(一)、情境導(dǎo)入通過播放笑笑和淘氣在文具店購買文具活動(dòng)的視頻片段,喚起學(xué)生已有的知識(shí)和經(jīng)驗(yàn),使學(xué)生想到“買東西要使用人民幣”。又因?yàn)槎昙?jí)孩子年齡較小,社會(huì)經(jīng)驗(yàn)不足,上市場、超市購物的機(jī)會(huì)也少,對(duì)人民幣只是初步的認(rèn)識(shí),對(duì)于要用到錢才能買到東西這一樸素的等價(jià)交換的原則只有初步的意識(shí)。所以借此機(jī)會(huì)激發(fā)學(xué)生想不想和笑笑、淘氣一起到文具店里去購買文具呢?從而引出課題:買文具。(二)、認(rèn)識(shí)小面額人民幣學(xué)生在生活中經(jīng)常看到人民幣,有時(shí)還使用人民幣,因此我首先讓學(xué)生互相交流:你知道有哪些面值的人民幣?根據(jù)學(xué)生的回答,老師有序地進(jìn)行板書:1角、2角、5甬1元、2元、5元10元、20元、50元100元在這一環(huán)節(jié)中我僅作為引導(dǎo)者,引導(dǎo)學(xué)生相互交流,在師生互動(dòng)中完成對(duì)已有知識(shí)經(jīng)驗(yàn)的歸納與延伸,通過小組合作,互相交流,讓全體學(xué)生參與學(xué)習(xí)過程,在學(xué)習(xí)過程中有意識(shí)培養(yǎng)學(xué)生細(xì)心觀察、仔細(xì)傾聽、善于總結(jié)的良好習(xí)慣。
說教材>是人教版小學(xué)數(shù)學(xué)五年級(jí)上冊(cè)第五單元P64的內(nèi)容。在學(xué)習(xí)本節(jié)課之前學(xué)生已經(jīng)認(rèn)識(shí)了等式與方程,這便為本節(jié)課的學(xué)習(xí)(構(gòu)建等量關(guān)系的數(shù)學(xué)模型)打下一定的基礎(chǔ),同時(shí)也為以后解簡單方程埋下伏筆,因此本節(jié)課內(nèi)容也是本章中的一個(gè)重點(diǎn)?;诒竟?jié)內(nèi)容的特點(diǎn),我將本節(jié)課的教學(xué)目標(biāo)確定為:1.知識(shí)與技能:理解等式的性質(zhì)并用語言表述,能利用等式的性質(zhì)解決簡單問題;2.過程與方法:在實(shí)驗(yàn)操作、討論、歸納等活動(dòng)中,經(jīng)歷探究等式基本性質(zhì)的過程;3.情感態(tài)度與價(jià)值觀:使學(xué)生積極參與數(shù)學(xué)活動(dòng),體驗(yàn)探索等式基本性質(zhì)的挑戰(zhàn)性與得出數(shù)學(xué)結(jié)論的確定性。教學(xué)重難點(diǎn):了解等式的基本性質(zhì),并能簡單運(yùn)用。說學(xué)情:小學(xué)五年級(jí)的學(xué)生已具備一定的思考能力,又樂于動(dòng)手操作、合作探究。因此教學(xué)中我引導(dǎo)學(xué)生認(rèn)真觀察-獨(dú)立思考-自主探究-合作交流,遵循由淺入深,由具體到抽象的規(guī)律,為學(xué)生創(chuàng)設(shè)一個(gè)和諧的學(xué)習(xí)環(huán)境,讓孩子們?cè)谔剿髦薪涣鳌⒏惺?、理解和概括出等式的基本性質(zhì)。
2、學(xué)生分析 其實(shí)學(xué)生對(duì)身體并不陌生,可以看得到、摸得著,但有時(shí)越是熟悉的事物學(xué)生越不容易產(chǎn)生關(guān)注,學(xué)生并不會(huì)花很多的時(shí)間去探究身體更多的奧秘,這恰是我們教學(xué)有價(jià)值的地方。我們可以在“熟悉”兩個(gè)字上做文章,在課堂中利用學(xué)生已有的知識(shí),建構(gòu)本課新的知識(shí)體系。我期望通過本課教學(xué)后,學(xué)生不再對(duì)自己的身體熟視無睹,而會(huì)運(yùn)用各種觀察方法進(jìn)行細(xì)致入微地觀察,還能在這種強(qiáng)烈的興趣地鼓舞下通過查資料等各種方式深入地研究自己的身體。
一、說教材1、教學(xué)內(nèi)容:本課內(nèi)容選自2013人教版小學(xué)數(shù)學(xué)二年級(jí)上冊(cè)第一單元《長度單位》例1、例2、例3的教學(xué)內(nèi)容。 2、教材所處的地位和作用本課是在學(xué)生已經(jīng)對(duì)長短的概念有了初步的認(rèn)識(shí),并學(xué)會(huì)直觀比較一些物體長短的基礎(chǔ)上來學(xué)習(xí)一些計(jì)量長度的知識(shí),這些知識(shí)可以幫助學(xué)生認(rèn)識(shí)長度單位,初步建立1厘米的長度觀念。 3、學(xué)情分析二年級(jí)學(xué)生經(jīng)過一年的學(xué)習(xí),已經(jīng)認(rèn)識(shí)了100以內(nèi)的數(shù),學(xué)會(huì)了一些簡單的統(tǒng)計(jì)方法。這些知識(shí)儲(chǔ)備為我們進(jìn)一步學(xué)習(xí)新知識(shí)打下基礎(chǔ)。二、說教學(xué)目標(biāo)1、知識(shí)與技能目標(biāo):統(tǒng)一長度單位,建立1厘米的觀念,會(huì)用厘米測(cè)量。2、情感目標(biāo):在小組合作測(cè)量的過程中,培養(yǎng)學(xué)生樂于探究的學(xué)習(xí)態(tài)度,學(xué)會(huì)與他人合作。體驗(yàn)知識(shí)的形成過程,進(jìn)一步體驗(yàn)學(xué)習(xí)成功帶來的喜悅。
一、說教材《加減混合》是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)(人教版)二年級(jí)上冊(cè)第28頁的例3和例4。這個(gè)知識(shí)點(diǎn)是在上一課時(shí)《連加、連減》知識(shí)的基礎(chǔ)上進(jìn)行的一個(gè)提升和知識(shí)點(diǎn)的整合。二、教學(xué)目標(biāo) 1、結(jié)合具體的情境,讓學(xué)生經(jīng)理探索加減混合運(yùn)算的計(jì)算方法的過程。 2、使學(xué)生掌握100以內(nèi)數(shù)加減混合運(yùn)算的計(jì)算方法,并學(xué)習(xí)筆算的書寫格式,掌握簡便寫法。 3、讓學(xué)社在解決簡單問題的過程中,體會(huì)數(shù)學(xué)與生活的密切聯(lián)系。三、說教學(xué)重點(diǎn)難點(diǎn)重點(diǎn):正確計(jì)算加減混合式題。 難點(diǎn):優(yōu)化算法,正確計(jì)算加減混合式題。 四、說教學(xué)程序 根據(jù)本節(jié)課的特點(diǎn),我準(zhǔn)備采用演示法、比較法、談話法、討論法和練習(xí)法等多種教學(xué)方法,設(shè)計(jì)了如下教學(xué)過程:
一、說教材小數(shù)乘以小數(shù)的原有基礎(chǔ)是整數(shù)乘整數(shù)、小數(shù)乘整數(shù)。它為小數(shù)除法、小數(shù)四則混合運(yùn)算和分?jǐn)?shù)小數(shù)四則混合運(yùn)算學(xué)習(xí)奠定基礎(chǔ),占據(jù)著重要的地位。小數(shù)乘小數(shù)是五年級(jí)上冊(cè)第一單元小數(shù)乘法的難點(diǎn)和關(guān)鍵,一共涉及三個(gè)知識(shí)點(diǎn),1.確定積小數(shù)點(diǎn)位置;2.積位數(shù)不夠時(shí)添“0”補(bǔ)足;3.小數(shù)連乘的探究。第一課時(shí)是根據(jù)整數(shù)乘法算出積后來確定積的小數(shù)點(diǎn)位置,不涉及積位數(shù)不夠時(shí)用0來補(bǔ)足的知識(shí)。本課時(shí)的關(guān)鍵在于理解算理,歸納算法。根據(jù)以上的分析及新課程標(biāo)準(zhǔn)的要求,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu),對(duì)整數(shù)乘法算理的掌握,能對(duì)小數(shù)乘整數(shù)積小數(shù)點(diǎn)的定位,制定以下的教學(xué)目標(biāo):知識(shí)與能力:共同探討,理解并掌握小數(shù)乘小數(shù)的算理及算法;過程與方法:在探索過程中,培養(yǎng)學(xué)生觀察、比較、歸納與概括的能力和用數(shù)學(xué)語言進(jìn)行表述交流的能力,滲透轉(zhuǎn)化思想;
二、學(xué)情分析五年級(jí)的學(xué)生具備了一定的思維能力,因此,教學(xué)過程中創(chuàng)設(shè)的問題情境力求貼近學(xué)生的生活,從而引起學(xué)生的思考。由于學(xué)生概括能力較弱,推理能力還有待發(fā)展,很大程度上還需要依賴具體形象的經(jīng)驗(yàn)材料來理解抽象邏輯關(guān)系。所以在教學(xué)時(shí),注重讓學(xué)生充分試驗(yàn)、收集、分析數(shù)據(jù),幫助他們對(duì)生活中的常見現(xiàn)象發(fā)生的可能性進(jìn)行正確的分析和判斷,所以本節(jié)課中,應(yīng)多為學(xué)生創(chuàng)自主學(xué)習(xí)、合作學(xué)習(xí)的機(jī)會(huì),讓他們主動(dòng)參與、勤于動(dòng)手,從而樂于探究。二、教學(xué)目標(biāo)新的課程標(biāo)準(zhǔn)中倡導(dǎo)教師要關(guān)注每一個(gè)學(xué)生的發(fā)展,教師應(yīng)該是教育教學(xué)的促進(jìn)者和引導(dǎo)者,因此,我結(jié)合本節(jié)課的內(nèi)容和學(xué)生的實(shí)際,并從知識(shí)與技能、過程與方法、情感態(tài)度與價(jià)值觀的三維目標(biāo)整合的角度特確定本節(jié)課的教學(xué)目標(biāo) 1.通過試驗(yàn)操作,懂得有些事情的發(fā)生是確定的,有些則是不確定的,并用“一定”“不可能”“可能”等詞語來描述知道事情發(fā)生的可能性是有大有小的,且可能性的大小與物體數(shù)量有關(guān)。2.經(jīng)歷猜測(cè)、試驗(yàn)、收集與分析試驗(yàn)結(jié)果等過程。 3培養(yǎng)學(xué)生的隨機(jī)觀念以及培養(yǎng)學(xué)生判斷、推理和合作探究的能力。
二、說教學(xué)目標(biāo)知識(shí)與技能:初步理解“方程的解”和“解方程”的含義,以及之間的聯(lián)系和區(qū)別。能用等式的性質(zhì)解形如X±a=b的方程,掌握解方程的格式和寫法。初步學(xué)會(huì)檢驗(yàn)?zāi)硞€(gè)數(shù)是否是方程的解,培養(yǎng)學(xué)生檢驗(yàn)的習(xí)慣,提高計(jì)算能力。過程和方法:通過探索、討論、交流等活動(dòng),讓學(xué)生初步理解“方程的解”和“解方程”的概念。經(jīng)歷運(yùn)用等式的性質(zhì)探究方程解法的過程,體會(huì)方程的解法和等式的性質(zhì)之間的聯(lián)系。情感、態(tài)度與價(jià)值觀:1. 學(xué)生能積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng),對(duì)數(shù)學(xué)有好奇心和求知欲。2. 在觀察、猜想、驗(yàn)證等數(shù)學(xué)活動(dòng)中,培養(yǎng)學(xué)生的數(shù)學(xué)素養(yǎng)。重點(diǎn):方程的解和解方程的概念,初步掌握用等式性質(zhì)來解簡易方程的方法。難點(diǎn):區(qū)別方程的解和解方程的含義。解方程的算理。三、說教法與學(xué)法教法:新課標(biāo)指出,教師是學(xué)習(xí)的組織者、引導(dǎo)者、合作者,充分發(fā)揮學(xué)生的主體性。根據(jù)這一理念,我在教學(xué)中通過觀察、猜想、驗(yàn)證等方式,自主探索、自主學(xué)習(xí)。有目的地運(yùn)用知識(shí)遷移的規(guī)律,引導(dǎo)學(xué)生進(jìn)行觀察、比較、分析、概括,培養(yǎng)學(xué)生的邏輯思維能力。學(xué)法:①讓學(xué)生學(xué)會(huì)以舊引新,掌握并運(yùn)用知識(shí)遷移進(jìn)行學(xué)習(xí)的方法;②讓學(xué)生學(xué)會(huì)自主發(fā)現(xiàn)問題,分析問題,解決問題的方法。
1、教材的地位《觀察物體》這節(jié)課是人教版《義務(wù)教育教科書?數(shù)學(xué)(二年級(jí)上冊(cè))》第五單元的第一課時(shí)。教材是從學(xué)生已有生活經(jīng)驗(yàn)出發(fā)以及已學(xué)習(xí)了位置知識(shí)的基礎(chǔ)上,借助于生活中的實(shí)物和學(xué)生的操作活動(dòng)進(jìn)行教學(xué)的。主要幫助學(xué)生建立初步的空間觀念,發(fā)展他們的形象思維,通過一些活動(dòng),使學(xué)生認(rèn)識(shí)到,從不同的角度觀察同一個(gè)物體,看到的物體的形狀可能是不同的,并讓學(xué)生初步體會(huì)局部與整體的關(guān)系,通過這部分內(nèi)容的教學(xué),不但可以使學(xué)生學(xué)會(huì)從不同的角度觀察物體,而且又為以后學(xué)習(xí)有關(guān)幾何圖形的知識(shí)打下堅(jiān)實(shí)的基礎(chǔ)。 2、教學(xué)目標(biāo)依照《新課程標(biāo)準(zhǔn)》的要求,結(jié)合教材和學(xué)生的特點(diǎn),從知識(shí)與技能、過程與方法和情感態(tài)度價(jià)值觀三方面制定以下教學(xué)目標(biāo):(1)能辨認(rèn)并能想象從不同位置看到的簡單物體的形狀。 (2)在探究中,學(xué)生掌握全面、正確的觀察物體的基本方法,并感受到局部與整體的關(guān)系。 (3)通過活動(dòng),感受數(shù)學(xué)與生活的聯(lián)系,培養(yǎng)學(xué)生觀察物體的興趣和熱情。3、教學(xué)重點(diǎn)、難點(diǎn)由于小學(xué)二年級(jí)的學(xué)生方位感不強(qiáng),他們往往前后不分,左右搞錯(cuò),觀察周圍的事物也是比較單純、直觀地看表面。
一、 說教材1、教材內(nèi)容:人教版小學(xué)數(shù)學(xué)第十冊(cè)《解簡易方程》及練習(xí)二十六1~5題。2、教材簡析:本節(jié)課是在學(xué)生已經(jīng)學(xué)過用字母表示數(shù)和數(shù)量關(guān)系,掌握了求未知數(shù)x的方法的基礎(chǔ)上學(xué)習(xí)的。通過學(xué)習(xí)使學(xué)生理解方程的意義、方程的解和解方程等概念,掌握方程與等式之間的關(guān)系,掌握解方程的一般步驟,為今后學(xué)習(xí)列方程解應(yīng)用題解決實(shí)際問題打下基礎(chǔ)。3、教學(xué)目標(biāo):(1)使學(xué)生理解方程的意義、方程的解和解方程的概念,掌握方程與等式之間的關(guān)系。(2)掌握解方程的一般步驟,會(huì)解簡單的方程,培養(yǎng)學(xué)生檢驗(yàn)的習(xí)慣,提高計(jì)算能力。(3)結(jié)合教學(xué),培養(yǎng)學(xué)生事實(shí)求是的學(xué)習(xí)態(tài)度,求真務(wù)實(shí)的科學(xué)精神,養(yǎng)成良好的學(xué)習(xí)習(xí)慣。滲透一一對(duì)應(yīng)的數(shù)學(xué)思想。
探索1:上節(jié)我們列出了與地毯的花邊寬度有關(guān)的方程。地毯花邊的寬x(m),滿足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花邊的寬度x嗎?(1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動(dòng)的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動(dòng)距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進(jìn)一步計(jì)算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當(dāng)堂訓(xùn)練:完成課本34頁隨堂練習(xí)四、學(xué)習(xí)體會(huì):五、課后作業(yè)
三、課堂檢測(cè):(一)、判斷題(是一無二次方程的在括號(hào)內(nèi)劃“√”,不是一元二次方程的,在括號(hào)內(nèi)劃“×”)1. 5x2+1=0 ( ) 2. 3x2+ +1=0 ( )3. 4x2=ax(其中a為常數(shù)) ( ) 4.2x2+3x=0 ( )5. =2x ( ) 6. =2x ( ) (二)、填空題.1.方程5(x2- x+1)=-3 x+2的一般形式是__________,其二次項(xiàng)是__________,一次項(xiàng)是__________,常數(shù)項(xiàng)是__________.2.如果方程ax2+5=(x+2)(x-1)是關(guān)于x的一元二次方程,則a__________.3.關(guān)于x的方程(m-4)x2+(m+4)x+2m+3=0,當(dāng)m__________時(shí),是一元二次方程,當(dāng)m__________時(shí),是一元一次方程。四、學(xué)習(xí)體會(huì):五、課后作業(yè)
方法總結(jié):(1)利用列表法估算一元二次方程根的取值范圍的步驟是:首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計(jì)算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進(jìn)一步在這個(gè)范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計(jì)一元二次方程根的取值范圍時(shí),當(dāng)ax2+bx+c(a≠0)的值由正變負(fù)或由負(fù)變正時(shí),x的取值范圍很重要,因?yàn)橹挥性谶@個(gè)范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設(shè)計(jì)一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實(shí)際問題確定其解的大致范圍;(2)再通過列表,具體計(jì)算,進(jìn)行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實(shí)際生活中一些較為復(fù)雜的方程時(shí)應(yīng)用廣泛.在本節(jié)課中讓學(xué)生體會(huì)用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學(xué)設(shè)計(jì)上,強(qiáng)調(diào)自主學(xué)習(xí),注重合作交流,在探究過程中獲得數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.
解:設(shè)需要剪去的小正方形邊長為xcm,則紙盒底面的長方形的長為(19-2x)cm,寬為(15-2x)cm.根據(jù)題意,得(19-2x)(15-2x)=81.整理,得x2-17x+51=0(x<152).方法總結(jié):列方程最重要的是審題,只有理解題意,才能恰當(dāng)?shù)卦O(shè)出未知數(shù),準(zhǔn)確地找出已知量和未知量之間的等量關(guān)系,正確地列出方程.在列出方程后,還應(yīng)根據(jù)實(shí)際需求,注明自變量的取值范圍.三、板書設(shè)計(jì)一元二次方程概念:只含有一個(gè)未知數(shù)x的整式方 程,并且都可以化成ax2+bx+c =0(a,b,c為常數(shù),a≠0)的形式一般形式:ax2+bx+c=0(a,b,c為?! ?數(shù),a≠0),其中ax2,bx,c 分別稱為二次項(xiàng)、一次項(xiàng)和 常數(shù)項(xiàng),a,b分別稱為二次 項(xiàng)系數(shù)和一次項(xiàng)系數(shù)本課通過豐富的實(shí)例,讓學(xué)生觀察、歸納出一元二次方程的有關(guān)概念,并從中體會(huì)方程的模型思想.通過本節(jié)課的學(xué)習(xí),應(yīng)該讓學(xué)生進(jìn)一步體會(huì)一元二次方程也是刻畫現(xiàn)實(shí)世界的一個(gè)有效數(shù)學(xué)模型,初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實(shí)踐又反過來作用于實(shí)踐的辯證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
(1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動(dòng)的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動(dòng)距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進(jìn)一步計(jì)算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當(dāng)堂訓(xùn)練:完成課本34頁隨堂練習(xí)四、學(xué)習(xí)體會(huì):五、課后作業(yè)
∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結(jié):根據(jù)一元二次方程根的情況,利用判別式得到關(guān)于一元二次方程系數(shù)的等式或不等式,再結(jié)合其他條件解題.三、板書設(shè)計(jì)用公式法解一元二次方程求根公式:x=-b±b2-4ac2a(a≠0,b2-4ac≥0)用公式法解一元二次 方程的一般步驟①化為一般形式②確定a,b,c的值③求出b2-4ac④利用求根公式求解一元二次方程根的判別式經(jīng)歷從用配方法解數(shù)字系數(shù)的一元二次方程到解字母系數(shù)的一元二次方程,探索求根公式,發(fā)展學(xué)生合情合理的推理能力,并認(rèn)識(shí)到配方法是理解求根公式的基礎(chǔ).通過對(duì)求根公式的推導(dǎo),認(rèn)識(shí)到一元二次方程的求根公式適用于所有的一元二次方程,操作簡單.體會(huì)數(shù)式通性,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的確定性.提高學(xué)生的運(yùn)算能力,并養(yǎng)成良好的運(yùn)算習(xí)慣.
首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計(jì)算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進(jìn)一步在這個(gè)范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計(jì)一元二次方程根的取值范圍時(shí),當(dāng)ax2+bx+c(a≠0)的值由正變負(fù)或由負(fù)變正時(shí),x的取值范圍很重要,因?yàn)橹挥性谶@個(gè)范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設(shè)計(jì)一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實(shí)際問題確定其解的大致范圍;(2)再通過列表,具體計(jì)算,進(jìn)行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實(shí)際生活中一些較為復(fù)雜的方程時(shí)應(yīng)用廣泛.在本節(jié)課中讓學(xué)生體會(huì)用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學(xué)設(shè)計(jì)上,強(qiáng)調(diào)自主學(xué)習(xí),注重合作交流,在探究過程中獲得數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.
二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當(dāng)x=______時(shí),代數(shù)式x2-8x+12的值是-4.3.若關(guān)于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關(guān)于x的方程:x2-2ax-b2+a2=0.2.設(shè)x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導(dǎo)x1+x2=- ,x1·x2= ;(2)求代數(shù)式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個(gè)月用電量不超過A千瓦時(shí),那么這戶居民這個(gè)月只交10元電費(fèi),如果超過A千瓦時(shí),那么這個(gè)月除了交10元用電費(fèi)外超過部分還要按每千瓦時(shí) 元收費(fèi).(1)若某戶2月份用電90千瓦時(shí),超過規(guī)定A千瓦時(shí),則超過部分電費(fèi)為多少元?(用A表示)(2)下表是這戶居民3月、4月的用電情況和交費(fèi)情況
二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當(dāng)x=______時(shí),代數(shù)式x2-8x+12的值是-4.3.若關(guān)于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關(guān)于x的方程:x2-2ax-b2+a2=0.2.設(shè)x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導(dǎo)x1+x2=- ,x1·x2= ;(2)求代數(shù)式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個(gè)月用電量不超過A千瓦時(shí),那么這戶居民這個(gè)月只交10元電費(fèi),如果超過A千瓦時(shí),那么這個(gè)月除了交10元用電費(fèi)外超過部分還要按每千瓦時(shí) 元收費(fèi).(1)若某戶2月份用電90千瓦時(shí),超過規(guī)定A千瓦時(shí),則超過部分電費(fèi)為多少元?(用A表示)(2)下表是這戶居民3月、4月的用電情況和交費(fèi)情況
易錯(cuò)提醒:利用b2-4ac判斷一元二次方程根的情況時(shí),容易忽略二次項(xiàng)系數(shù)不能等于0這一條件,本題中容易誤選A.【類型三】 根的判別式與三角形的綜合應(yīng)用已知a,b,c分別是△ABC的三邊長,當(dāng)m>0時(shí),關(guān)于x的一元二次方程c(x2+m)+b(x2-m)-2m ax=0有兩個(gè)相等的實(shí)數(shù)根,請(qǐng)判斷△ABC的形狀.解析:先將方程轉(zhuǎn)化為一般形式,再根據(jù)根的判別式確定a,b,c之間的關(guān)系,即可判定△ABC的形狀.解:將原方程轉(zhuǎn)化為一般形式,得(b+c)x2-2m ax+(c-b)m=0.∵原方程有兩個(gè)相等的實(shí)數(shù)根,∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結(jié):根據(jù)一元二次方程根的情況,利用判別式得到關(guān)于一元二次方程系數(shù)的等式或不等式,再結(jié)合其他條件解題.