提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

人教版高中政治必修4要用發(fā)展的觀點看問題說課稿

  • 人教版高中地理必修2不同等級城市的服務(wù)功能精品教案

    人教版高中地理必修2不同等級城市的服務(wù)功能精品教案

    學生探究案例:找出不同等級城市的數(shù)目與城鎮(zhèn)級別的關(guān)系、城鎮(zhèn)的分布與城鎮(zhèn)級別的關(guān)系并試著解釋原因。在此基礎(chǔ)上,指導學生一步步閱讀書上的閱讀材料,首先說明這是德國著名的經(jīng)濟地理學家克里斯泰勒對德國南部城市等級體系研究得出的中心地理論,他是在假設(shè)土壤肥力相等、資源分布均勻、沒有邊界的平原上,交通條件一致、消費者收入及需求一致、人們就近購買貨物和服務(wù)的情況下得出的理想模式。然后指導學生閱讀圖2.14下文字說明,理解城市六邊形服務(wù)范圍形成過程。指導學生讀圖2.15,找出圖中城市的等級、每一等級六邊形服務(wù)范圍并敘述不同等級城市之間服務(wù)范圍及其相互關(guān)系,從而得出不同等級城市的空間分布規(guī)律,六邊形服務(wù)范圍,層層嵌套的理論模式。給出荷蘭圩田空白圖,讓學生應(yīng)用上面的理論規(guī)劃設(shè)計居民點并說出理由,再和教材上的規(guī)劃進行對照。然后給出長三角地區(qū)城市分布圖和各城市人口數(shù),讓學生對這些城市進行分級,概括每一級城市的服務(wù)功能、統(tǒng)計每一等級城市的數(shù)目以及彼此間的平均距離,總結(jié)城市等級與服務(wù)范圍、空間分布的關(guān)系?

  • 人教版高中地理必修3第五章第一節(jié)資源的跨區(qū)域調(diào)配教案

    人教版高中地理必修3第五章第一節(jié)資源的跨區(qū)域調(diào)配教案

    2.通過西氣東輸輸送到上海的天然氣,價格只相當于進口天然氣的3/4、同等熱值煤氣的 2/3。你認為是否應(yīng)該提高天然氣的價格,以促進西部的發(fā)展。點撥:可以從不同方面分析。⑷對環(huán)境的影響①有利于改善東部地區(qū)的大氣質(zhì)量據(jù)監(jiān)測顯示,在同等熱值的情況下,與煤炭相比,利用天然氣作燃料幾乎不產(chǎn)生二氧化硫、粉塵等污染物質(zhì),氮氧化物和二氧化碳的排放量也大為減少。長江三角洲地區(qū)的能源長期高度依賴煤炭,例如,上海市煤炭消費量占能源消費總量的70%。從西部地區(qū)輸送來的天然氣,可以部分替代煤炭。②為了最大限度減少對沿線地區(qū)生態(tài)環(huán)境的影響,西氣東輸工程在建設(shè)過程中,嚴格環(huán)境保護的要求。③在沿線農(nóng)村地區(qū)推廣使用天然氣,可減少農(nóng)民對薪柴的需求,從而緩解因植被破壞而帶來的環(huán)境壓力。

  • 人教版高中數(shù)學選擇性必修二等比數(shù)列的概念 (1) 教學設(shè)計

    人教版高中數(shù)學選擇性必修二等比數(shù)列的概念 (1) 教學設(shè)計

    新知探究我們知道,等差數(shù)列的特征是“從第2項起,每一項與它的前一項的差都等于同一個常數(shù)” 。類比等差數(shù)列的研究思路和方法,從運算的角度出發(fā),你覺得還有怎樣的數(shù)列是值得研究的?1.兩河流域發(fā)掘的古巴比倫時期的泥版上記錄了下面的數(shù)列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《莊子·天下》中提到:“一尺之錘,日取其半,萬世不竭.”如果把“一尺之錘”的長度看成單位“1”,那么從第1天開始,每天得到的“錘”的長度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在營養(yǎng)和生存空間沒有限制的情況下,某種細菌每20 min 就通過分裂繁殖一代,那么一個這種細菌從第1次分裂開始,各次分裂產(chǎn)生的后代個數(shù)依次是2,4,8,16,32,64,… ⑤4.某人存入銀行a元,存期為5年,年利率為 r ,那么按照復利,他5年內(nèi)每年末得到的本利和分別是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥

  • 人教版高中數(shù)學選擇性必修二等差數(shù)列的前n項和公式(1)教學設(shè)計

    人教版高中數(shù)學選擇性必修二等差數(shù)列的前n項和公式(1)教學設(shè)計

    高斯(Gauss,1777-1855),德國數(shù)學家,近代數(shù)學的奠基者之一. 他在天文學、大地測量學、磁學、光學等領(lǐng)域都做出過杰出貢獻. 問題1:為什么1+100=2+99=…=50+51呢?這是巧合嗎?試從數(shù)列角度給出解釋.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法實際上解決了求等差數(shù)列:1,2,3,…,n,"… " 前100項的和問題.等差數(shù)列中,下標和相等的兩項和相等.設(shè) an=n,則 a1=1,a2=2,a3=3,…如果數(shù)列{an} 是等差數(shù)列,p,q,s,t∈N*,且 p+q=s+t,則 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51問題2: 你能用上述方法計算1+2+3+… +101嗎?問題3: 你能計算1+2+3+… +n嗎?需要對項數(shù)的奇偶進行分類討論.當n為偶數(shù)時, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2當n為奇數(shù)數(shù)時, n-1為偶數(shù)

  • 人教版高中數(shù)學選擇性必修二導數(shù)的四則運算法則教學設(shè)計

    人教版高中數(shù)學選擇性必修二導數(shù)的四則運算法則教學設(shè)計

    求函數(shù)的導數(shù)的策略(1)先區(qū)分函數(shù)的運算特點,即函數(shù)的和、差、積、商,再根據(jù)導數(shù)的運算法則求導數(shù);(2)對于三個以上函數(shù)的積、商的導數(shù),依次轉(zhuǎn)化為“兩個”函數(shù)的積、商的導數(shù)計算.跟蹤訓練1 求下列函數(shù)的導數(shù):(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟蹤訓練2 求下列函數(shù)的導數(shù)(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的飲用水通常是經(jīng)過凈化的,隨著水的純凈度的提高,所需進化費用不斷增加,已知將1t水進化到純凈度為x%所需費用(單位:元),為c(x)=5284/(100-x) (80<x<100)求進化到下列純凈度時,所需進化費用的瞬時變化率:(1) 90% ;(2) 98%解:凈化費用的瞬時變化率就是凈化費用函數(shù)的導數(shù);c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2

  • 人教版高中數(shù)學選擇性必修二導數(shù)的概念及其幾何意義教學設(shè)計

    人教版高中數(shù)學選擇性必修二導數(shù)的概念及其幾何意義教學設(shè)計

    新知探究前面我們研究了兩類變化率問題:一類是物理學中的問題,涉及平均速度和瞬時速度;另一類是幾何學中的問題,涉及割線斜率和切線斜率。這兩類問題來自不同的學科領(lǐng)域,但在解決問題時,都采用了由“平均變化率”逼近“瞬時變化率”的思想方法;問題的答案也是一樣的表示形式。下面我們用上述思想方法研究更一般的問題。探究1: 對于函數(shù)y=f(x) ,設(shè)自變量x從x_0變化到x_0+ ?x ,相應(yīng)地,函數(shù)值y就從f(x_0)變化到f(〖x+x〗_0) 。這時, x的變化量為?x,y的變化量為?y=f(x_0+?x)-f(x_0)我們把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函數(shù)從x_0到x_0+?x的平均變化率。1.導數(shù)的概念如果當Δx→0時,平均變化率ΔyΔx無限趨近于一個確定的值,即ΔyΔx有極限,則稱y=f (x)在x=x0處____,并把這個________叫做y=f (x)在x=x0處的導數(shù)(也稱為__________),記作f ′(x0)或________,即

  • 人教版高中數(shù)學選擇性必修二等比數(shù)列的概念 (2) 教學設(shè)計

    人教版高中數(shù)學選擇性必修二等比數(shù)列的概念 (2) 教學設(shè)計

    二、典例解析例4. 用 10 000元購買某個理財產(chǎn)品一年.(1)若以月利率0.400%的復利計息,12個月能獲得多少利息(精確到1元)?(2)若以季度復利計息,存4個季度,則當每季度利率為多少時,按季結(jié)算的利息不少于按月結(jié)算的利息(精確到10^(-5))?分析:復利是指把前一期的利息與本金之和算作本金,再計算下一期的利息.所以若原始本金為a元,每期的利率為r ,則從第一期開始,各期的本利和a , a(1+r),a(1+r)^2…構(gòu)成等比數(shù)列.解:(1)設(shè)這筆錢存 n 個月以后的本利和組成一個數(shù)列{a_n },則{a_n }是等比數(shù)列,首項a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12個月后的利息為10 490.7-10^4≈491(元).解:(2)設(shè)季度利率為 r ,這筆錢存 n 個季度以后的本利和組成一個數(shù)列{b_n },則{b_n }也是一個等比數(shù)列,首項 b_1=10^4 (1+r),公比為1+r,于是 b_4=10^4 (1+r)^4.

  • 人教版高中數(shù)學選擇性必修二等比數(shù)列的前n項和公式   (1) 教學設(shè)計

    人教版高中數(shù)學選擇性必修二等比數(shù)列的前n項和公式 (1) 教學設(shè)計

    新知探究國際象棋起源于古代印度.相傳國王要獎賞國際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請在棋盤的第1個格子里放上1顆麥粒,第2個格子里放上2顆麥粒,第3個格子里放上4顆麥粒,依次類推,每個格子里放的麥粒都是前一個格子里放的麥粒數(shù)的2倍,直到第64個格子.請給我足夠的麥粒以實現(xiàn)上述要求.”國王覺得這個要求不高,就欣然同意了.假定千粒麥粒的質(zhì)量為40克,據(jù)查,2016--2017年度世界年度小麥產(chǎn)量約為7.5億噸,根據(jù)以上數(shù)據(jù),判斷國王是否能實現(xiàn)他的諾言.問題1:每個格子里放的麥粒數(shù)可以構(gòu)成一個數(shù)列,請判斷分析這個數(shù)列是否是等比數(shù)列?并寫出這個等比數(shù)列的通項公式.是等比數(shù)列,首項是1,公比是2,共64項. 通項公式為〖a_n=2〗^(n-1)問題2:請將發(fā)明者的要求表述成數(shù)學問題.

  • 人教版高中數(shù)學選擇性必修二等差數(shù)列的概念(2)教學設(shè)計

    人教版高中數(shù)學選擇性必修二等差數(shù)列的概念(2)教學設(shè)計

    二、典例解析例3.某公司購置了一臺價值為220萬元的設(shè)備,隨著設(shè)備在使用過程中老化,其價值會逐年減少.經(jīng)驗表明,每經(jīng)過一年其價值會減少d(d為正常數(shù))萬元.已知這臺設(shè)備的使用年限為10年,超過10年 ,它的價值將低于購進價值的5%,設(shè)備將報廢.請確定d的范圍.分析:該設(shè)備使用n年后的價值構(gòu)成數(shù)列{an},由題意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}為公差為-d的等差數(shù)列.10年之內(nèi)(含10年),該設(shè)備的價值不小于(220×5%=)11萬元;10年后,該設(shè)備的價值需小于11萬元.利用{an}的通項公式列不等式求解.解:設(shè)使用n年后,這臺設(shè)備的價值為an萬元,則可得數(shù)列{an}.由已知條件,得an=an-1-d(n≥2).所以數(shù)列{an}是一個公差為-d的等差數(shù)列.因為a1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由題意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范圍為19<d≤20.9

  • 人教版高中數(shù)學選擇性必修二等比數(shù)列的前n項和公式   (2) 教學設(shè)計

    人教版高中數(shù)學選擇性必修二等比數(shù)列的前n項和公式 (2) 教學設(shè)計

    二、典例解析例10. 如圖,正方形ABCD 的邊長為5cm ,取正方形ABCD 各邊的中點E,F,G,H, 作第2個正方形 EFGH,然后再取正方形EFGH各邊的中點I,J,K,L,作第3個正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個正方形的面積之和;(2) 如果這個作圖過程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個等比數(shù)列。解:設(shè)正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個正方形的頂點分別是第k個正方形各邊的中點,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25為首項,1/2為公比的等比數(shù)列.設(shè){a_n}的前項和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個正方形的面積之和為25575/512cm^2.(2)當無限增大時,無限趨近于所有正方形的面積和

  • 人教版高中數(shù)學選擇性必修二數(shù)列的概念(1)教學設(shè)計

    人教版高中數(shù)學選擇性必修二數(shù)列的概念(1)教學設(shè)計

    情景導學古語云:“勤學如春起之苗,不見其增,日有所長”如果對“春起之苗”每日用精密儀器度量,則每日的高度值按日期排在一起,可組成一個數(shù)列. 那么什么叫數(shù)列呢?二、問題探究1. 王芳從一歲到17歲,每年生日那天測量身高,將這些身高數(shù)據(jù)(單位:厘米)依次排成一列數(shù):75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①記王芳第i歲的身高為 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我們發(fā)現(xiàn)h_i中的i反映了身高按歲數(shù)從1到17的順序排列時的確定位置,即h_1=75 是排在第1位的數(shù),h_2=87是排在第2位的數(shù)〖"…" ,h〗_17 =168是排在第17位的數(shù),它們之間不能交換位置,所以①具有確定順序的一列數(shù)。2. 在兩河流域發(fā)掘的一塊泥板(編號K90,約生產(chǎn)于公元前7世紀)上,有一列依次表示一個月中從第1天到第15天,每天月亮可見部分的數(shù):5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②

  • 人教版高中數(shù)學選擇性必修二等差數(shù)列的前n項和公式(2)教學設(shè)計

    人教版高中數(shù)學選擇性必修二等差數(shù)列的前n項和公式(2)教學設(shè)計

    課前小測1.思考辨析(1)若Sn為等差數(shù)列{an}的前n項和,則數(shù)列Snn也是等差數(shù)列.( )(2)若a1>0,d<0,則等差數(shù)列中所有正項之和最大.( )(3)在等差數(shù)列中,Sn是其前n項和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項數(shù)為2n+1的等差數(shù)列中,所有奇數(shù)項的和為165,所有偶數(shù)項的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項.]3.等差數(shù)列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數(shù)列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數(shù)列{an}的通項公式是an=2n-48,則Sn取得最小值時,n為________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負項的和最小,即n=23或24.]二、典例解析例8.某校新建一個報告廳,要求容納800個座位,報告廳共有20排座位,從第2排起后一排都比前一排多兩個座位. 問第1排應(yīng)安排多少個座位?分析:將第1排到第20排的座位數(shù)依次排成一列,構(gòu)成數(shù)列{an} ,設(shè)數(shù)列{an} 的前n項和為S_n。

  • 人教版高中數(shù)學選擇性必修二函數(shù)的單調(diào)性(1)  教學設(shè)計

    人教版高中數(shù)學選擇性必修二函數(shù)的單調(diào)性(1) 教學設(shè)計

    1.判斷正誤(正確的打“√”,錯誤的打“×”)(1)函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數(shù)f (x)在這個區(qū)間上單調(diào)遞減. ( )(2)函數(shù)在某一點的導數(shù)越大,函數(shù)在該點處的切線越“陡峭”. ( )(3)函數(shù)在某個區(qū)間上變化越快,函數(shù)在這個區(qū)間上導數(shù)的絕對值越大.( )(4)判斷函數(shù)單調(diào)性時,在區(qū)間內(nèi)的個別點f ′(x)=0,不影響函數(shù)在此區(qū)間的單調(diào)性.( )[解析] (1)√ 函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數(shù)f (x)在這個區(qū)間上單調(diào)遞減,故正確.(2)× 切線的“陡峭”程度與|f ′(x)|的大小有關(guān),故錯誤.(3)√ 函數(shù)在某個區(qū)間上變化的快慢,和函數(shù)導數(shù)的絕對值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數(shù)f (x)在區(qū)間內(nèi)單調(diào)遞增(減),故f ′(x)=0不影響函數(shù)單調(diào)性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導數(shù)判斷下列函數(shù)的單調(diào)性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因為f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數(shù)在R上單調(diào)遞增,如圖(1)所示

  • 人教版高中語文必修1《記梁任公先生的一次演講》教案

    人教版高中語文必修1《記梁任公先生的一次演講》教案

    三、教師總結(jié):在那如火如荼的苦難歲月,梁任公的政治主張屢屢因時而變,但為人處世的原則始終未變,他不是馮自由等人所描述的那種變色龍。他重感情,輕名利,嚴于律己,坦誠待人。無論是做兒子、做丈夫、做學生,還是做父親、做師長、做同事,他都能營造一個磁場,亮出一道風景。明鏡似水,善解人意是他的常態(tài),在某些關(guān)鍵時刻,則以大手筆寫實愛的海洋,讓海洋為寬容而定格,人間為之增色。我敢斷言,在風云際會和星光燦爛的中國近代人才群體中,特別是在遐邇有知的重量級歷史人物中,能在做人的問題上與梁啟超比試者是不大容易找到的。四、課后作業(yè):找出文中細節(jié)及側(cè)面描寫的地方,想一想這樣寫有什么好處,總結(jié)本文的寫作特點。五、板書設(shè)計:梁任公演講特點:

  • 人教版高中歷史必修2物質(zhì)生活與習俗的變遷教案

    人教版高中歷史必修2物質(zhì)生活與習俗的變遷教案

    ★教學總結(jié):(1)我國衣著服飾變化的三大階段第一階段(鴉片戰(zhàn)爭后到新中國的建立):這一階段的階段特征為中式與西式、傳統(tǒng)和現(xiàn)代服飾并存男裝:長袍馬褂、西裝、中山裝 女裝:旗袍(新式與舊式)第二階段(新中國建立后到十一屆三中全會):這一時期由于政治上的影響,階段特征為衣著樸素,與革命相關(guān)的服飾成為主流男裝:列寧裝、中山裝、綠軍裝女裝:列寧裝、布拉基、綠軍裝第三階段(十一屆三中全會后):階段特征為與世界接軌,異彩紛呈;具體表現(xiàn)在,服飾由最基本的防寒保暖向美觀大方轉(zhuǎn)變,各種款式的服裝層出不窮現(xiàn)在的服裝是色彩鮮艷、款式多樣,什么牛仔服、休閑服、西裝、T恤衫、晚禮服,真是不勝枚舉。每年服裝的流行色、流行款式不斷改變,大街上的姑娘和小伙子永遠領(lǐng)導著時裝新潮流。模特表演、模特廣告和模特大賽已成為人們穿著方面不可缺少的內(nèi)容。

  • 人教版高中地理必修1第五章第二節(jié)自然地理環(huán)境的差異性教案

    人教版高中地理必修1第五章第二節(jié)自然地理環(huán)境的差異性教案

    【補充說明】我們這節(jié)課簡要地分析了陸地環(huán)境的三種地域分異規(guī)律。實際上,世界上的任何事物有其一般性,也有它的特 殊性。在地帶性分異規(guī)律的基礎(chǔ)上,陸地環(huán)境因為受到海陸分布、地形 起伏等因素的影響,也會出現(xiàn)一些不規(guī)律的現(xiàn)象,這種現(xiàn)象稱為非地帶性。例如,我們在初中地理中學過綠洲。還記得什么叫綠洲嗎?再比如,在南美洲的西海岸(太平洋沿岸),有一條狹長的(熱帶)荒漠帶,而缺少熱帶草原帶,熱帶雨林帶主要是分布在赤道以北地區(qū)。這主要是受大的地形起伏的影響。因為南美洲西部是一列高大的安第斯山脈,受其影響,兩邊的氣候狀況不同,所以就出現(xiàn)了分布規(guī)律不同的自然帶,這也是一種非地帶性現(xiàn)象。【總結(jié)】有規(guī)律分布的自然帶構(gòu)成了全球和諧的自然環(huán)境整體。自然帶之間錯綜復雜的、微妙的要素關(guān)系,有許多是人類還沒有認識到的。因此,人類不能隨意去破壞任何哪怕是極微小的環(huán)節(jié),也許它 帶來的影響會是全球性的。保護全球環(huán)境,人人有責。

  • 人教版高中地理必修1營造地表形態(tài)的力量教案

    人教版高中地理必修1營造地表形態(tài)的力量教案

    【導入新課】一位在青藏高原上跋涉的旅行者,途中休息時從路邊巖層中隨手拿起一塊小石 頭玩賞時受小石子的紋路的吸引,他不禁仔細觀瞧,吃驚地發(fā)現(xiàn)這竟是一個古代海洋生物化石!近年來,人們在臺灣海 峽海底某些地方發(fā)現(xiàn)有古代森林的遺跡。這些發(fā)現(xiàn)告訴我們什么? 【學生討論回答】略。 【教師總結(jié)概括】地殼和宇宙間一切物質(zhì)一樣,處在不停的運動變化之中。那么地表千姿百態(tài)的形態(tài)是如何營造的呢?這就是我們這節(jié)課要解決的課題【板書】第四章:地表形態(tài)的塑造 第一節(jié):營造地表形態(tài)的力量【提問】哪位同學能夠例舉營造地表形態(tài)的力量改變地表面貌的實例? (學生討論、回答問題。教師在副板書上一一記錄。) 【過渡】營造地表形態(tài)的力量具體劃分有很多種,但歸納起來看可以劃分為兩種,即內(nèi)力作用和外力作用,首先我們來看一下內(nèi)力作用.【板書】一、內(nèi)力作用 【指導讀書】請大家閱讀教材P74第一段和案例1,思考:

  • 人教版高中地理必修2交通運輸布局變化的影響精品教案

    人教版高中地理必修2交通運輸布局變化的影響精品教案

    教師還可結(jié)合歷史材料做補充說明:如乾隆皇帝下江南、康熙微服私訪曾幾下?lián)P州。又如,地處山西高原中部的平遙、祁縣幾個縣城,晉商的興起時是重要的驛站,是南來北往的必經(jīng)之地,當時山西的票號也馳名全國。后來,由于隴海線、京廣線的建成通車和晉商的日趨衰落,這些城市發(fā)展也很緩慢。二.交通運輸對商業(yè)網(wǎng)點分布的影響教師:商業(yè)網(wǎng)點與人們的生活密切相關(guān)。人們可以通過商業(yè)網(wǎng)點滿足日常的生活需要;商業(yè)網(wǎng)點也盡可能多地吸引購物者,以提高商品流通的經(jīng)濟效益。由于受自然條件的影響,在不同的地形區(qū),商業(yè)網(wǎng)點的形成條件、密度、效益和組織形式是不同的。展示:投影片圖5.29、圖5.30分別介紹山區(qū)和平原的自然條件。分析:從圖中我們可以看出:山區(qū)的等高線密集,說明地勢起伏大,地形坡度大,由于山區(qū)的人口分布較分散且人口密度小,故山區(qū)的商業(yè)網(wǎng)點在分布上也比較分散且沿河谷地帶分布。那么,平原地區(qū)的商業(yè)網(wǎng)點在形成、密度、效益和組織形式上相比較,有什么區(qū)別呢?

  • 人教版高中地理必修2交通運輸布局變化的影響教案

    人教版高中地理必修2交通運輸布局變化的影響教案

    北京的商業(yè)中心分布和變化大致分三個階段:鐘鼓樓市場、三足鼎立格局形成、環(huán)路沿線商業(yè)中心出現(xiàn)。相對應(yīng)的交通變化,鐘鼓樓市場衰退與大運河運輸?shù)匚凰ヂ?、運輸方式的變化密切相關(guān),后兩個階段與城市交通干線形態(tài)變化緊密聯(lián)系。3.交通線路的改變與集鎮(zhèn)的繁榮或衰落。有的集鎮(zhèn)因位于河道航運的終點而商業(yè)繁盛;當險灘被清除,航道向前延伸時,集鎮(zhèn)的這種集散轉(zhuǎn)運地位隨之消失,商業(yè)逐漸衰落。例如:陜西省勉縣的長林鎮(zhèn)完全退化為單純的居民點?!菊n堂小結(jié)】今天這節(jié)課我們主要學習了交通布局變化帶來的對聚落形態(tài)的影響和對商業(yè)網(wǎng)點分布的影響。請同學們將今天所學的知識結(jié)合我們的生活實際,能對本地區(qū)的交通發(fā)展帶來的變化有所了解,為今后家鄉(xiāng)發(fā)展獻計獻策。

  • 人教版新課標高中物理必修1用牛頓運動定律解決問題(二)教案2篇

    人教版新課標高中物理必修1用牛頓運動定律解決問題(二)教案2篇

    觀察實驗視頻實驗驗證師:其實大家完全可以利用身邊的器材來驗證。實驗1、用彈簧秤掛上鉤碼,然后迅速上提和迅速下放?,F(xiàn)象:在鉤碼被迅速上提的一瞬間,彈簧秤讀數(shù)突然變大;在鉤碼被迅速下放的一瞬間,彈簧秤讀數(shù)突然變小。師:迅速上提時彈簧秤示數(shù)變大是超重還是失重?迅速下放時彈簧秤示數(shù)變小是超重還是失重?生:迅速上提超重,迅速下放失重。體會為何用彈簧秤測物體重力時要保證在豎直方向且保持靜止或勻速實驗2、學生站在醫(yī)用體重計上,觀察下蹲和站起時秤的示數(shù)如何變化?在實驗前先讓同學們理論思考示數(shù)會如何變化再去驗證,最后再思考。(1)在上升過程中可分為兩個階段:加速上升、減速上升;下蹲過程中也可分為兩個階段:加速下降、減速下降。(2)當學生加速上升和減速下降時會出現(xiàn)超重現(xiàn)象;當學生加速下降和減速上升時會出現(xiàn)失重現(xiàn)象;(3)出現(xiàn)超重現(xiàn)象時加速度方向向上,出現(xiàn)失重現(xiàn)象時加速度方向向下。完全失重

上一頁123...414243444546474849505152下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!