解析:根據(jù)銳角三角函數(shù)的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結(jié):當角度在0°cosA>0.當角度在45°<∠A<90°間變化時,tanA>1.變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第10題【類型四】 與三角函數(shù)有關(guān)的探究性問題在Rt△ABC中,∠C=90°,D為BC邊(除端點外)上的一點,設(shè)∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關(guān)系;(2)試證明你的結(jié)論.解析:(1)因為在△ABD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數(shù)的定義可求出sinα,sinβ的關(guān)系式即可得出結(jié)論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結(jié):利用三角函數(shù)的定義把兩角的正弦值表示成線段的比,然后進行比較是解題的關(guān)鍵.
[教學目標]1、 理解并掌握正弦、余弦的含義,會在直角三角形中求出某個銳角的正弦和余弦值。2、能用函數(shù)的觀點理解正弦、余弦和正切。[教學重點與難點] 在直角三角形中求出某個銳角的正弦和余弦值。[教學過程] 一、情景創(chuàng)設(shè)1、問題1:如圖,小明沿著某斜坡向上行走了13m后,他的相對位置升高了5m,如果他沿著該斜坡行走了20m,那么他的相對位置升高了多少?行走了a m呢?2、問題2:在上述問題中,他在水平方向又分別前進了多遠?二、探索活動1、思考:從上面的兩個問題可以看出:當直角三角形的一個銳角的大小已確定時,它的對邊與斜邊的比值________;它的鄰邊與斜邊的比值________。(根據(jù)是__________________。)2、正弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的對邊a與斜邊c的比叫做∠A的______,記作________,即:sinA=________=________.3、余弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的鄰邊b與斜邊c的比叫做∠A的______,記作=_________,即:cosA=______=_____。(你能寫出∠B的正弦、余弦的表達式嗎?)試試看.___________.
解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點P在⊙O′的外部;QO′=1<2,則點Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點R在圓上.方法總結(jié):注意運用平面內(nèi)兩點之間的距離公式,設(shè)平面內(nèi)任意兩點的坐標分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點與圓的位置關(guān)系的實際應(yīng)用如圖,城市A的正北方向50千米的B處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為100千米,AC是一條直達C城的公路,從A城發(fā)往C城的客車車速為60千米/時.(1)當客車從A城出發(fā)開往C城時,某人立即打開無線電收音機,客車行駛了0.5小時的時候,接收信號最強.此時,客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號越強)?(2)客車從A城到C城共行駛2小時,請你判斷到C城后還能接收到信號嗎?請說明理由.
一、本章知識要點: 1、銳角三角函數(shù)的概念; 2、解直角三角形。二、本章教材分析: (一).使學生正確理解和掌握三角函數(shù)的定義,才能正確理解和掌握直角三角形中邊與角的相互關(guān)系,進而才能利用直角三角形的邊與角的相互關(guān)系去解直角三角形,因此三角形函數(shù)定義既是本章的重點又是理解本章知識的關(guān)鍵,而且也是本章知識的難點。如何解決這一關(guān)鍵問題,教材采取了以下的教學步驟:1. 從實際中提出問題,如修建揚水站的實例,這一實例可歸結(jié)為已知RtΔ的一個銳角和斜邊求已知角的對邊的問題。顯然用勾股定理和直角三角形兩個銳角互余中的邊與邊或角與角的關(guān)系無法解出了,因此需要進一步來研究直角三角形中邊與角的相互關(guān)系。2. 教材又采取了從特殊到一般的研究方法利用學生的舊知識,以含30°、45°的直角三角形為例:揭示了直角三角形中一個銳角確定為30°時,那么這角的對邊與斜邊之比就確定比值為1:2。
(3)若要滿足結(jié)論,則∠BFO=∠GFC,根據(jù)切線長定理得∠BFO=∠EFO,從而得到這三個角應(yīng)是60°,然后結(jié)合已知的正方形的邊長,也是圓的直徑,利用30°的直角三角形的知識進行計算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設(shè)存在點P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問題的結(jié)論有兩種可能,所以具有開放的特征,在假設(shè)存在性以后進行的推理或計算.一般思路是:假設(shè)存在——推理論證——得出結(jié)論.若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,若導(dǎo)出矛盾,就做出“不存在”的判斷.
我們知道圓是一個旋轉(zhuǎn)對稱圖形,無論繞圓心旋轉(zhuǎn)多少度,它都能與自身重合,對稱中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點O逆時針旋轉(zhuǎn)某個角度,畫出旋轉(zhuǎn)之后的圖形,比較前后兩個圖形,你能發(fā)現(xiàn)什么?二、合作探究探究點:圓心角、弧、弦之間的關(guān)系【類型一】 利用圓心角、弧、弦之間的關(guān)系證明線段相等如圖,M為⊙O上一點,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據(jù)等弧對等圓心角,則∠MOD=∠MOE,再由角平分線的性質(zhì),得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結(jié):圓心角、弧、弦之間相等關(guān)系的定理可以用來證明線段相等.本題考查了等弧對等圓心角,以及角平分線的性質(zhì).
教學目標:1、理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。2、了解計算一個銳角的正切值的方法。教學重點:理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。教學難點:計算一個銳角的正切值的方法。教學過程:一、觀察回答:如圖某體育館,為了方便不同需求的觀眾設(shè)計了多種形式的臺階。下列圖中的兩個臺階哪個更陡?你是怎么判斷的?圖(1) 圖(2)[點撥]可將這兩個臺階抽象地看成兩個三角形答:圖 的臺階更陡,理由 二、探索活動1、思考與探索一:除了用臺階的傾斜角度大小外,還可以如何描述臺階的傾斜程度呢?① 可通過測量BC與AC的長度,② 再算出它們的比,來說明臺階的傾斜程度。(思考:BC與AC長度的比與臺階的傾斜程度有何關(guān)系?)答:_________________.③ 討論:你還可以用其它什么方法?能說出你的理由嗎?答:________________________.2、思考與探索二:
解析:①以O(shè)為圓心,任意長為半徑作弧交OA于D,交OB于C;②以O(shè)′為圓心,以同樣長(OC長)為半徑作弧,交O′B′于C′;③以C′為圓心,CD長為半徑作弧交前弧于D′;④過D′作射線O′A′,∠A′O′B′為所求.解:如下圖所示.【類型三】 利用尺規(guī)作角的和或差已知∠AOB,用尺規(guī)作圖法作∠A′O′B′,使∠A′O′B′=2∠AOB.解析:先作一個角等于∠AOB,再以這個角的一邊為邊在其外部作一個角等于∠AOB,那么圖中最大的角就是所求的角.解:作法:①作∠DO′B′=∠AOB;②在∠DO′B′的外部作∠A′O′D=∠AOB,∠A′O′B′就是所求的角(如下圖).三、板書設(shè)計1.尺規(guī)作圖2.用尺規(guī)作角本節(jié)課學習了有關(guān)尺規(guī)作圖的相關(guān)知識,課堂教學內(nèi)容以學生動手操作為主,在學生動手操作的過程中要鼓勵學生大膽動手,培養(yǎng)學生的動手能力和書面語言表達能力
這樣設(shè)計,既復(fù)習了新課所必備的舊知,又自然合理地引入新課,一開始就緊緊吸引了學生的注意力,激發(fā)起學生的求知欲。(二)探索新知1、質(zhì)數(shù)和合數(shù)的意義(教學例1)。(1)讓學生拿出印發(fā)的寫有例1原題的練習紙,利用學過的求約數(shù)的方法,寫出1-12每個數(shù)的所有約數(shù)。(2)按照約數(shù)個數(shù)的多少進行分類,提出以下問題讓學生討論:①每一個數(shù)約數(shù)的個數(shù)相同嗎?各有多少個約數(shù)?②按照每個數(shù)的約數(shù)個數(shù)的多少,可以把這些數(shù)分成幾類?你認為是一類的用同一符號標出來。檢查學生討論情況并提問:你是怎樣分的?為什么這樣分?每一類各包括了哪幾個數(shù)?讓學生充分發(fā)表意見,然后師生共同歸納,并用投影出示三種分類情況:
(4)判斷中進行教學內(nèi)容的遞深,形成了反思——學習——強化的整個學習過程。在學生做出“6是倍數(shù)”的正確判斷之后,并不簡單換章,而是以此為契機“教學找一個數(shù)的因數(shù)”以談話導(dǎo)入,形成知識相互的聯(lián)系與區(qū)別,“談話:必須說清誰是誰的倍數(shù),誰是誰的因數(shù)。所以6可能是某些數(shù)的倍數(shù),也可能是某些數(shù)的因數(shù),那我們就來找一個數(shù)的因數(shù)。你能找出36所有的因數(shù)嗎?”(5)討論互評,自主學習放手讓學生學習找一個數(shù)的因數(shù),從無序到有序,從自尋到互學,請學生板書,學生評價,“提問:你是用什么方法找到一個數(shù)的因數(shù),可以介紹給大家嗎?還有其他方法嗎?”1×36=36 36÷1=362×18=36 36÷2=183×12=36 36÷3=124×9=363 6÷4=96×6=36 36÷6=6(6)自主不失指導(dǎo),掌握不失總結(jié)如:提問:5為什么不是36的因數(shù)?(因為36÷5不能整除,有余數(shù))
3.第三個環(huán)節(jié)是:鞏固深化,應(yīng)用新知。首先讓學生完成課本76頁練習十三的第一題。主要是檢驗學生對復(fù)式折線統(tǒng)計圖繪制方法的掌握情況,并能對復(fù)式折線統(tǒng)計圖所表達的信息進行簡單的分析、比較。練習時,先讓學生在書上獨立完成,再說一說制圖的正確步驟,我用多媒體演示,并提醒學生注意最高氣溫和最低氣溫對應(yīng)的折線各用什么表示,還要寫上數(shù)據(jù)和制圖日期,根據(jù)學生的制作情況,還可以組織學生討論一下,兩條折線上的數(shù)據(jù)怎樣寫就不混淆了?最后讓學生看圖回答題中的問題,這里重點幫助學生弄清“溫差”的含義,另外,在回答最后一個問題時,學生可能會說“我喜歡看統(tǒng)計圖”,我就重點讓學生說說為什么喜歡看統(tǒng)計圖?從而讓學生進一步體會復(fù)式折線統(tǒng)計圖的直觀、形象的優(yōu)越性
2、81頁的做一做。做完后,引導(dǎo)學生觀察4和8;16和32這一組的最大公因數(shù)的特點:當較大數(shù)是較小數(shù)的倍數(shù)時,他們的最大公因數(shù)是較小數(shù)。1和7;8和9這一組數(shù)的最大公因數(shù)只有1。這樣的練習設(shè)計,目的是讓學生發(fā)現(xiàn)求最大公因數(shù)中的特殊情況。四、遷移運用,拓展探究寫出下列各分數(shù)分子和分母的最大公因數(shù)。7/21 8/28 16/40 6/15 目的是為下一節(jié)課《約分》做好了知識的鋪墊。全課總結(jié):通過今天的學習,你有什么收獲?同桌互說,指名匯報。這樣的總結(jié),從知識的層面上做了一次回顧。并及時的總結(jié)了解學情,真正做到“堂堂清”五、說板書設(shè)計我本節(jié)課的板書設(shè)計力圖全面而簡明的將本課的內(nèi)容傳遞給學生,便于學生理解和記憶。各位評委老師,我僅從教材、教法、學法、及教學過程、板書設(shè)計等幾個方面對本課進行說明。這只是我預(yù)設(shè)的一種方案,但是課堂千變?nèi)f化的生成效果,最終還要和學生、課堂相結(jié)合。說課的不足之處還請多多指教,我的說課到此結(jié)束,謝謝各位評委老師。
此圖是一個復(fù)式折線統(tǒng)計圖,考察內(nèi)容是根據(jù)統(tǒng)計圖,進行數(shù)據(jù)的有效分析。(1)因為統(tǒng)計圖中藍色的折線表示學齡兒童,根據(jù)對學齡兒童的折線數(shù)據(jù)分析發(fā)現(xiàn):1980年的學齡兒童最多,2000年的學齡兒童最少。(2)根據(jù)題目要求的分析:沒上學的學齡兒童實際上是指:學齡兒童的人數(shù)與實際入學兒童人數(shù)的差。通過仔細觀察統(tǒng)計圖,可以直觀地發(fā)現(xiàn):1980年的學齡兒童和入學人數(shù)之間的差值最大,2000年的學齡兒童和入學人數(shù)之間的差值最小。所以,1980年沒上學的學齡兒童最多,2000年的最少。(3)這一問比較開放,只要合理即可。三、練習二十七第9——14題解答指導(dǎo):9. 81cm3=81ml 700dm3=0.7m3 560ml=0.56L 2.3dm3=2300cm310. 根據(jù)圖示可知:把鐵皮做成一個長方體,長方體的長為30—5×2=20(cm),寬為25—5×2=15(cm),高也就是切去的正方形的邊長5cm。(1)求“這個盒子用了多少鐵皮?”也就是求這個鐵皮盒子(無蓋)的表面積。
【設(shè)計意圖:讓學生在操作、探索的基礎(chǔ)上,組內(nèi)交流想法,再在班內(nèi)交流匯報,讓學生的語言得到相互交流、碰撞,從而不斷激發(fā)學生的思維火花?!繋煟耗隳馨堰@些擺法用算式寫出來嗎?(學生獨立寫出算式并匯報)依學生匯報板書:1×12=122×6=1212×1=126×2=123×4=124×3=12師:請同學們觀察一下,哪兩道算式的因數(shù)一樣?學生觀察算式,找出因數(shù)一樣的算式。師:那么,這6個算式最少能用幾種算式表示出來?引導(dǎo)學生說出能用3種方法表示,這三種方法是:1×12=122×6=123×4=12,并指明算式一樣時選擇其中一種說出來。板書:12=1×12=2×6=3×4師:同學們觀察一下,12的因數(shù)有哪幾個?(學生說出12的因數(shù)有:1、12、2、6、3、4。)師:拼長方形與找因數(shù)有什么關(guān)系呢?(指名學生說一說)師:根據(jù)剛才的操作交流,請同學們說一說怎樣找一個數(shù)的因數(shù)呢?(學生思考片刻后匯報,可以組內(nèi)交流。)引導(dǎo)學生說出:用乘法思路想,看哪兩個數(shù)相乘得12,然后一對一對找出來。
第一:說教材?!百|(zhì)數(shù)和合數(shù)”是九年義務(wù)教育小學數(shù)學五年級(上)第三單元的內(nèi)容,在教材第39~40頁;是學生學習了因數(shù)和倍數(shù)的意義,了解了2、5、3倍數(shù)的特征之后的重要知識,它是學生學習分解質(zhì)因數(shù)、求最大公約數(shù)和最小公倍數(shù)的基礎(chǔ),在本章教學中起著承前啟后的重要作用。第二:說教法:根據(jù)新課標的精神和學生實際,我將本節(jié)課教學目標定為:1)找因數(shù)填表格經(jīng)歷探索質(zhì)數(shù)與合數(shù)的過程,理解質(zhì)數(shù)與合數(shù)的意義;2)能正確判斷一個數(shù)是質(zhì)數(shù)或合數(shù);3)在研究質(zhì)數(shù)的過程中豐富對數(shù)學發(fā)展的認識,感受數(shù)學發(fā)展的文化魅力;4)、在猜想——驗證——概括——理解的過程中體會學習數(shù)學的樂趣,積累數(shù)學學習的方法。第三:說教學重難點重點:理解質(zhì)數(shù)與合數(shù)的意義。難點:能正確判斷一個數(shù)是質(zhì)數(shù)還是合數(shù),體會數(shù)學學習的方法。教學準備:課件教學安排:兩課時。
2、提出問題:3張大餅怎樣能夠平均分給唐僧師徒四人呢?每人得到大餅的多少張呢?3、揭示課題:分餅二、動手操作,探究新知:活動操作一:3張餅平均分給4個人。1、要求學生用準備好的圓紙片代表餅,剪一剪,拼一拼,畫一畫,小組交流自己的想法。教師巡視并進行指導(dǎo)。2、各小組匯報分法及分得的結(jié)果。(指名回答)第一種分法:把一張一張的餅平均分成4份,每人分每張餅的,共分一張餅的。并請學生上臺演示分的整個過程。第二種分法:把3張餅疊起來,平均分成4份,每人分得3張餅的,也是張餅,請學生上臺演示分的整個過程。3、演示學生兩種分法的圖片:4、請觀察,這個分數(shù)有什么特點,分子比分母小,你還能舉幾個這樣的例子嗎?像這樣的分數(shù)叫作真分數(shù),真分數(shù)小于1。
課程標準中明確指出:“小學數(shù)學的教學內(nèi)容絕大多數(shù)可以聯(lián)系學生的生活實際,找準每一節(jié)教材內(nèi)容與學生生活實際的“切入點”可讓學生產(chǎn)生一種熟悉感、親切感“,以及“數(shù)學教學活動中,教師應(yīng)向?qū)W生提供充分從事數(shù)學活動的機會,幫助他們在自主探索的過程中真正理解和掌握基本的數(shù)學知識與技能。”要將這個理念落實在課堂教學中,就要求教師能根據(jù)教學的具體內(nèi)容,選擇恰當?shù)膶W習方式,并巧妙創(chuàng)設(shè)學生主動探索的機會,變“接受學習”為“創(chuàng)造學習”,讓學生在觀察、操作、討論、交流、歸納、整理、概括的過程中學習新知,充分以學生為主體,逐步培養(yǎng)學生的創(chuàng)新意識,形成初步的探索和解決問題的能力。根據(jù)以上思想,本節(jié)課的設(shè)計我主要從尊重學生已有的知識經(jīng)驗;在觀察與操作中去親身體驗知識的形成過程,掌握約分的方法。
尊敬的領(lǐng)導(dǎo),評委老師:大家好,今天我說課的題目是北師大版小學數(shù)學五年級上冊第一單元第五節(jié)《除得盡嗎》。我將會以說教材、說學生、說教法、說教學過程、說教學效果評測、說反思等六各方面進行我的說課。一:說教材《除得盡嗎》本節(jié)內(nèi)容是本單元的第五節(jié),是在學生已經(jīng)學習了整數(shù)除整數(shù)、整數(shù)除小樹、小樹除小數(shù)、以及四舍五入保留若干位小樹的基礎(chǔ)之上進行設(shè)置的。本節(jié)內(nèi)容的主要知識點就是讓學生認識循環(huán)小數(shù)、表示循環(huán)小數(shù)以及“四舍五入”法取其近似值,總體難度不大。二:說學生對于五年級學生而言,已經(jīng)在四年級學習了“四舍五入”法,所以在本節(jié)新授教學中已經(jīng)有了一定的基礎(chǔ)。對于教師的教和學生的學都有了一定的促進作用。
說明:此處進行的是一次嘗試應(yīng)用乘方運算來解決開頭的問題,互相呼應(yīng),以體現(xiàn)整節(jié)課的完整性,把學生開始的興趣再次引向高潮。趣味探索:一張薄薄的紙對折56次后有多厚?試驗一下你能折這么厚嗎?說明:這個探索實際上仍是對學生應(yīng)用能力的一個檢查,紙對折56次,用什么運算來計算比較方便,另外計算過程中可使用計算器,進一步加深對乘方意義的理解(五)作業(yè)P56頁1、2說明:這兩個習題是對課本上例題的簡單重復(fù)和模仿,通過本節(jié)課的學習,多數(shù)學生應(yīng)該可以較輕松地完成??傊谡麄€教學設(shè)計中,我始終以學生為課堂主體,讓他們積極參與到教學中來,不斷從舊知識中獲得新的認識,通過不斷進行聯(lián)系比較,讓學生主動自覺地去思考、探索、總結(jié)直至發(fā)現(xiàn)結(jié)果、發(fā)現(xiàn)"方法",進而優(yōu)化了整個教學。
五、兩點說明。(一)、板書設(shè)計這節(jié)課的板書我是這樣設(shè)計的,在黑板的正上方中間處寫明課題,然后把板書分為左右兩部分,左邊是有理數(shù)除法的法則,為了培養(yǎng)學生把文字語言轉(zhuǎn)化成符號語言的能力,板書中只出現(xiàn)兩種法則的符號表示,從而加深他們對法則的理解,板書右邊是學生的板演,以便于比較他們做題中出現(xiàn)的問題。板書下方是課堂小結(jié),重點寫出:有理數(shù)的除法可以轉(zhuǎn)化成有理數(shù)的乘法,以體現(xiàn)本節(jié)課中的重要的數(shù)學思想方法。有理數(shù)的除法板演練習:有理數(shù)除法的法則:a÷b=a×1/b(b≠0) 1a>0,b>0,a/b>0;a0; 2a>0,b0,a/b<0. 3課堂小結(jié):有理數(shù)的除法 有理數(shù)的乘法轉(zhuǎn)化(二)、時間分配:教學過程中的八個環(huán)節(jié)所需的時間分別為:1分鐘、2分鐘、5分鐘、8分鐘、8分鐘、16分鐘、2分鐘、1分鐘。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。