∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對角線互相垂直平分且相等的四邊形是正方形.探究點二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對角線________________的四邊形是矩形;(2)對角線____________的平行四邊形是矩形;(3)對角線__________的平行四邊形是正方形;(4)對角線________________的矩形是正方形;(5)對角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.
1)正方形的邊長為4cm,則周長為( ),面積為( ) ,對角線長為( );2))正方形ABCD中,對角線AC、BD交于O點,AC=4 cm,則正方形的邊長為( ), 周長為( ),面積為( )3)在正方形ABCD中,AB=12 cm,對角線AC、BD相交于O,OA= ,AC= 。4) 1、正方形具有而矩形不一定具有的性質(zhì)是( ) A、四個角相等 B、對角線互相垂直平分 C、對角互補 D、對角線相等. 5)、正方形具有而菱形不一定具有的性質(zhì)( ) A、四條邊相等 B對角線互相垂直平分 C對角線平分一組對角 D對角線相等. 6)、正方形對角線長6,則它的面積為_________ ,周長為________. 7)、順次連接正方形各邊中點的小正方形的面積是原正方形面積的( )A.1/2 B.1/3 C.1/4 D.1/ 5四:范例講解:1、(課本P21例1)學(xué)生自己閱讀課本內(nèi)容、注意證明過程的書寫2、 如圖,分別以△ABC的邊AB,AC為一邊向外畫正方形AEDB和正方形ACFG,連接CE,BG.求證:BG=CE
易錯提醒:利用b2-4ac判斷一元二次方程根的情況時,容易忽略二次項系數(shù)不能等于0這一條件,本題中容易誤選A.【類型三】 根的判別式與三角形的綜合應(yīng)用已知a,b,c分別是△ABC的三邊長,當(dāng)m>0時,關(guān)于x的一元二次方程c(x2+m)+b(x2-m)-2m ax=0有兩個相等的實數(shù)根,請判斷△ABC的形狀.解析:先將方程轉(zhuǎn)化為一般形式,再根據(jù)根的判別式確定a,b,c之間的關(guān)系,即可判定△ABC的形狀.解:將原方程轉(zhuǎn)化為一般形式,得(b+c)x2-2m ax+(c-b)m=0.∵原方程有兩個相等的實數(shù)根,∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結(jié):根據(jù)一元二次方程根的情況,利用判別式得到關(guān)于一元二次方程系數(shù)的等式或不等式,再結(jié)合其他條件解題.
2、猜想 一元二次方程的兩個根 的和與積和原來的方程有什么聯(lián)系?小組交流。3、一般地,對于關(guān)于 方程 為已知常數(shù), ,試用求根公式求出它的兩個解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結(jié)果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致?!局R應(yīng)用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個根是2,求它的另一個根及 的值。(3)不解方程,求一 元二次方程 兩個根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個根是 ?!練w納小結(jié)】【作業(yè)】1、已知方程 的一個根是1,求它的另一個根及 的值。2、設(shè) 是方程 的兩個根,不解方程,求下列各式的值。① ;② 3、求一個一元次方程,使它的兩 個根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;
在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對角線分成4個等腰直角三角形,因此在正方形中解決問題時常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類型三】 利用正方形的性質(zhì)證明線段相等如圖,已知過正方形ABCD的對角線BD上一點P,作PE⊥BC于點E,PF⊥CD于點F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時只需說明AP=CP,由正方形對角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對角線互相垂直平分證明線段相等;(2)無論是正方形還是矩形,經(jīng)常連接對角線,這樣可以使分散的條件集中.
解析:熟記常見幾何體的三種視圖后首先可排除選項A,因為長方體的三視圖都是矩形;因為所給的主視圖中間是兩條虛線,故可排除選項B;選項D的幾何體中的俯視圖應(yīng)為一個梯形,與所給俯視圖形狀不符.只有C選項的幾何體與已知的三視圖相符.故選C.方法總結(jié):由幾何體的三種視圖想象其立體形狀可以從如下途徑進行分析:(1)根據(jù)主視圖想象物體的正面形狀及上下、左右位置,根據(jù)俯視圖想象物體的上面形狀及左右、前后位置,再結(jié)合左視圖驗證該物體的左側(cè)面形狀,并驗證上下和前后位置;(2)從實線和虛線想象幾何體看得見部分和看不見部分的輪廓線.在得出原立體圖形的形狀后,也可以反過來想象一下這個立體圖形的三種視圖,看與已知的三種視圖是否一致.探究點四:三視圖中的計算如圖所示是一個工件的三種視圖,圖中標(biāo)有尺寸,則這個工件的體積是()A.13πcm3 B.17πcm3C.66πcm3 D.68πcm3解析:由三種視圖可以看出,該工件是上下兩個圓柱的組合,其中下面的圓柱高為4cm,底面直徑為4cm;上面的圓柱高為1cm,底面直徑為2cm,則V=4×π×22+1×π×12=17π(cm3).故選B.
三、典型例題,應(yīng)用新知例2、一個盒子中有兩個紅球,兩個白球和一個藍(lán)球,這些球除顏色外其它都相同,從中隨機摸出一球,記下顏色后放回,再從中隨機摸出一球。求兩次摸到的球的顏色能配成紫色的概率. 分析:把兩個紅球記為紅1、紅2;兩個白球記為白1、白2.則列表格如下:總共有25種可能的結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,能配成紫色的共4種(紅1,藍(lán))(紅2,藍(lán))(藍(lán),紅1)(藍(lán),紅2),所以P(能配成紫色)= 四、分層提高,完善新知1.用如圖所示的兩個轉(zhuǎn)盤做“配紫色”游戲,每個轉(zhuǎn)盤都被分成三個面積相等的三個扇形.請求出配成紫色的概率是多少?2.設(shè)計兩個轉(zhuǎn)盤做“配紫色”游戲,使游戲者獲勝的概率為 五、課堂小結(jié),回顧新知1. 利用樹狀圖和列表法求概率時應(yīng)注意什么?2. 你還有哪些收獲和疑惑?
(1)請估計:當(dāng)n很大時,摸到白球的頻率將會接近(精確到0.1);(2)假如你摸一次,估計你摸到白球的概率P(白球)=;(3)試估算盒子里黑球有多少個.解:(1)0.6(2)0.6(3)設(shè)黑球有x個,則2424+x=0.6,解得x=16.經(jīng)檢驗,x=16是方程的解且符合題意.所以盒子里有黑球16個.方法總結(jié):本題主要考查用頻率估計概率的方法,當(dāng)摸球次數(shù)增多時,摸到白球的頻率mn將會接近一個數(shù)值,則可把這個數(shù)值近似看作概率,知道了概率就能估算盒子里黑球有多少個.三、板書設(shè)計用頻率估計概率用頻率估計概率用替代物模擬試驗估計概率通過實驗,理解當(dāng)實驗次數(shù)較大時實驗頻率穩(wěn)定于理論頻率,并據(jù)此估計某一事件發(fā)生的概率.經(jīng)歷實驗、統(tǒng)計等活動過程,進一步發(fā)展學(xué)生合作交流的意識和能力.通過動手實驗和課堂交流,進一步培養(yǎng)學(xué)生收集、描述、分析數(shù)據(jù)的技能,提高數(shù)學(xué)交流水平,發(fā)展探索、合作的精神.
∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可證:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對角線互相垂直平分且相等的四邊形是正方形.探究點二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對角線________________的四邊形是矩形;(2)對角線____________的平行四邊形是矩形;(3)對角線__________的平行四邊形是正方形;(4)對角線________________的矩形是正方形;(5)對角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對角線上分析特殊四邊形之間的關(guān)系應(yīng)充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.
[想一想]同學(xué)們經(jīng)歷了上述三種方法,你還能想出哪些測量旗桿高度的方法?你認(rèn)為最優(yōu)化的方法是哪種?思路點拔:1、如果旗桿周圍有足夠地空地使旗桿在太陽光照射下影子都在平地上,并能測出影子的長度,那么,可以在平地垂直樹一根小棒,等到小棒的影子恰好等于棒高時,再量旗桿的影子,此時旗桿的影子長度就是這個旗桿的高度.2、可以采用立一個已知長度的參照物在旗桿旁照相后量出照片中旗桿與參照物的長度根據(jù)線段成比例來進行計算.3、拿一根知道長度的直棒,手臂伸直,不斷調(diào)整自己的位置,使直棒剛好完全擋住旗桿,量出此時人到旗桿的距離、人手臂的長度和棒長,就可以利用三角形相似來進行計算.等等.第四環(huán)節(jié) 課堂小結(jié)1、本節(jié)課你學(xué)到了哪些知識?2、在運用科學(xué)知識進行實踐過程中,你是否想到最優(yōu)的方法?3、在與同伴合作交流中,你對自己的表現(xiàn)滿意嗎?第五環(huán)節(jié) 布置作業(yè),反思提煉
方法總結(jié):(1)利用列表法估算一元二次方程根的取值范圍的步驟是:首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進一步在這個范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計一元二次方程根的取值范圍時,當(dāng)ax2+bx+c(a≠0)的值由正變負(fù)或由負(fù)變正時,x的取值范圍很重要,因為只有在這個范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設(shè)計一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實際問題確定其解的大致范圍;(2)再通過列表,具體計算,進行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實際生活中一些較為復(fù)雜的方程時應(yīng)用廣泛.在本節(jié)課中讓學(xué)生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學(xué)設(shè)計上,強調(diào)自主學(xué)習(xí),注重合作交流,在探究過程中獲得數(shù)學(xué)活動的經(jīng)驗,提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.
解:設(shè)需要剪去的小正方形邊長為xcm,則紙盒底面的長方形的長為(19-2x)cm,寬為(15-2x)cm.根據(jù)題意,得(19-2x)(15-2x)=81.整理,得x2-17x+51=0(x<152).方法總結(jié):列方程最重要的是審題,只有理解題意,才能恰當(dāng)?shù)卦O(shè)出未知數(shù),準(zhǔn)確地找出已知量和未知量之間的等量關(guān)系,正確地列出方程.在列出方程后,還應(yīng)根據(jù)實際需求,注明自變量的取值范圍.三、板書設(shè)計一元二次方程概念:只含有一個未知數(shù)x的整式方 程,并且都可以化成ax2+bx+c =0(a,b,c為常數(shù),a≠0)的形式一般形式:ax2+bx+c=0(a,b,c為?! ?數(shù),a≠0),其中ax2,bx,c 分別稱為二次項、一次項和 常數(shù)項,a,b分別稱為二次 項系數(shù)和一次項系數(shù)本課通過豐富的實例,讓學(xué)生觀察、歸納出一元二次方程的有關(guān)概念,并從中體會方程的模型思想.通過本節(jié)課的學(xué)習(xí),應(yīng)該讓學(xué)生進一步體會一元二次方程也是刻畫現(xiàn)實世界的一個有效數(shù)學(xué)模型,初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辯證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
由上表可知,共有6種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有2種,所以P(兩次摸出的球都是白球)=26=13;(2)列表如下:由上表可知,共有9種結(jié)果,且每種結(jié)果是等可能的,其中兩次摸出白球的結(jié)果有4種,所以P(兩次摸出的球都是白球)=49.方法總結(jié):在試驗中,常出現(xiàn)“放回”和“不放回”兩種情況,即是否重復(fù)進行的事件,在求概率時要正確區(qū)分,如利用列表法求概率時,不重復(fù)在列表中有空格,重復(fù)在列表中則不會出現(xiàn)空格.三、板書設(shè)計用樹狀圖或表格求概率畫樹狀圖法列表法通過與學(xué)生現(xiàn)實生活相聯(lián)系的游戲為載體,培養(yǎng)學(xué)生建立概率模型的思想意識.在活動中進一步發(fā)展學(xué)生的合作交流意識,提高學(xué)生對所研究問題的反思和拓展的能力,逐步形成良好的反思意識.鼓勵學(xué)生思維的多樣性,發(fā)展學(xué)生的創(chuàng)新意識.
語文新課標(biāo)要求我們“在通讀課文的基礎(chǔ)上,理清思路,理解主要內(nèi)容”。本文運用小標(biāo)題來連綴全文,在教學(xué)過程中,有意識地引導(dǎo)學(xué)生結(jié)合小標(biāo)題來理清文章結(jié)構(gòu),明確層次關(guān)系,進而輕松把握內(nèi)容。本教學(xué)設(shè)計的各個環(huán)節(jié)始終抓住“理解人物精神品質(zhì)”這一主線,環(huán)環(huán)相扣。從導(dǎo)入開始,就有意識地引導(dǎo)學(xué)生對人物形象有一個初步的把握;然后通過梳理事件、語言對人物的品格有一個較完整的認(rèn)識;接下來通過研讀課文關(guān)鍵語段,了解文中引文的作用,對人物精神品質(zhì)的感悟更進一步深化;最后通過揣摩含義深刻的語句,來深刻感悟人物的崇高品格。此教學(xué)設(shè)計各環(huán)節(jié)由淺入深,逐層推進,符合初中生的一般認(rèn)知規(guī)律,可操作性較強。背景鏈接本文選自1993年8月21日《人民日報》,有改動。鄧稼先和楊振寧是有著50年友誼的同學(xué)。鄧稼先為中國核武器事業(yè)的發(fā)展做出了重大貢獻(xiàn)。
2、內(nèi)容內(nèi)在邏輯本單元是九年級下冊最后一個單元,從學(xué)生個體生活、家庭生活、學(xué)校生 活、社會生活和國家、世界,最終回到青少年自身,既是前兩個單元的延續(xù), 也是對九年級乃至初中階段學(xué)習(xí)內(nèi)容的承接和提升。第五課“少年的擔(dān)當(dāng)”主要引導(dǎo)學(xué)生與時代同步,走向更廣闊的世界,在 與外部世界交往中豐富自己的經(jīng)歷、拓寬自己的視野,理解青少年具有國際 視野和情懷的重要意義,明白當(dāng)代少年的歷史責(zé)任是時代賦予的,理解青少 年全面提高個人修養(yǎng)的意義;第六課“我的畢業(yè)季”中設(shè)計了“學(xué)無止境”和“多彩的職業(yè)”,幫助學(xué) 生知道學(xué)習(xí)生活中出現(xiàn)的各種壓力,理解學(xué)習(xí)的必要性和重要性,能夠在實 踐中學(xué)習(xí),樹立終身學(xué)習(xí)理念,知道不同勞動和職業(yè)具有獨特價值,理解愛崗 敬業(yè)的重要性,,做好自己的職業(yè)規(guī)劃和準(zhǔn)備,能夠踐行社會主義核心價值觀。第七課內(nèi)容基本邏輯是立足當(dāng)下、回望過去、展望未來。引導(dǎo)學(xué)生反思個 人成長的維度和方式,理解個人成長的關(guān)鍵,明白過程和結(jié)果的辯證關(guān)系,了 解初中生活之后的發(fā)展路徑與內(nèi)容,理解學(xué)習(xí)和實踐的關(guān)系。激勵他們樹立 遠(yuǎn)大志向,做有自信,懂自尊,能自強的中國人成為中華民族的棟梁。
A.大力深化大數(shù)據(jù)、人工智能等研發(fā)應(yīng)用B.高舉新時代改革開放旗幟,繼續(xù)全面深化改革、全面擴大開放C.加強國際交流與合作,培育競爭新優(yōu)勢D.建立更加公平、更可持續(xù)的社會保障制度 2、發(fā)展是解決我國一切問題的基礎(chǔ)和關(guān)鍵。全面建設(shè)社會主義現(xiàn)代化國家,必須始終抓好發(fā)展 這個基礎(chǔ)和關(guān)鍵。中國積極謀求發(fā)展,就必須 ( )①引領(lǐng)、主導(dǎo)全球規(guī)則的制定②要加快構(gòu)建以國內(nèi)大循環(huán)為主體、國內(nèi)國際雙循環(huán)相互促進的新發(fā)展格局③掌握國際競爭主動權(quán)④積極尋求新的經(jīng)濟增長點A. ①②③ B.①②④ C.①③④ D.②③④3、“中國制造2025”構(gòu)想的提出,對于中國傳統(tǒng)制造業(yè)的轉(zhuǎn)型升級影響深遠(yuǎn)。新一代信息技術(shù) 和傳統(tǒng)工業(yè)的深度融合已成為中國新一輪制造發(fā)展制高點,我們要把智能制造作為中國制造未 來的主攻方向,實現(xiàn)由“中國制造”向“中國創(chuàng)造”“中國智造”轉(zhuǎn)型。這有利于 ( )①促進我國經(jīng)濟實現(xiàn)由實體經(jīng)濟向虛擬經(jīng)濟轉(zhuǎn)變②通過新技術(shù)將傳統(tǒng)產(chǎn)業(yè)打造為高新技術(shù)產(chǎn)業(yè)③推動傳統(tǒng)產(chǎn)業(yè)優(yōu)化升級,從而進一步提升我國在全球分工中的地位④催生新興產(chǎn)業(yè),形成新的經(jīng)濟增長點
(一) 課標(biāo)要求本單元所依據(jù)的課程標(biāo)準(zhǔn)是道德與法治課程標(biāo)準(zhǔn) (2022年版) :第 四部分課程內(nèi)容第四學(xué)段 (7-9年級) 國情教育中的:1. “了解世界正處于百年未有之大變局 ,具有初步的國際視野 , 了 解全人類共同價值的內(nèi)涵 ,領(lǐng)悟構(gòu)建人類命運共同體的意義 。 ”2. “ 以 “于變局中開新局 ”為議題 ,結(jié)合實例分析如何應(yīng)對人類共 同面對的重大挑戰(zhàn) ,認(rèn)識中國的發(fā)展離不開世界 ,世界的繁榮也需要中 國 。 ”3. “通過與中華優(yōu)秀文化傳統(tǒng) 、革命傳統(tǒng) 、 國情教育等方面的關(guān)聯(lián) ,從真實的社會情境角度進行道德教育 ,強化學(xué)生的道德體驗和道德實 踐 , 旨在引導(dǎo)學(xué)生正確認(rèn)識 自 己 , 以及個人與家庭 、他人 、社會 、 國家 和人類文明的關(guān)系 , 了解國家發(fā)展和世界發(fā)展大勢 ,增強社會責(zé)任感和 擔(dān)當(dāng)意識 ,立志做社會主義建設(shè)者和接班人 。 ”
(四) 作業(yè)分析與設(shè)計意圖這是一項基于素質(zhì)教育導(dǎo)向的整體式課時作業(yè)設(shè)計,結(jié)合信息技術(shù)下的思政課與信息 技術(shù)的深度有效融合,不僅完成了培育學(xué)生課程核心素養(yǎng)提高政治認(rèn)同的目標(biāo),而且有效 的激發(fā)了學(xué)生的學(xué)習(xí)興趣。作業(yè)以學(xué)生的“微型討論會”為主要情境,設(shè)置了三項任務(wù),層層 遞進,螺旋式上升。作業(yè)以填寫“活動記錄”的形式呈現(xiàn)。教師從“掌握必備知識, 理論聯(lián)系實 際 ”“培養(yǎng)核心素養(yǎng),提高政治認(rèn)同”等 5 個維度對作業(yè)進行評價,以“優(yōu)秀”“良好” “合格”三個等級呈現(xiàn)。學(xué)生通過“微型討論會”的方式,暢談自己對中國在國際社會中的 地位和作用及相關(guān)外交政策的了解,通過該作業(yè)設(shè)計,教師可以引導(dǎo)學(xué)生關(guān)注國家和世界 局勢,樹立正確的人生觀,世界觀和價值觀。 以增強學(xué)生的政治認(rèn)同和責(zé)任意識。
8. 2022 年,俄烏沖突以來,美方不斷泛化國家安全概念,濫用出口管制措施, 多次以所謂“人權(quán)”等為由,對中國企業(yè)無理打壓,嚴(yán)重破壞國際經(jīng)貿(mào)規(guī)則。 同時美國不顧中方多次警告,將航母駛?cè)肽虾_M行挑釁,美國國會操弄“臺灣地圖牌” 。面對美方的無端打壓和干涉,我國應(yīng)該 ( )A.謙讓機遇,合作共贏,與美國共發(fā)展B.抓住機遇,迎接挑戰(zhàn),積極謀求發(fā)展C.集中力量,增強實力,掌控世界趨勢D.主動迎擊,不畏強權(quán),鞏固霸主地位9. 中華詩詞濃縮了中華文化的精華,經(jīng)過歲月的沉淀仍然閃爍著時代的光芒。 從下列經(jīng)典詩句中得到的啟示,你認(rèn)為不正確的是 ( )A.“萬物并育而不相害,道并行而不相?!薄趪H交往中我國要堅持合作、共贏的理念,做到互信互利 B.“國雖大,好戰(zhàn)必亡;天下雖平,忘戰(zhàn)必亡”— 中國要屹立于世界民族之林,必須通過戰(zhàn)爭樹立國際地位C.“天與不取,反受其咎;時至不行,反受其殃”—機遇稍縱即逝,我們要抓住機遇,勇于創(chuàng)新,追求發(fā)展D.“同心掬得滿庭芳”—各族人民要鑄牢中華民族共同體意識,手足相親、守望相助10.從漫畫“新四大發(fā)明”中,下列認(rèn)識和理解正確的有 ( )①我們要培育壯大經(jīng)濟發(fā)展新動能②我國把提升發(fā)展質(zhì)量放在首位③中國決定著世界經(jīng)濟發(fā)展的趨勢④中國與世界各國共享發(fā)展成果
三、總結(jié)全文,完成課后練習(xí)1.老舍筆下的貓你喜愛嗎?為什么?老舍筆下的貓不像貓,倒像——(小孩子)。老舍把貓當(dāng)作小孩子來寫,用擬人化的手法寫出了它的淘氣、可愛,表達(dá)了對貓的喜愛之情。2.讓我們有感情地朗讀課文,把你的喜愛之情也表達(dá)出來。3.師述:你能學(xué)習(xí)課文的寫法,圍繞總起句寫一段具體的話嗎?【出示課件25】出示總起句(任選一題):(1)貓真老實。(2)貓很盡職。(3)課間活動豐富多彩。(4)這堂自習(xí)課真靜??!4.閱讀鏈接【出示課件26】讀讀課后的閱讀鏈接,體會不同作家對貓的喜愛之情。同樣寫貓,有什么不同?預(yù)設(shè):夏丐尊寫對貓的喜愛,用了襯托的方法,從妻子孩子對貓的喜愛,表達(dá)自身的喜愛之情。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。