它位于三角函數(shù)與數(shù)學(xué)變換的結(jié)合點(diǎn)上,能較好反應(yīng)三角函數(shù)及變換之間的內(nèi)在聯(lián)系和相互轉(zhuǎn)換,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性上。作用體現(xiàn)在它的工具性上。前面學(xué)生已經(jīng)掌握了兩角和與差的正弦、余弦、正切公式以及二倍角公式,并能通過(guò)這些公式進(jìn)行求值、化簡(jiǎn)、證明,雖然學(xué)生已經(jīng)具備了一定的推理、運(yùn)算能力,但在數(shù)學(xué)的應(yīng)用意識(shí)與應(yīng)用能力方面尚需進(jìn)一步培養(yǎng).課程目標(biāo)1.能用二倍角公式推導(dǎo)出半角公式,體會(huì)三角恒等變換的基本思想方法,以及進(jìn)行簡(jiǎn)單的應(yīng)用. 2.了解三角恒等變換的特點(diǎn)、變換技巧,掌握三角恒等變換的基本思想方法. 3.能利用三角恒等變換的技巧進(jìn)行三角函數(shù)式的化簡(jiǎn)、求值以及證明,進(jìn)而進(jìn)行簡(jiǎn)單的應(yīng)用. 數(shù)學(xué)學(xué)科素養(yǎng)1.邏輯推理: 三角恒等式的證明; 2.數(shù)據(jù)分析:三角函數(shù)式的化簡(jiǎn); 3.數(shù)學(xué)運(yùn)算:三角函數(shù)式的求值.
新知講授(一)——古典概型 對(duì)隨機(jī)事件發(fā)生可能性大小的度量(數(shù)值)稱(chēng)為事件的概率。我們將具有以上兩個(gè)特征的試驗(yàn)稱(chēng)為古典概型試驗(yàn),其數(shù)學(xué)模型稱(chēng)為古典概率模型,簡(jiǎn)稱(chēng)古典概型。即具有以下兩個(gè)特征:1、有限性:樣本空間的樣本點(diǎn)只有有限個(gè);2、等可能性:每個(gè)樣本點(diǎn)發(fā)生的可能性相等。思考一:下面的隨機(jī)試驗(yàn)是不是古典概型?(1)一個(gè)班級(jí)中有18名男生、22名女生。采用抽簽的方式,從中隨機(jī)選擇一名學(xué)生,事件A=“抽到男生”(2)拋擲一枚質(zhì)地均勻的硬幣3次,事件B=“恰好一次正面朝上”(1)班級(jí)中共有40名學(xué)生,從中選擇一名學(xué)生,即樣本點(diǎn)是有限個(gè);因?yàn)槭请S機(jī)選取的,所以選到每個(gè)學(xué)生的可能性都相等,因此這是一個(gè)古典概型。
9.例二:如圖,AB∩α=B,A?α, ?a.直線(xiàn)AB與a具有怎樣的位置關(guān)系?為什么?解:直線(xiàn)AB與a是異面直線(xiàn)。理由如下:若直線(xiàn)AB與a不是異面直線(xiàn),則它們相交或平行,設(shè)它們確定的平面為β,則B∈β, 由于經(jīng)過(guò)點(diǎn)B與直線(xiàn)a有且僅有一個(gè)平面α,因此平面平面α與β重合,從而 , 進(jìn)而A∈α,這與A?α矛盾。所以直線(xiàn)AB與a是異面直線(xiàn)。補(bǔ)充說(shuō)明:例二告訴我們一種判斷異面直線(xiàn)的方法:與一個(gè)平面相交的直線(xiàn)和這個(gè)平面內(nèi)不經(jīng)過(guò)交點(diǎn)的直線(xiàn)是異面直線(xiàn)。10. 例3 已知a,b,c是三條直線(xiàn),如果a與b是異面直線(xiàn),b與c是異面直線(xiàn),那么a與c有怎樣的位置關(guān)系?并畫(huà)圖說(shuō)明.解: 直線(xiàn)a與直線(xiàn)c的位置關(guān)系可以是平行、相交、異面.如圖(1)(2)(3).總結(jié):判定兩條直線(xiàn)是異面直線(xiàn)的方法(1)定義法:由定義判斷兩條直線(xiàn)不可能在同一平面內(nèi).
由于三角函數(shù)是刻畫(huà)周期變化現(xiàn)象的數(shù)學(xué)模型,這也是三角函數(shù)不同于其他類(lèi)型函數(shù)的最重要的地方,而且對(duì)于周期函數(shù),我們只要認(rèn)識(shí)清楚它在一個(gè)周期的區(qū)間上的性質(zhì),那么它的性質(zhì)也就完全清楚了,因此本節(jié)課利用單位圓中的三角函數(shù)的定義、三角函數(shù)值之間的內(nèi)在聯(lián)系性等來(lái)作圖,從畫(huà)出的圖形中觀(guān)察得出五個(gè)關(guān)鍵點(diǎn),得到“五點(diǎn)法”畫(huà)正弦函數(shù)、余弦函數(shù)的簡(jiǎn)圖.課程目標(biāo)1.掌握“五點(diǎn)法”畫(huà)正弦曲線(xiàn)和余弦曲線(xiàn)的步驟和方法,能用“五點(diǎn)法”作出簡(jiǎn)單的正弦、余弦曲線(xiàn).2.理解正弦曲線(xiàn)與余弦曲線(xiàn)之間的聯(lián)系. 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:正弦曲線(xiàn)與余弦曲線(xiàn)的概念; 2.邏輯推理:正弦曲線(xiàn)與余弦曲線(xiàn)的聯(lián)系; 3.直觀(guān)想象:正弦函數(shù)余弦函數(shù)的圖像; 4.數(shù)學(xué)運(yùn)算:五點(diǎn)作圖; 5.數(shù)學(xué)建模:通過(guò)正弦、余弦圖象圖像,解決不等式問(wèn)題及零點(diǎn)問(wèn)題,這正是數(shù)形結(jié)合思想方法的應(yīng)用.
1.圓柱、圓錐、圓臺(tái)的表面積與多面體的表面積一樣,圓柱、圓錐、圓臺(tái)的表面積也是圍成它的各個(gè)面的面積和。利用圓柱、圓錐、圓臺(tái)的展開(kāi)圖如圖,可以得到它們的表面積公式:2.思考1:圓柱、圓錐、圓臺(tái)的表面積之間有什么關(guān)系?你能用圓柱、圓錐、圓臺(tái)的結(jié)構(gòu)特征來(lái)解釋這種關(guān)系嗎?3.練習(xí)一圓柱的一個(gè)底面積是S,側(cè)面展開(kāi)圖是一個(gè)正方體,那么這個(gè)圓柱的側(cè)面積是( )A 4πS B 2πS C πS D 4.練習(xí)二:如圖所示,在邊長(zhǎng)為4的正三角形ABC中,E,F(xiàn)分別是AB,AC的中點(diǎn),D為BC的中點(diǎn),H,G分別是BD,CD的中點(diǎn),若將正三角形ABC繞AD旋轉(zhuǎn)180°,求陰影部分形成的幾何體的表面積.5. 圓柱、圓錐、圓臺(tái)的體積對(duì)于柱體、錐體、臺(tái)體的體積公式的認(rèn)識(shí)(1)等底、等高的兩個(gè)柱體的體積相同.(2)等底、等高的圓錐和圓柱的體積之間的關(guān)系可以通過(guò)實(shí)驗(yàn)得出,等底、等高的圓柱的體積是圓錐的體積的3倍.
新知探究:向量的減法運(yùn)算定義問(wèn)題四:你能根據(jù)實(shí)數(shù)的減法運(yùn)算定義向量的減法運(yùn)算嗎?由兩個(gè)向量和的定義已知 即任意向量與其相反向量的和是零向量。求兩個(gè)向量差的運(yùn)算叫做向量的減法。我們看到,向量的減法可以轉(zhuǎn)化為向量的加法來(lái)進(jìn)行:減去一個(gè)向量相當(dāng)于加上這個(gè)向量的相反向量。即新知探究(二):向量減法的作圖方法知識(shí)探究(三):向量減法的幾何意義問(wèn)題六:根據(jù)問(wèn)題五,思考一下向量減法的幾何意義是什么?問(wèn)題七:非零共線(xiàn)向量怎樣做減法運(yùn)算? 問(wèn)題八:非零共線(xiàn)向量怎樣做減法運(yùn)算?1.共線(xiàn)同向2.共線(xiàn)反向小試牛刀判一判(正確的打“√”,錯(cuò)誤的打“×”)(1)兩個(gè)向量的差仍是一個(gè)向量。 (√ )(2)向量的減法實(shí)質(zhì)上是向量的加法的逆運(yùn)算. ( √ )(3)向量a與向量b的差與向量b與向量a的差互為相反向量。 ( √ )(4)相反向量是共線(xiàn)向量。 ( √ )
本節(jié)通過(guò)一些函數(shù)模型的實(shí)例,讓學(xué)生感受建立函數(shù)模型的過(guò)程和方法,體會(huì)函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用,進(jìn)一步認(rèn)識(shí)到函數(shù)是描述客觀(guān)世界變化規(guī)律的基本數(shù)學(xué)模型,能初步運(yùn)用函數(shù)思想解決一些生活中的簡(jiǎn)單問(wèn)題。課程目標(biāo)1.能利用已知函數(shù)模型求解實(shí)際問(wèn)題.2.能自建確定性函數(shù)模型解決實(shí)際問(wèn)題.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:建立函數(shù)模型,把實(shí)際應(yīng)用問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題;2.邏輯推理:通過(guò)數(shù)據(jù)分析,確定合適的函數(shù)模型;3.數(shù)學(xué)運(yùn)算:解答數(shù)學(xué)問(wèn)題,求得結(jié)果;4.數(shù)據(jù)分析:把數(shù)學(xué)結(jié)果轉(zhuǎn)譯成具體問(wèn)題的結(jié)論,做出解答;5.數(shù)學(xué)建模:借助函數(shù)模型,利用函數(shù)的思想解決現(xiàn)實(shí)生活中的實(shí)際問(wèn)題.重點(diǎn):利用函數(shù)模型解決實(shí)際問(wèn)題;難點(diǎn):數(shù)模型的構(gòu)造與對(duì)數(shù)據(jù)的處理.
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)必修1第四章第4.4.3節(jié)《不同增長(zhǎng)函數(shù)的差異》 是在學(xué)習(xí)了指數(shù)函數(shù)、對(duì)數(shù)函數(shù)和冪函數(shù)之后的對(duì)函數(shù)學(xué)習(xí)的一次梳理和總結(jié)。本節(jié)提出函數(shù)增長(zhǎng)快慢的問(wèn)題,通過(guò)函數(shù)圖像及三個(gè)函數(shù)的性質(zhì),完成函數(shù)增長(zhǎng)快慢的認(rèn)識(shí)。既是對(duì)三種函數(shù)學(xué)習(xí)的總結(jié),也為后續(xù)導(dǎo)數(shù)的學(xué)習(xí)做了鋪墊。培養(yǎng)和發(fā)展學(xué)生數(shù)學(xué)直觀(guān)、數(shù)學(xué)抽象、邏輯推理和數(shù)學(xué)建模的核心素養(yǎng)。1.了解指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù) (一次函數(shù)) 的增長(zhǎng)差異.2、經(jīng)過(guò)探究對(duì)函數(shù)的圖像觀(guān)察,理解對(duì)數(shù)增長(zhǎng)、直線(xiàn)上升、指數(shù)爆炸。培養(yǎng)學(xué)生觀(guān)察問(wèn)題、分析問(wèn)題和歸納問(wèn)題的思維能力以及數(shù)學(xué)交流能力;3、在認(rèn)識(shí)函數(shù)增長(zhǎng)差異的過(guò)程中,使學(xué)生學(xué)會(huì)認(rèn)識(shí)事物的特殊性與一般性之間的關(guān)系,培養(yǎng)數(shù)學(xué)應(yīng)用的意識(shí),探索數(shù)學(xué)。 a.數(shù)學(xué)抽象:函數(shù)增長(zhǎng)快慢的認(rèn)識(shí);b.邏輯推理:由特殊到一般的推理;
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)必修1第四章第4.4.1節(jié)《對(duì)數(shù)函數(shù)的概念》。對(duì)數(shù)函數(shù)是高中數(shù)學(xué)在指數(shù)函數(shù)之后的重要初等函數(shù)之一。對(duì)數(shù)函數(shù)與指數(shù)函數(shù)聯(lián)系密切,無(wú)論是研究的思想方法方法還是圖像及性質(zhì),都有其共通之處。相較于指數(shù)函數(shù),對(duì)數(shù)函數(shù)的圖象亦有其獨(dú)特的美感。學(xué)習(xí)中讓學(xué)生體會(huì)在類(lèi)比推理,感受圖像的變化,認(rèn)識(shí)變化的規(guī)律,這是提高學(xué)生直觀(guān)想象能力的一個(gè)重要的過(guò)程。為之后學(xué)習(xí)數(shù)學(xué)提供了更多角度的分析方法。培養(yǎng)學(xué)生邏輯推理、數(shù)學(xué)直觀(guān)、數(shù)學(xué)抽象、和數(shù)學(xué)建模的核心素養(yǎng)。1、理解對(duì)數(shù)函數(shù)的定義,會(huì)求對(duì)數(shù)函數(shù)的定義域;2、了解對(duì)數(shù)函數(shù)與指數(shù)函數(shù)之間的聯(lián)系,培養(yǎng)學(xué)生觀(guān)察問(wèn)題、分析問(wèn)題和歸納問(wèn)題的思維能力以及數(shù)學(xué)交流能力;滲透類(lèi)比等基本數(shù)學(xué)思想方法。3、在學(xué)習(xí)對(duì)數(shù)函數(shù)過(guò)程中,使學(xué)生學(xué)會(huì)認(rèn)識(shí)事物的特殊性與一般性之間的關(guān)系,培養(yǎng)數(shù)學(xué)應(yīng)用的意識(shí),感受數(shù)學(xué)、理解數(shù)學(xué)、探索數(shù)學(xué),提高學(xué)習(xí)數(shù)學(xué)的興趣。
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)必修1第四章第4.4.2節(jié)《對(duì)數(shù)函數(shù)的圖像和性質(zhì)》 是高中數(shù)學(xué)在指數(shù)函數(shù)之后的重要初等函數(shù)之一。對(duì)數(shù)函數(shù)與指數(shù)函數(shù)聯(lián)系密切,無(wú)論是研究的思想方法方法還是圖像及性質(zhì),都有其共通之處。相較于指數(shù)函數(shù),對(duì)數(shù)函數(shù)的圖象亦有其獨(dú)特的美感。在類(lèi)比推理的過(guò)程中,感受圖像的變化,認(rèn)識(shí)變化的規(guī)律,這是提高學(xué)生直觀(guān)想象能力的一個(gè)重要的過(guò)程。為之后學(xué)習(xí)數(shù)學(xué)提供了更多角度的分析方法。培養(yǎng)和發(fā)展學(xué)生邏輯推理、數(shù)學(xué)直觀(guān)、數(shù)學(xué)抽象、和數(shù)學(xué)建模的核心素養(yǎng)。1、掌握對(duì)數(shù)函數(shù)的圖像和性質(zhì);能利用對(duì)數(shù)函數(shù)的圖像與性質(zhì)來(lái)解決簡(jiǎn)單問(wèn)題;2、經(jīng)過(guò)探究對(duì)數(shù)函數(shù)的圖像和性質(zhì),對(duì)數(shù)函數(shù)與指數(shù)函數(shù)圖像之間的聯(lián)系,對(duì)數(shù)函數(shù)內(nèi)部的的聯(lián)系。培養(yǎng)學(xué)生觀(guān)察問(wèn)題、分析問(wèn)題和歸納問(wèn)題的思維能力以及數(shù)學(xué)交流能力;滲透類(lèi)比等基本數(shù)學(xué)思想方法。
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書(shū)-必修一》(人教A版)第三章《函數(shù)的概念與性質(zhì)》,本節(jié)課是第2課時(shí),本節(jié)課主要學(xué)習(xí)函數(shù)的三種表示方法及其簡(jiǎn)單應(yīng)用,進(jìn)一步加深對(duì)函數(shù)概念的理解。課本從引進(jìn)函數(shù)概念開(kāi)始就比較注重函數(shù)的不同表示方法:解析法,圖象法,列表法.函數(shù)的不同表示方法能豐富對(duì)函數(shù)的認(rèn)識(shí),幫助理解抽象的函數(shù)概念.特別是在信息技術(shù)環(huán)境下,可以使函數(shù)在形與數(shù)兩方面的結(jié)合得到更充分的表現(xiàn),使學(xué)生通過(guò)函數(shù)的學(xué)習(xí)更好地體會(huì)數(shù)形結(jié)合這種重要的數(shù)學(xué)思想方法.因此,在研究函數(shù)時(shí),要充分發(fā)揮圖象的直觀(guān)作用.課程目標(biāo) 學(xué)科素養(yǎng)A.在實(shí)際情景中,會(huì)根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ǎń馕鍪椒?、圖象法、列表法)表示函數(shù);B.了解簡(jiǎn)單的分段函數(shù),并能簡(jiǎn)單地應(yīng)用;1.數(shù)學(xué)抽象:函數(shù)解析法及能由條件求函數(shù)的解析式;2.邏輯推理:求函數(shù)的解析式;
課本從引進(jìn)函數(shù)概念開(kāi)始就比較注重函數(shù)的不同表示方法:解析法,圖象法,列表法.函數(shù)的不同表示方法能豐富對(duì)函數(shù)的認(rèn)識(shí),幫助理解抽象的函數(shù)概念.特別是在信息技術(shù)環(huán)境下,可以使函數(shù)在形與數(shù)兩方面的結(jié)合得到更充分的表現(xiàn),使學(xué)生通過(guò)函數(shù)的學(xué)習(xí)更好地體會(huì)數(shù)形結(jié)合這種重要的數(shù)學(xué)思想方法.因此,在研究函數(shù)時(shí),要充分發(fā)揮圖象的直觀(guān)作用.在研究圖象時(shí),又要注意代數(shù)刻畫(huà)以求思考和表述的精確性.課本將映射作為函數(shù)的一種推廣,這與傳統(tǒng)的處理方式有了邏輯順序上的變化.這樣處理,主要是想較好地銜接初中的學(xué)習(xí),讓學(xué)生將更多的精力集中理解函數(shù)的概念,同時(shí),也體現(xiàn)了從特殊到一般的思維過(guò)程.課程目標(biāo)1、明確函數(shù)的三種表示方法;2、在實(shí)際情境中,會(huì)根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ū硎竞瘮?shù);3、通過(guò)具體實(shí)例,了解簡(jiǎn)單的分段函數(shù),并能簡(jiǎn)單應(yīng)用.
本節(jié)是新人教A版高中數(shù)學(xué)必修1第1章第1節(jié)第3部分的內(nèi)容。在此之前,學(xué)生已學(xué)習(xí)了集合的含義以及集合與集合之間的基本關(guān)系,這為學(xué)習(xí)本節(jié)內(nèi)容打下了基礎(chǔ)。本節(jié)內(nèi)容主要介紹集合的基本運(yùn)算一并集、交集、補(bǔ)集。是對(duì)集合基木知識(shí)的深入研究。在此,通過(guò)適當(dāng)?shù)膯?wèn)題情境,使學(xué)生感受、認(rèn)識(shí)并掌握集合的三種基本運(yùn)算。本節(jié)內(nèi)容是函數(shù)、方程、不等式的基礎(chǔ),在教材中起著承上啟下的作用。本節(jié)內(nèi)容是高中數(shù)學(xué)的主要內(nèi)容,也是高考的對(duì)象,在實(shí)踐中應(yīng)用廣泛,是高中學(xué)生必須掌握的重點(diǎn)。A.理解兩個(gè)集合的并集與交集的含義,會(huì)求簡(jiǎn)單集合的交、并運(yùn)算;B.理解補(bǔ)集的含義,會(huì)求給定子集的補(bǔ)集;C.能使用 圖表示集合的關(guān)系及運(yùn)算。 1.數(shù)學(xué)抽象:集合交集、并集、補(bǔ)集的含義;2.數(shù)學(xué)運(yùn)算:集合的運(yùn)算;3.直觀(guān)想象:用 圖、數(shù)軸表示集合的關(guān)系及運(yùn)算。
本節(jié)內(nèi)容來(lái)自人教版高中數(shù)學(xué)必修一第一章第一節(jié)集合第二課時(shí)的內(nèi)容。集合論是現(xiàn)代數(shù)學(xué)的一個(gè)重要基礎(chǔ),是一個(gè)具有獨(dú)特地位的數(shù)學(xué)分支。高中數(shù)學(xué)課程是將集合作為一種語(yǔ)言來(lái)學(xué)習(xí),在這里它是作為刻畫(huà)函數(shù)概念的基礎(chǔ)知識(shí)和必備工具。本小節(jié)內(nèi)容是在學(xué)習(xí)了集合的含義、集合的表示方法以及元素與集合的屬于關(guān)系的基礎(chǔ)上,進(jìn)一步學(xué)習(xí)集合與集合之間的關(guān)系,同時(shí)也是下一節(jié)學(xué)習(xí)集合間的基本運(yùn)算的基礎(chǔ),因此本小節(jié)起著承上啟下的關(guān)鍵作用.通過(guò)本節(jié)內(nèi)容的學(xué)習(xí),可以進(jìn)一步幫助學(xué)生利用集合語(yǔ)言進(jìn)行交流的能力,幫助學(xué)生養(yǎng)成自主學(xué)習(xí)、合作交流、歸納總結(jié)的學(xué)習(xí)習(xí)慣,培養(yǎng)學(xué)生從具體到抽象、從一般到特殊的數(shù)學(xué)思維能力,通過(guò)Venn圖理解抽象概念,培養(yǎng)學(xué)生數(shù)形結(jié)合思想。
第一節(jié)通過(guò)研究集合中元素的特點(diǎn)研究了元素與集合之間的關(guān)系及集合的表示方法,而本節(jié)重點(diǎn)通過(guò)研究元素得到兩個(gè)集合之間的關(guān)系,尤其學(xué)生學(xué)完兩個(gè)集合之間的關(guān)系后,一定讓學(xué)生明確元素與集合、集合與集合之間的區(qū)別。課程目標(biāo)1. 了解集合之間包含與相等的含義,能識(shí)別給定集合的子集.2. 理解子集.真子集的概念. 3. 能使用 圖表達(dá)集合間的關(guān)系,體會(huì)直觀(guān)圖示對(duì)理解抽象概念的作用。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:子集和空集含義的理解;2.邏輯推理:子集、真子集、空集之間的聯(lián)系與區(qū)別;3.數(shù)學(xué)運(yùn)算:由集合間的關(guān)系求參數(shù)的范圍,常見(jiàn)包含一元二次方程及其不等式和不等式組;4.數(shù)據(jù)分析:通過(guò)集合關(guān)系列不等式組, 此過(guò)程中重點(diǎn)關(guān)注端點(diǎn)是否含“=”及 問(wèn)題;5.數(shù)學(xué)建模:用集合思想對(duì)實(shí)際生活中的對(duì)象進(jìn)行判斷與歸類(lèi)。
本節(jié)通過(guò)學(xué)習(xí)用二分法求方程近似解的的方法,使學(xué)生體會(huì)函數(shù)與方程之間的關(guān)系,通過(guò)一些函數(shù)模型的實(shí)例,讓學(xué)生感受建立函數(shù)模型的過(guò)程和方法,體會(huì)函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用,進(jìn)一步認(rèn)識(shí)到函數(shù)是描述客觀(guān)世界變化規(guī)律的基本數(shù)學(xué)模型,能初步運(yùn)用函數(shù)思想解決一些生活中的簡(jiǎn)單問(wèn)題。課程目標(biāo)1.了解二分法的原理及其適用條件.2.掌握二分法的實(shí)施步驟.3.通過(guò)用二分法求方程的近似解,使學(xué)生體會(huì)函數(shù)零點(diǎn)與方程根之間的聯(lián)系,初步形成用函數(shù)觀(guān)點(diǎn)處理問(wèn)題的意識(shí).數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:二分法的概念;2.邏輯推理:用二分法求函數(shù)零點(diǎn)近似值的步驟;3.數(shù)學(xué)運(yùn)算:求函數(shù)零點(diǎn)近似值;4.數(shù)學(xué)建模:通過(guò)一些函數(shù)模型的實(shí)例,讓學(xué)生感受建立函數(shù)模型的過(guò)程和方法,體會(huì)函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用.
本節(jié)課是三角函數(shù)的繼續(xù),三角函數(shù)包含正弦函數(shù)、余弦函數(shù)、正切函數(shù).而本課內(nèi)容是正切函數(shù)的性質(zhì)與圖像.首先根據(jù)單位圓中正切函數(shù)的定義探究其圖像,然后通過(guò)圖像研究正切函數(shù)的性質(zhì). 課程目標(biāo)1、掌握利用單位圓中正切函數(shù)定義得到圖象的方法;2、能夠利用正切函數(shù)圖象準(zhǔn)確歸納其性質(zhì)并能簡(jiǎn)單地應(yīng)用.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:借助單位圓理解正切函數(shù)的圖像; 2.邏輯推理: 求正切函數(shù)的單調(diào)區(qū)間;3.數(shù)學(xué)運(yùn)算:利用性質(zhì)求周期、比較大小及判斷奇偶性.4.直觀(guān)想象:正切函數(shù)的圖像; 5.數(shù)學(xué)建模:讓學(xué)生借助數(shù)形結(jié)合的思想,通過(guò)圖像探究正切函數(shù)的性質(zhì). 重點(diǎn):能夠利用正切函數(shù)圖象準(zhǔn)確歸納其性質(zhì)并能簡(jiǎn)單地應(yīng)用; 難點(diǎn):掌握利用單位圓中正切函數(shù)定義得到其圖象.
本節(jié)課是正弦函數(shù)、余弦函數(shù)圖像的繼續(xù),本課是正弦曲線(xiàn)、余弦曲線(xiàn)這兩種曲線(xiàn)的特點(diǎn)得出正弦函數(shù)、余弦函數(shù)的性質(zhì). 課程目標(biāo)1.了解周期函數(shù)與最小正周期的意義;2.了解三角函數(shù)的周期性和奇偶性;3.會(huì)利用周期性定義和誘導(dǎo)公式求簡(jiǎn)單三角函數(shù)的周期;4.借助圖象直觀(guān)理解正、余弦函數(shù)在[0,2π]上的性質(zhì)(單調(diào)性、最值、圖象與x軸的交點(diǎn)等);5.能利用性質(zhì)解決一些簡(jiǎn)單問(wèn)題. 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:理解周期函數(shù)、周期、最小正周期等的含義; 2.邏輯推理: 求正弦、余弦形函數(shù)的單調(diào)區(qū)間;3.數(shù)學(xué)運(yùn)算:利用性質(zhì)求周期、比較大小、最值、值域及判斷奇偶性.4.數(shù)學(xué)建模:讓學(xué)生借助數(shù)形結(jié)合的思想,通過(guò)圖像探究正、余弦函數(shù)的性質(zhì).重點(diǎn):通過(guò)正弦曲線(xiàn)、余弦曲線(xiàn)這兩種曲線(xiàn)探究正弦函數(shù)、余弦函數(shù)的性質(zhì); 難點(diǎn):應(yīng)用正、余弦函數(shù)的性質(zhì)來(lái)求含有cosx,sinx的函數(shù)的單調(diào)性、最值、值域及對(duì)稱(chēng)性.
指數(shù)函數(shù)與冪函數(shù)是相通的,本節(jié)在已經(jīng)學(xué)習(xí)冪函數(shù)的基礎(chǔ)上通過(guò)實(shí)例總結(jié)歸納指數(shù)函數(shù)的概念,通過(guò)函數(shù)的三個(gè)特征解決一些與函數(shù)概念有關(guān)的問(wèn)題.課程目標(biāo)1、通過(guò)實(shí)際問(wèn)題了解指數(shù)函數(shù)的實(shí)際背景;2、理解指數(shù)函數(shù)的概念和意義.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:指數(shù)函數(shù)的概念;2.邏輯推理:用待定系數(shù)法求函數(shù)解析式及解析值;3.數(shù)學(xué)運(yùn)算:利用指數(shù)函數(shù)的概念求參數(shù);4.數(shù)學(xué)建模:通過(guò)由抽象到具體,由具體到一般的思想總結(jié)指數(shù)函數(shù)概念.重點(diǎn):理解指數(shù)函數(shù)的概念和意義;難點(diǎn):理解指數(shù)函數(shù)的概念.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入在本章的開(kāi)頭,問(wèn)題(1)中時(shí)間 與GDP值中的 ,請(qǐng)問(wèn)這兩個(gè)函數(shù)有什么共同特征.要求:讓學(xué)生自由發(fā)言,教師不做判斷。而是引導(dǎo)學(xué)生進(jìn)一步觀(guān)察.研探.
本節(jié)內(nèi)容是學(xué)生學(xué)習(xí)了任意角和弧度制,任意角的三角函數(shù)后,安排的一節(jié)繼續(xù)深入學(xué)習(xí)內(nèi)容,是求三角函數(shù)值、化簡(jiǎn)三角函數(shù)式、證明三角恒等式的基本工具,是整個(gè)三角函數(shù)知識(shí)的基礎(chǔ),在教材中起承上啟下的作用。同時(shí),它體現(xiàn)的數(shù)學(xué)思想與方法在整個(gè)中學(xué)數(shù)學(xué)學(xué)習(xí)中起重要作用。課程目標(biāo)1.理解并掌握同角三角函數(shù)基本關(guān)系式的推導(dǎo)及應(yīng)用.2.會(huì)利用同角三角函數(shù)的基本關(guān)系式進(jìn)行化簡(jiǎn)、求值與恒等式證明.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:理解同角三角函數(shù)基本關(guān)系式;2.邏輯推理: “sin α±cos α”同“sin αcos α”間的關(guān)系;3.數(shù)學(xué)運(yùn)算:利用同角三角函數(shù)的基本關(guān)系式進(jìn)行化簡(jiǎn)、求值與恒等式證明重點(diǎn):理解并掌握同角三角函數(shù)基本關(guān)系式的推導(dǎo)及應(yīng)用; 難點(diǎn):會(huì)利用同角三角函數(shù)的基本關(guān)系式進(jìn)行化簡(jiǎn)、求值與恒等式證明.