而言,表現(xiàn)在以下幾個方面。第一,創(chuàng)新是企業(yè)不斷發(fā)展的精神內(nèi)核。第二,敬業(yè)是企業(yè)領(lǐng)導(dǎo)者精神的動力。第三,執(zhí)著是企業(yè)走得長久的底氣。改革開放40 多年來,我國涌現(xiàn)出大批有工匠精神的企業(yè),但也有一些企業(yè)缺乏企業(yè)精神,只追求“短平快”的經(jīng)濟效益。這正是經(jīng)濟發(fā)展的隱憂所在。觀點二:工匠精神在員工層面,就是一-種認真精神、敬業(yè)精神。其核心是: 不僅僅把工作當作賺錢養(yǎng)家糊口的工具,而是樹立起對職業(yè)敬畏、對工作執(zhí)著、對產(chǎn)品負責的態(tài)度,極度注重細節(jié),不斷追求完美和極致,給客戶無可挑剔的體驗。我國制造業(yè)存在大而不強、產(chǎn)品檔次整體不高、自主創(chuàng)新能力較弱等現(xiàn)象,多少與工匠精神稀缺、“差不多精神”有關(guān)。
王安石,字介甫,號半山。北宋著名政治家、思想家、文學(xué)家、改革家,唐宋八大家之一。歐陽修稱贊王安石:“翰林風(fēng)月三千首,吏部文章二百年。老去自憐心尚在,后來誰與子爭先?!眰魇牢募小锻跖R川集》、《臨川集拾遺》等。其詩文各體兼擅,詞雖不多,但亦擅長,世人哄傳之詩句莫過于《泊船瓜洲》中的“春風(fēng)又綠江南岸,明月何時照我還?!鼻矣忻鳌豆鹬ο恪返?。介紹之后設(shè)置這樣的導(dǎo)入語:今天我們共同走進王安石,一起欣賞名作《桂枝香·金陵懷古》。(板書標題)(二)整體感知整體感知是賞析文章的前提,通過初讀,可以使學(xué)生初步了解將要學(xué)到的基本內(nèi)容,了解文章大意及思想意圖,使學(xué)生對課文內(nèi)容形成整體感知。首先,我會讓學(xué)生根據(jù)課前預(yù)習(xí),出聲誦讀課文,同時注意朗讀的快慢、停頓、語調(diào)、輕重音等,然后再播放音頻,糾正他們的讀音與停頓。其次,我會引導(dǎo)學(xué)生談?wù)勊惺堋W(xué)生通過朗讀,能夠說出本詞雄壯、豪放、有氣勢,有對景物的贊美和對歷史的感喟。
(一)導(dǎo)入新課“時勢造英雄”,惡劣的環(huán)境造就名詩名篇。正因如此,懷才不遇于古人是恒久的情感素材。同學(xué)們,請大家回憶我們學(xué)過哪些抒發(fā)作者懷才不遇的詩詞?(二)解釋題意擬:仿照,模擬《行路難》,是樂府雜曲,本為漢代歌謠,晉人袁山松改變其音調(diào),創(chuàng)制新詞,流行一時。 鮑照《擬行路難》共十八首,歌詠人世的種種憂慮,寄寓悲憤,今天我們學(xué)習(xí)的是其中第四首。(三)作者簡介、寫作背景門閥制度之下,“上品無寒門,下品無世族”,出身寒微的文人往往空懷一腔熱忱,卻報國無門,不得不在壯志未酬的遺恨中坐視時光流逝。即使躋身仕途,也多是充當幕僚、府掾,備受壓抑,在困頓坎坷中徒然掙扎,只落得身心交瘁。
一、教材解析《桂枝香·金陵懷古》選自統(tǒng)教版必修下冊古詩詞誦讀單元,此詞通過對金陵景物的贊美和歷史興亡的感喟,寄托了作者對當時朝政的擔憂和對國家政治大事的關(guān)心。全詞情景交融,境界雄渾闊大,風(fēng)格沉郁悲壯,把壯麗的景色和歷史內(nèi)容和諧地融合在一起,自成一格,堪稱名篇。二、學(xué)情分析高中一年級的學(xué)生已具有一定的詩歌閱讀鑒賞能力,對學(xué)生來說,最重要的是積累誦讀方法,提升鑒賞能力。在本文的教學(xué)過程中著重落實“讀”,通過多樣化的“讀”,提升對詩歌“美”的感悟鑒賞能力。三、教學(xué)目標從課程標準中“全面提高學(xué)生語文素養(yǎng)”的基本理念出發(fā),我設(shè)計了以下教學(xué)目標:1.語言建構(gòu)與運用:疏通疑難字詞,讀懂詩句體會詞的誦讀要領(lǐng)。
一、復(fù)習(xí)回顧,溫故知新1. 任意角三角函數(shù)的定義【答案】設(shè)角 它的終邊與單位圓交于點 。那么(1) (2) 2.誘導(dǎo)公式一 ,其中, 。終邊相同的角的同一三角函數(shù)值相等二、探索新知思考1:(1).終邊相同的角的同一三角函數(shù)值有什么關(guān)系?【答案】相等(2).角 -α與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于x軸對稱(3).角 與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于y軸對稱(4).角 與α的終邊 有何位置關(guān)系?【答案】終邊關(guān)于原點對稱思考2: 已知任意角α的終邊與單位圓相交于點P(x, y),請同學(xué)們思考回答點P關(guān)于原點、x軸、y軸對稱的三個點的坐標是什么?【答案】點P(x, y)關(guān)于原點對稱點P1(-x, -y)點P(x, y)關(guān)于x軸對稱點P2(x, -y) 點P(x, y)關(guān)于y軸對稱點P3(-x, y)
本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數(shù)學(xué)必修1第四章第4.3.2節(jié)《對數(shù)的運算》。其核心是弄清楚對數(shù)的定義,掌握對數(shù)的運算性質(zhì),理解它的關(guān)鍵就是通過實例使學(xué)生認識對數(shù)式與指數(shù)式的關(guān)系,分析得出對數(shù)的概念及對數(shù)式與指數(shù)式的 互化,通過實例推導(dǎo)對數(shù)的運算性質(zhì)。由于它還與后續(xù)很多內(nèi)容,比如對數(shù)函數(shù)及其性質(zhì),這也是高考必考內(nèi)容之一,所以在本學(xué)科有著很重要的地位。解決重點的關(guān)鍵是抓住對數(shù)的概念、并讓學(xué)生掌握對數(shù)式與指數(shù)式的互化;通過實例推導(dǎo)對數(shù)的運算性質(zhì),讓學(xué)生準確地運用對數(shù)運算性質(zhì)進行運算,學(xué)會運用換底公式。培養(yǎng)學(xué)生數(shù)學(xué)運算、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。1、理解對數(shù)的概念,能進行指數(shù)式與對數(shù)式的互化;2、了解常用對數(shù)與自然對數(shù)的意義,理解對數(shù)恒等式并能運用于有關(guān)對數(shù)計算。
本節(jié)課選自《普通高中課程標準數(shù)學(xué)教科書-必修一》(人 教A版)第五章《三角函數(shù)》,本節(jié)課是第1課時,本節(jié)主要介紹推廣角的概念,引入正角、負角、零角的定義,象限角的概念以及終邊相同的角的表示法。樹立運動變化的觀點,并由此進一步理解推廣后的角的概念。教學(xué)方法可以選用討論法,通過實際問題,如時針與分針、體操等等都能形成角的流念,給學(xué)生以直觀的印象,形成正角、負角、零角的概念,明確規(guī)定角的概念,通過具體問題讓學(xué)生從不同角度理解終邊相同的角,從特殊到一般歸納出終邊相同的角的表示方法。A.了解任意角的概念;B.掌握正角、負角、零角及象限角的定義,理解任意角的概念;C.掌握終邊相同的角的表示方法;D.會判斷角所在的象限。 1.數(shù)學(xué)抽象:角的概念;2.邏輯推理:象限角的表示;3.數(shù)學(xué)運算:判斷角所在象限;4.直觀想象:從特殊到一般的數(shù)學(xué)思想方法;
知識探究(一):普查與抽查像人口普查這樣,對每一個調(diào)查調(diào)查對象都進行調(diào)查的方法,稱為全面調(diào)查(又稱普查)。 在一個調(diào)查中,我們把調(diào)查對象的全體稱為總體,組成總體的每一個調(diào)查對象稱為個體。為了強調(diào)調(diào)查目的,也可以把調(diào)查對象的某些指標的全體作為總體,每一個調(diào)查對象的相應(yīng)指標作為個體。問題二:除了普查,還有其他的調(diào)查方法嗎?由于人口普查需要花費巨大的財力、物力,因而不宜經(jīng)常進行。為了及時掌握全國人口變動狀況,我國每年還會進行一次人口變動情況的調(diào)查,根據(jù)抽取的居民情況來推斷總體的人口變動情況。像這樣,根據(jù)一定目的,從總體中抽取一部分個體進行調(diào)查,并以此為依據(jù)對總體的情況作出估計和判斷的方法,稱為抽樣調(diào)查(或稱抽查)。我們把從總體中抽取的那部分個體稱為樣本,樣本中包含的個體數(shù)稱為樣本量。
1、知識與技能 (1)認識勻速圓周運動的概念,理解線速度的概念,知道它就是物體做勻速圓周運動的瞬時速度;理解角速度和周期的概念,會用它們的公式進行計算; (2)理解線速度、角速度、周期之間的關(guān)系:v=rω=2πr/T; (3)理解勻速圓周運動是變速運動?! ?、過程與方法 (1)運用極限法理解線速度的瞬時性.掌握運用圓周運動的特點如何去分析有關(guān)問題; (2)體會有了線速度后.為什么還要引入角速度.運用數(shù)學(xué)知識推導(dǎo)角速度的單位。
五是引導(dǎo)婚事新辦。**縣婚姻登記管理中心在等候廳利用電子屏每天滾動播放移風(fēng)易俗宣傳標語及在醒目位置擺放“樹新風(fēng)除陋習(xí)婚事新辦”倡議書。特別利用春節(jié)、2.14等特殊節(jié)日向新人們發(fā)放“移風(fēng)易俗”倡議書,共發(fā)放倡議書1000余張。倡導(dǎo)辦事群眾婚事新辦、喪事簡辦,文明節(jié)約辦事。通過發(fā)放“移風(fēng)易俗”倡議書。引導(dǎo)群眾特別是廣大青年樹立正確的婚姻觀和價值觀,自覺抵制奢靡之風(fēng),抵制不文明行為。六是獨立設(shè)置頒證廳。2024年婚姻登記管理中心第一季度共發(fā)放移風(fēng)易俗宣傳單600余份,頒發(fā)結(jié)婚證20多對,共做婚前輔導(dǎo)19例。通過頒證,引導(dǎo)新人移風(fēng)易俗,新人可以把免費的婚禮作為“正規(guī)”的婚禮,打消了擇期舉辦更隆重婚禮的念頭,抵制鋪張浪費。弘揚時代新風(fēng)的婚俗禮儀入手,培養(yǎng)文明向上的現(xiàn)代婚俗文化,傳承良好家風(fēng)家教。
1.從監(jiān)測的范圍、速度,人力和財力的投入等方面看,遙感具有哪些特點?點撥:范圍更廣、速度更快、需要人力更少 、財力投入少。2.有人說:遙感是人的視力的延伸。你同意這種看法嗎?點撥:同意??梢詮倪b感的定義分析。從某種意義上說,人們“看”的過程就是在遙感,眼睛相當于傳感器。課堂小結(jié):遙感技術(shù)是國土整治和區(qū)域發(fā)展研究中應(yīng)用較廣的技術(shù) 手段之一,我國在這個領(lǐng)域已經(jīng)走在了世界的前列。我國的大部分土地已經(jīng)獲得了大比例尺的航空影像資料,成功發(fā)射了回收式國土資源衛(wèi)星,自行研制發(fā)射了“風(fēng)云”衛(wèi)星。遙感技術(shù)為我國自然資源開發(fā)與利用提供 了大量的有用的資料,在我國農(nóng)業(yè)估產(chǎn)、災(zāi)害監(jiān)測 、礦產(chǎn)勘察、土地利用、環(huán)境管理與城鄉(xiāng)規(guī)劃中起到了非常重要的作用。板書設(shè)計§1.2地理信息技術(shù)在區(qū)域地理環(huán)境研究中的應(yīng)用
(4)假如你是110指揮中心的調(diào)度員,描述在接到報警電話到指揮警車前往出事地點的工作程序。點撥:接警→確認出事地點的位置→(在顯示各巡警車的地理信息系統(tǒng)中)了解其周圍巡警車的位置→分析確定最近(或能最快到達)的巡警車→通知該巡警車。(5)由此例推想,地理信息技術(shù)還可以應(yīng)用于城市管理的哪些部門中?點撥:城市交通組織和管理、商業(yè)組織和管理、城市規(guī)劃、衛(wèi)生救護、物流等部門,都可利用地理信息技術(shù)?!菊n堂小結(jié)】現(xiàn)代地理學(xué)中,3S技術(shù)學(xué)科的發(fā)展與應(yīng)用,日益成為地理學(xué)前沿科學(xué)研究的重要領(lǐng)域,并成為地理學(xué)服務(wù)于社會生產(chǎn)的主要途徑,現(xiàn)在3S技術(shù)已經(jīng)廣泛應(yīng)用于社會的各個領(lǐng)域。它們?nèi)呒扔蟹止び钟新?lián)系。遙感技術(shù)主要用于地理信息數(shù)據(jù)的獲取,全球定位系統(tǒng)主要用于地理信息的空間定位,地理信息系統(tǒng)主要用來對地理信息數(shù)據(jù)的管理、更新、分析等。
一、活動內(nèi)容分析西歐從5世紀末至9世紀歷經(jīng)四個世紀完成了由奴隸制度向封建制度的轉(zhuǎn)變,西歐中世紀即西歐的封建社會,形成了與中國封建社會不同的特點。理解這些特點,將有助于學(xué)生理解西歐在世界上最早進入資本主義社會的原因。盡管神學(xué)世界觀籠罩了西方中世紀,是黑暗的,但是應(yīng)看到,自古代流傳下來的政治思想傳統(tǒng)如平等、自由、民主、法制等思想史都以不同的形式保存下來。歐洲的中世紀表面上看起來是一個陰森森的一千年(五百年到一千五百年),但實際上確實孕育了西方近代文明的重要時期。從探究活動的內(nèi)容上看與第二單元的古代希臘羅馬的政治制度及第三單元近代西方資本主義政治制度的確立與發(fā)展明確相關(guān),有承上啟下的作用。二、活動重點設(shè)計理解西歐封建社會的政治特點及對后世的影響;正確認識基督教文明
【例3】本例中“p是q的充分不必要條件”改為“p是q的必要不充分條件”,其他條件不變,試求m的取值范圍.【答案】見解析【解析】由x2-8x-20≤0得-2≤x≤10,由x2-2x+1-m2≤0(m>0)得1-m≤x≤1+m(m>0)因為p是q的必要不充分條件,所以q?p,且p?/q.則{x|1-m≤x≤1+m,m>0}?{x|-2≤x≤10}所以m>01-m≥-21+m≤10,解得0<m≤3.即m的取值范圍是(0,3].解題技巧:(利用充分、必要、充分必要條件的關(guān)系求參數(shù)范圍)(1)化簡p、q兩命題,(2)根據(jù)p與q的關(guān)系(充分、必要、充要條件)轉(zhuǎn)化為集合間的關(guān)系,(3)利用集合間的關(guān)系建立不等關(guān)系,(4)求解參數(shù)范圍.跟蹤訓(xùn)練三3.已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要條件,求實數(shù)a的取值范圍.【答案】見解析【解析】因為“x∈P”是x∈Q的必要條件,所以Q?P.所以a-4≤1a+4≥3解得-1≤a≤5即a的取值范圍是[-1,5].五、課堂小結(jié)讓學(xué)生總結(jié)本節(jié)課所學(xué)主要知識及解題技巧
本節(jié)課是在學(xué)習(xí)了三角函數(shù)圖象和性質(zhì)的前提下來學(xué)習(xí)三角函數(shù)模型的簡單應(yīng)用,進一步突出函數(shù)來源于生活應(yīng)用于生活的思想,讓學(xué)生體驗一些具有周期性變化規(guī)律的實際問題的數(shù)學(xué)“建模”思想,從而培養(yǎng)學(xué)生的創(chuàng)新精神和實踐能力.課程目標1.了解三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型,并會用三角函數(shù)模型解決一些簡單的實際問題.2.實際問題抽象為三角函數(shù)模型. 數(shù)學(xué)學(xué)科素養(yǎng)1.邏輯抽象:實際問題抽象為三角函數(shù)模型問題;2.數(shù)據(jù)分析:分析、整理、利用信息,從實際問題中抽取基本的數(shù)學(xué)關(guān)系來建立數(shù)學(xué)模型; 3.數(shù)學(xué)運算:實際問題求解; 4.數(shù)學(xué)建模:體驗一些具有周期性變化規(guī)律的實際問題的數(shù)學(xué)建模思想,提高學(xué)生的建模、分析問題、數(shù)形結(jié)合、抽象概括等能力.
本節(jié)通過一些函數(shù)模型的實例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用,進一步認識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學(xué)模型,能初步運用函數(shù)思想解決一些生活中的簡單問題。課程目標1.能利用已知函數(shù)模型求解實際問題.2.能自建確定性函數(shù)模型解決實際問題.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:建立函數(shù)模型,把實際應(yīng)用問題轉(zhuǎn)化為數(shù)學(xué)問題;2.邏輯推理:通過數(shù)據(jù)分析,確定合適的函數(shù)模型;3.數(shù)學(xué)運算:解答數(shù)學(xué)問題,求得結(jié)果;4.數(shù)據(jù)分析:把數(shù)學(xué)結(jié)果轉(zhuǎn)譯成具體問題的結(jié)論,做出解答;5.數(shù)學(xué)建模:借助函數(shù)模型,利用函數(shù)的思想解決現(xiàn)實生活中的實際問題.重點:利用函數(shù)模型解決實際問題;難點:數(shù)模型的構(gòu)造與對數(shù)據(jù)的處理.
等式性質(zhì)與不等式性質(zhì)是高中數(shù)學(xué)的主要內(nèi)容之一,在高中數(shù)學(xué)中占有重要地位,它是刻畫現(xiàn)實世界中量與量之間關(guān)系的有效數(shù)學(xué)模型,在現(xiàn)實生活中有著廣泛的應(yīng),有著重要的實際意義.同時等式性質(zhì)與不等式性質(zhì)也為學(xué)生以后順利學(xué)習(xí)基本不等式起到重要的鋪墊.課程目標1. 掌握等式性質(zhì)與不等式性質(zhì)以及推論,能夠運用其解決簡單的問題.2. 進一步掌握作差、作商、綜合法等比較法比較實數(shù)的大?。?3. 通過教學(xué)培養(yǎng)學(xué)生合作交流的意識和大膽猜測、樂于探究的良好思維品質(zhì)。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:不等式的基本性質(zhì);2.邏輯推理:不等式的證明;3.數(shù)學(xué)運算:比較多項式的大小及重要不等式的應(yīng)用;4.數(shù)據(jù)分析:多項式的取值范圍,許將單項式的范圍之一求出,然后相加或相乘.(將減法轉(zhuǎn)化為加法,將除法轉(zhuǎn)化為乘法);5.數(shù)學(xué)建模:運用類比的思想有等式的基本性質(zhì)猜測不等式的基本性質(zhì)。
對數(shù)函數(shù)與指數(shù)函數(shù)是相通的,本節(jié)在已經(jīng)學(xué)習(xí)指數(shù)函數(shù)的基礎(chǔ)上通過實例總結(jié)歸納對數(shù)函數(shù)的概念,通過函數(shù)的形式與特征解決一些與對數(shù)函數(shù)有關(guān)的問題.課程目標1、通過實際問題了解對數(shù)函數(shù)的實際背景;2、掌握對數(shù)函數(shù)的概念,并會判斷一些函數(shù)是否是對數(shù)函數(shù). 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:對數(shù)函數(shù)的概念;2.邏輯推理:用待定系數(shù)法求函數(shù)解析式及解析值;3.數(shù)學(xué)運算:利用對數(shù)函數(shù)的概念求參數(shù);4.數(shù)學(xué)建模:通過由抽象到具體,由具體到一般的思想總結(jié)對數(shù)函數(shù)概念.重點:理解對數(shù)函數(shù)的概念和意義;難點:理解對數(shù)函數(shù)的概念.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入我們已經(jīng)研究了死亡生物體內(nèi)碳14的含量y隨死亡時間x的變化而衰減的規(guī)律.反過來,已知死亡生物體內(nèi)碳14的含量,如何得知死亡了多長時間呢?進一步地,死亡時間t是碳14的含量y的函數(shù)嗎?
課本從引進函數(shù)概念開始就比較注重函數(shù)的不同表示方法:解析法,圖象法,列表法.函數(shù)的不同表示方法能豐富對函數(shù)的認識,幫助理解抽象的函數(shù)概念.特別是在信息技術(shù)環(huán)境下,可以使函數(shù)在形與數(shù)兩方面的結(jié)合得到更充分的表現(xiàn),使學(xué)生通過函數(shù)的學(xué)習(xí)更好地體會數(shù)形結(jié)合這種重要的數(shù)學(xué)思想方法.因此,在研究函數(shù)時,要充分發(fā)揮圖象的直觀作用.在研究圖象時,又要注意代數(shù)刻畫以求思考和表述的精確性.課本將映射作為函數(shù)的一種推廣,這與傳統(tǒng)的處理方式有了邏輯順序上的變化.這樣處理,主要是想較好地銜接初中的學(xué)習(xí),讓學(xué)生將更多的精力集中理解函數(shù)的概念,同時,也體現(xiàn)了從特殊到一般的思維過程.課程目標1、明確函數(shù)的三種表示方法;2、在實際情境中,會根據(jù)不同的需要選擇恰當?shù)姆椒ū硎竞瘮?shù);3、通過具體實例,了解簡單的分段函數(shù),并能簡單應(yīng)用.
客觀世界中的各種各樣的運動變化現(xiàn)象均可表現(xiàn)為變量間的對應(yīng)關(guān)系,這種關(guān)系常??捎煤瘮?shù)模型來描述,并且通過研究函數(shù)模型就可以把我相應(yīng)的運動變化規(guī)律.課程目標1、能夠找出簡單實際問題中的函數(shù)關(guān)系式,初步體會應(yīng)用一次函數(shù)、二次函數(shù)、冪函數(shù)、分段函數(shù)模型解決實際問題; 2、感受運用函數(shù)概念建立模型的過程和方法,體會一次函數(shù)、二次函數(shù)、冪函數(shù)、分段函數(shù)模型在數(shù)學(xué)和其他學(xué)科中的重要性. 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:總結(jié)函數(shù)模型; 2.邏輯推理:找出簡單實際問題中的函數(shù)關(guān)系式,根據(jù)題干信息寫出分段函數(shù); 3.數(shù)學(xué)運算:結(jié)合函數(shù)圖象或其單調(diào)性來求最值. ; 4.數(shù)據(jù)分析:二次函數(shù)通過對稱軸和定義域區(qū)間求最優(yōu)問題; 5.數(shù)學(xué)建模:在具體問題情境中,運用數(shù)形結(jié)合思想,將自然語言用數(shù)學(xué)表達式表示出來。 重點:運用一次函數(shù)、二次函數(shù)、冪函數(shù)、分段函數(shù)模型的處理實際問題;難點:運用函數(shù)思想理解和處理現(xiàn)實生活和社會中的簡單問題.