1.閱讀圖5.16,說明產(chǎn)業(yè)向國外轉(zhuǎn)移對日本經(jīng)濟(jì)的不利影響。點(diǎn)撥:圖5.16直觀的顯示了產(chǎn)業(yè)轉(zhuǎn)移對日本經(jīng)濟(jì)的不利影響:形成“產(chǎn)業(yè)轉(zhuǎn)移出去的多,轉(zhuǎn)移進(jìn)來的少→國內(nèi)生產(chǎn)投資不足,生產(chǎn)困難→市場萎縮→產(chǎn)業(yè)向外轉(zhuǎn)移,外資不愿進(jìn)入”的惡性循環(huán)。2.盡管重化工業(yè)的環(huán)境污染比較嚴(yán)重,但是卻能為工業(yè)化的發(fā)展提供堅(jiān)實(shí)的基礎(chǔ),因此成為發(fā)達(dá)工業(yè)的象征。日本、韓國的經(jīng)濟(jì)發(fā)展都經(jīng)歷了由輕工業(yè)(勞動(dòng)密集型)到重化工業(yè)(資源密集型和資金密集型)到高科技工業(yè)(技術(shù)密集型)的階段。(1)為什么日本、韓國在重點(diǎn)發(fā)展重化工業(yè)之前,要先發(fā)展勞動(dòng)密集型工業(yè)?點(diǎn)撥:重化工業(yè)的發(fā)展一方面需要有一定的工業(yè)基礎(chǔ)和技術(shù)工人,另一方面需要投入大量的資金,先發(fā)展勞動(dòng)密集型工業(yè)有利于利用勞動(dòng)力資源豐富且廉價(jià)的優(yōu)勢,積累資金和造就產(chǎn)業(yè)工人。所以,勞動(dòng)力豐富的發(fā)展中國家或地區(qū)的工業(yè)化往往從優(yōu)先發(fā)展勞動(dòng)密集型工業(yè)開始。
(學(xué)生展開暢敘所談,言之有理即可。)歸納:以上因素在人物語言表達(dá)中是綜合體現(xiàn)的,所以在寫作時(shí)必須周密思考,使人物語言體現(xiàn)的人物性格更豐富,更有立體感。(3)行動(dòng)描寫矛盾先生曾說:“人物性格必須通過行動(dòng)來表現(xiàn)?!蔽覀冊趯懽魑臅r(shí),應(yīng)當(dāng)注意描寫最能揭示人物本身的獨(dú)特性格的,最合乎人物地位,身份的動(dòng)作,從而使人物形象更生動(dòng)。行動(dòng)描寫要注意哪些方面?A、選擇具有代表性,最能表現(xiàn)人物性格的行動(dòng)來寫。如《守財(cái)奴》中的老葛朗臺的性格特點(diǎn)。B、要善于選擇具有表現(xiàn)力的動(dòng)詞,把人物的行動(dòng)準(zhǔn)確傳神地描寫出來。(4)側(cè)面描寫寫作不僅可以從正面對人物加以刻畫,也可以通過周圍各種不同人物的眼看,嘴講等方式,從側(cè)面起到烘托某個(gè)特定人物的作用。(請學(xué)生欣賞片段《茶花女》,《紅樓夢》,教師歸納。)
天上有明月,年年照相思。她夜夜沉醉在夢中。夢把空間縮短了,夢把時(shí)間凝固了,夢把世界凈化了。夢中沒有污穢,沒有嘈雜,沒有邪惡;夢中沒有分離,沒有創(chuàng)傷,沒有痛苦;夢中只有柔和的月色,只有溫馨的愛;夢使她永遠(yuǎn)年輕,使她不原醒來?!?,那個(gè)世界,是為天下最真最善最美的心靈準(zhǔn)備的,藝術(shù)家懷著虔誠的情感,用充滿魔力的琴弦,在人們的心中筑起了一座不朽的天堂,它像天地一樣長久,日月一樣永恒!新月微微地閉著眼睛,她清清楚楚地看到了那座天堂,真真切切地觸到了那座天堂,冰凌砌成墻壁,白云鋪成房頂,霧靄織成紗幔,星星串成明燈;在那里,她的頭發(fā)像沐浴之后那樣清爽柔軟,隨風(fēng)飄拂,她的肌膚像披著月光那樣清涼潤滑,她的那顆心啊,像浸潤著蒙蒙細(xì)雨的花蕾,掛著晶瑩的露珠,自由地呼吸……她沉醉在那個(gè)一塵不染的美好的境界,如歌如詩,如夢如幻,如云如月,如水如煙……
一、教學(xué)目標(biāo)1.指導(dǎo)學(xué)生以一顆真摯的童心、愛心面對大自然,促使學(xué)生的心靈與大自然親切交流。2.使學(xué)生明確寫景文章的寫作范圍、寫作重點(diǎn)、構(gòu)思技巧。二、教學(xué)重難點(diǎn)明確話題,寫景抓住特征,注重感情。三、教學(xué)方法多重對話法四、教學(xué)過程1.導(dǎo)入語:自然是人類生活的環(huán)境,是人類賴以生存的基礎(chǔ)。人類不僅在物質(zhì)上需要大地母親的哺育,而且在精神上也需要向自然尋求依托。當(dāng)知時(shí)節(jié)的春雨飄落大地時(shí),當(dāng)秋風(fēng)吹來誘人的果香時(shí),感到喜悅、幸福的決不僅是農(nóng)民;過去的政治家、文學(xué)家,每當(dāng)失意的時(shí)候,就會寄情山林;就是我們中學(xué)生,當(dāng)不堪學(xué)習(xí)重負(fù),感到身心疲憊的時(shí)候,去野外踏青,不也能愉悅身心嗎?可以說人對自然的情懷是與生俱來的。但不同的人,對自然的感悟有深淺不同,情趣有高下之分。“萬類霜天競自由”的感悟,“大漠孤煙直”的審美不是人人都能有的。2.面對大自然,通過什么樣的手段來促使我們的感悟、審美向高深方向發(fā)展呢?哪位同學(xué)說說。
三、教師總結(jié):在那如火如荼的苦難歲月,梁任公的政治主張屢屢因時(shí)而變,但為人處世的原則始終未變,他不是馮自由等人所描述的那種變色龍。他重感情,輕名利,嚴(yán)于律己,坦誠待人。無論是做兒子、做丈夫、做學(xué)生,還是做父親、做師長、做同事,他都能營造一個(gè)磁場,亮出一道風(fēng)景。明鏡似水,善解人意是他的常態(tài),在某些關(guān)鍵時(shí)刻,則以大手筆寫實(shí)愛的海洋,讓海洋為寬容而定格,人間為之增色。我敢斷言,在風(fēng)云際會和星光燦爛的中國近代人才群體中,特別是在遐邇有知的重量級歷史人物中,能在做人的問題上與梁啟超比試者是不大容易找到的。四、課后作業(yè):找出文中細(xì)節(jié)及側(cè)面描寫的地方,想一想這樣寫有什么好處,總結(jié)本文的寫作特點(diǎn)。五、板書設(shè)計(jì):梁任公演講特點(diǎn):
1.懸念法懸念法又稱關(guān)子。它是作者為了激發(fā)那種“緊張與期待的心理活動(dòng)”,在行文中有意采取的一種積極而有效的手段。這種手段包括“設(shè)懸”和“解懸”兩方面。所謂 “設(shè)懸”就是設(shè)置懸念,即在情節(jié)發(fā)生發(fā)展的關(guān)鍵時(shí)刻或人物命運(yùn)攸關(guān)的重要關(guān)頭,敘述戛然而止,轉(zhuǎn)敘他事。從而引起讀者強(qiáng)烈的尋根問底的興趣。所謂“解懸” 也叫“釋懸”,就是指在情節(jié)發(fā)展的特定階段,通過矛盾的解決,揭示事情原委和人物命運(yùn)的結(jié)局,使讀者的期待心理得以滿足。如《驛路梨花》,當(dāng)人們正為露宿而發(fā)愁時(shí)出現(xiàn)了一間神秘的小屋,小屋的主人是誰呢?猜想間,有人來了,但也不是屋子主人,那小屋子的主人是誰呢?終于知道了小屋是解放軍蓋的,但為什么要蓋這間小屋呢?這樣“設(shè)懸——釋懸——帶出新懸念”,環(huán)環(huán)相扣、層層遞進(jìn),使文章韻味無窮。
3.作者為什么不直接描寫人們看見東西呢?請同學(xué)們找出其中的細(xì)節(jié)描寫,并說明有什么表達(dá)效果。答:側(cè)面烘托,正是作者高明之處,這也是許多佳作常用之法。細(xì)節(jié)描寫往往會成為事情的切入點(diǎn)和突破口,一篇佳作往往離不開一些細(xì)節(jié)描寫,本文也不例外,有些細(xì)節(jié)描寫耐人尋味,如:“德國人撤退時(shí)炸毀的布熱金卡毒氣室和焚尸爐廢墟上,雛菊花在怒放?!薄斑@是一個(gè)二十多歲的姑娘,長得豐滿,可愛,皮膚細(xì)白,金發(fā)碧眼。她在溫和地微笑著,似乎是為著一個(gè)美好而又隱秘的夢想而微笑。”4.句子賞析:“對另外一些人來說,這樣一個(gè)事實(shí)使他們終生難忘:在德國人撤退時(shí)炸毀的布熱金卡毒氣室和焚尸爐廢墟上,雛菊花在怒放?!泵鞔_:一邊是戕害生命的毒氣室和焚尸爐,一邊是生機(jī)勃勃的生命,兩種反差極大的事物擺在一起。表達(dá)了作者對納粹的諷刺:納粹的殘暴終歸阻止不了生命的進(jìn)程。同時(shí)也表達(dá)了作者的控訴:生命的綻放是人世間最美好的事情,對生命的戕害是最惡劣的罪行。
交談時(shí)雙方的空間距離也有一定講究。和朋友談話、和陌生人談話、和異性談話、招呼長者和上級,都需要有一個(gè)合適的距離。如果上級故意“縮減”與下級人員通常談話時(shí)的距離,那是表示對下級的關(guān)切。說話的時(shí)候需要一面想,一面說,為了控制說話的主動(dòng)權(quán),免得被別人插人、打斷,人們可以使用“唔”“啊”之類的音節(jié),表示“話還沒有說完,你別著急”之類的意思。空白也表示意思,在說唱藝術(shù)中,什么時(shí)候停頓,停多久,都有講究,以便使交際更有成效。這就是說,空間和時(shí)間的因素也在交際中得到了適當(dāng)?shù)倪\(yùn)用。所以,各種伴隨動(dòng)作也是交際的工具。它們一般都是在語言的基礎(chǔ)上產(chǎn)生的。即使像“察顏觀色”這一類特定的交際方式,也必須有語言的交際為基礎(chǔ),預(yù)先有了一定的了解,對方才能領(lǐng)會??傊?,在上述的種種交際工具當(dāng)中,身勢等伴隨動(dòng)作是非語言的交際工具;旗語之類是建立在語言、文字基礎(chǔ)之上的輔助性交際工具;文字是建立在語言基礎(chǔ)之上的一種最重要的輔助交際工具;
新知探究我們知道,等差數(shù)列的特征是“從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差都等于同一個(gè)常數(shù)” 。類比等差數(shù)列的研究思路和方法,從運(yùn)算的角度出發(fā),你覺得還有怎樣的數(shù)列是值得研究的?1.兩河流域發(fā)掘的古巴比倫時(shí)期的泥版上記錄了下面的數(shù)列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《莊子·天下》中提到:“一尺之錘,日取其半,萬世不竭.”如果把“一尺之錘”的長度看成單位“1”,那么從第1天開始,每天得到的“錘”的長度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在營養(yǎng)和生存空間沒有限制的情況下,某種細(xì)菌每20 min 就通過分裂繁殖一代,那么一個(gè)這種細(xì)菌從第1次分裂開始,各次分裂產(chǎn)生的后代個(gè)數(shù)依次是2,4,8,16,32,64,… ⑤4.某人存入銀行a元,存期為5年,年利率為 r ,那么按照復(fù)利,他5年內(nèi)每年末得到的本利和分別是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥
高斯(Gauss,1777-1855),德國數(shù)學(xué)家,近代數(shù)學(xué)的奠基者之一. 他在天文學(xué)、大地測量學(xué)、磁學(xué)、光學(xué)等領(lǐng)域都做出過杰出貢獻(xiàn). 問題1:為什么1+100=2+99=…=50+51呢?這是巧合嗎?試從數(shù)列角度給出解釋.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法實(shí)際上解決了求等差數(shù)列:1,2,3,…,n,"… " 前100項(xiàng)的和問題.等差數(shù)列中,下標(biāo)和相等的兩項(xiàng)和相等.設(shè) an=n,則 a1=1,a2=2,a3=3,…如果數(shù)列{an} 是等差數(shù)列,p,q,s,t∈N*,且 p+q=s+t,則 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51問題2: 你能用上述方法計(jì)算1+2+3+… +101嗎?問題3: 你能計(jì)算1+2+3+… +n嗎?需要對項(xiàng)數(shù)的奇偶進(jìn)行分類討論.當(dāng)n為偶數(shù)時(shí), S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2當(dāng)n為奇數(shù)數(shù)時(shí), n-1為偶數(shù)
求函數(shù)的導(dǎo)數(shù)的策略(1)先區(qū)分函數(shù)的運(yùn)算特點(diǎn),即函數(shù)的和、差、積、商,再根據(jù)導(dǎo)數(shù)的運(yùn)算法則求導(dǎo)數(shù);(2)對于三個(gè)以上函數(shù)的積、商的導(dǎo)數(shù),依次轉(zhuǎn)化為“兩個(gè)”函數(shù)的積、商的導(dǎo)數(shù)計(jì)算.跟蹤訓(xùn)練1 求下列函數(shù)的導(dǎo)數(shù):(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟蹤訓(xùn)練2 求下列函數(shù)的導(dǎo)數(shù)(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的飲用水通常是經(jīng)過凈化的,隨著水的純凈度的提高,所需進(jìn)化費(fèi)用不斷增加,已知將1t水進(jìn)化到純凈度為x%所需費(fèi)用(單位:元),為c(x)=5284/(100-x) (80<x<100)求進(jìn)化到下列純凈度時(shí),所需進(jìn)化費(fèi)用的瞬時(shí)變化率:(1) 90% ;(2) 98%解:凈化費(fèi)用的瞬時(shí)變化率就是凈化費(fèi)用函數(shù)的導(dǎo)數(shù);c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2
新知探究國際象棋起源于古代印度.相傳國王要獎(jiǎng)賞國際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請?jiān)谄灞P的第1個(gè)格子里放上1顆麥粒,第2個(gè)格子里放上2顆麥粒,第3個(gè)格子里放上4顆麥粒,依次類推,每個(gè)格子里放的麥粒都是前一個(gè)格子里放的麥粒數(shù)的2倍,直到第64個(gè)格子.請給我足夠的麥粒以實(shí)現(xiàn)上述要求.”國王覺得這個(gè)要求不高,就欣然同意了.假定千粒麥粒的質(zhì)量為40克,據(jù)查,2016--2017年度世界年度小麥產(chǎn)量約為7.5億噸,根據(jù)以上數(shù)據(jù),判斷國王是否能實(shí)現(xiàn)他的諾言.問題1:每個(gè)格子里放的麥粒數(shù)可以構(gòu)成一個(gè)數(shù)列,請判斷分析這個(gè)數(shù)列是否是等比數(shù)列?并寫出這個(gè)等比數(shù)列的通項(xiàng)公式.是等比數(shù)列,首項(xiàng)是1,公比是2,共64項(xiàng). 通項(xiàng)公式為〖a_n=2〗^(n-1)問題2:請將發(fā)明者的要求表述成數(shù)學(xué)問題.
我們知道數(shù)列是一種特殊的函數(shù),在函數(shù)的研究中,我們在理解了函數(shù)的一般概念,了解了函數(shù)變化規(guī)律的研究內(nèi)容(如單調(diào)性,奇偶性等)后,通過研究基本初等函數(shù)不僅加深了對函數(shù)的理解,而且掌握了冪函數(shù),指數(shù)函數(shù),對數(shù)函數(shù),三角函數(shù)等非常有用的函數(shù)模型。類似地,在了解了數(shù)列的一般概念后,我們要研究一些具有特殊變化規(guī)律的數(shù)列,建立它們的通項(xiàng)公式和前n項(xiàng)和公式,并應(yīng)用它們解決實(shí)際問題和數(shù)學(xué)問題,從中感受數(shù)學(xué)模型的現(xiàn)實(shí)意義與應(yīng)用,下面,我們從一類取值規(guī)律比較簡單的數(shù)列入手。新知探究1.北京天壇圜丘壇,的地面有十板布置,最中間是圓形的天心石,圍繞天心石的是9圈扇環(huán)形的石板,從內(nèi)到外各圈的示板數(shù)依次為9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型號的女裝上對應(yīng)的尺碼分別是38,40,42,44,46,48 ②3.測量某地垂直地面方向上海拔500米以下的大氣溫度,得到從距離地面20米起每升高100米處的大氣溫度(單位℃)依次為25,24,23,22,21 ③
課前小測1.思考辨析(1)若Sn為等差數(shù)列{an}的前n項(xiàng)和,則數(shù)列Snn也是等差數(shù)列.( )(2)若a1>0,d<0,則等差數(shù)列中所有正項(xiàng)之和最大.( )(3)在等差數(shù)列中,Sn是其前n項(xiàng)和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項(xiàng)數(shù)為2n+1的等差數(shù)列中,所有奇數(shù)項(xiàng)的和為165,所有偶數(shù)項(xiàng)的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項(xiàng).]3.等差數(shù)列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數(shù)列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數(shù)列{an}的通項(xiàng)公式是an=2n-48,則Sn取得最小值時(shí),n為________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負(fù)項(xiàng)的和最小,即n=23或24.]二、典例解析例8.某校新建一個(gè)報(bào)告廳,要求容納800個(gè)座位,報(bào)告廳共有20排座位,從第2排起后一排都比前一排多兩個(gè)座位. 問第1排應(yīng)安排多少個(gè)座位?分析:將第1排到第20排的座位數(shù)依次排成一列,構(gòu)成數(shù)列{an} ,設(shè)數(shù)列{an} 的前n項(xiàng)和為S_n。
1.判斷正誤(正確的打“√”,錯(cuò)誤的打“×”)(1)函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數(shù)f (x)在這個(gè)區(qū)間上單調(diào)遞減. ( )(2)函數(shù)在某一點(diǎn)的導(dǎo)數(shù)越大,函數(shù)在該點(diǎn)處的切線越“陡峭”. ( )(3)函數(shù)在某個(gè)區(qū)間上變化越快,函數(shù)在這個(gè)區(qū)間上導(dǎo)數(shù)的絕對值越大.( )(4)判斷函數(shù)單調(diào)性時(shí),在區(qū)間內(nèi)的個(gè)別點(diǎn)f ′(x)=0,不影響函數(shù)在此區(qū)間的單調(diào)性.( )[解析] (1)√ 函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數(shù)f (x)在這個(gè)區(qū)間上單調(diào)遞減,故正確.(2)× 切線的“陡峭”程度與|f ′(x)|的大小有關(guān),故錯(cuò)誤.(3)√ 函數(shù)在某個(gè)區(qū)間上變化的快慢,和函數(shù)導(dǎo)數(shù)的絕對值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數(shù)f (x)在區(qū)間內(nèi)單調(diào)遞增(減),故f ′(x)=0不影響函數(shù)單調(diào)性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因?yàn)閒(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數(shù)在R上單調(diào)遞增,如圖(1)所示
新知探究前面我們研究了兩類變化率問題:一類是物理學(xué)中的問題,涉及平均速度和瞬時(shí)速度;另一類是幾何學(xué)中的問題,涉及割線斜率和切線斜率。這兩類問題來自不同的學(xué)科領(lǐng)域,但在解決問題時(shí),都采用了由“平均變化率”逼近“瞬時(shí)變化率”的思想方法;問題的答案也是一樣的表示形式。下面我們用上述思想方法研究更一般的問題。探究1: 對于函數(shù)y=f(x) ,設(shè)自變量x從x_0變化到x_0+ ?x ,相應(yīng)地,函數(shù)值y就從f(x_0)變化到f(〖x+x〗_0) 。這時(shí), x的變化量為?x,y的變化量為?y=f(x_0+?x)-f(x_0)我們把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函數(shù)從x_0到x_0+?x的平均變化率。1.導(dǎo)數(shù)的概念如果當(dāng)Δx→0時(shí),平均變化率ΔyΔx無限趨近于一個(gè)確定的值,即ΔyΔx有極限,則稱y=f (x)在x=x0處____,并把這個(gè)________叫做y=f (x)在x=x0處的導(dǎo)數(shù)(也稱為__________),記作f ′(x0)或________,即
二、典例解析例4. 用 10 000元購買某個(gè)理財(cái)產(chǎn)品一年.(1)若以月利率0.400%的復(fù)利計(jì)息,12個(gè)月能獲得多少利息(精確到1元)?(2)若以季度復(fù)利計(jì)息,存4個(gè)季度,則當(dāng)每季度利率為多少時(shí),按季結(jié)算的利息不少于按月結(jié)算的利息(精確到10^(-5))?分析:復(fù)利是指把前一期的利息與本金之和算作本金,再計(jì)算下一期的利息.所以若原始本金為a元,每期的利率為r ,則從第一期開始,各期的本利和a , a(1+r),a(1+r)^2…構(gòu)成等比數(shù)列.解:(1)設(shè)這筆錢存 n 個(gè)月以后的本利和組成一個(gè)數(shù)列{a_n },則{a_n }是等比數(shù)列,首項(xiàng)a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12個(gè)月后的利息為10 490.7-10^4≈491(元).解:(2)設(shè)季度利率為 r ,這筆錢存 n 個(gè)季度以后的本利和組成一個(gè)數(shù)列{b_n },則{b_n }也是一個(gè)等比數(shù)列,首項(xiàng) b_1=10^4 (1+r),公比為1+r,于是 b_4=10^4 (1+r)^4.
二、典例解析例3.某公司購置了一臺價(jià)值為220萬元的設(shè)備,隨著設(shè)備在使用過程中老化,其價(jià)值會逐年減少.經(jīng)驗(yàn)表明,每經(jīng)過一年其價(jià)值會減少d(d為正常數(shù))萬元.已知這臺設(shè)備的使用年限為10年,超過10年 ,它的價(jià)值將低于購進(jìn)價(jià)值的5%,設(shè)備將報(bào)廢.請確定d的范圍.分析:該設(shè)備使用n年后的價(jià)值構(gòu)成數(shù)列{an},由題意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}為公差為-d的等差數(shù)列.10年之內(nèi)(含10年),該設(shè)備的價(jià)值不小于(220×5%=)11萬元;10年后,該設(shè)備的價(jià)值需小于11萬元.利用{an}的通項(xiàng)公式列不等式求解.解:設(shè)使用n年后,這臺設(shè)備的價(jià)值為an萬元,則可得數(shù)列{an}.由已知條件,得an=an-1-d(n≥2).所以數(shù)列{an}是一個(gè)公差為-d的等差數(shù)列.因?yàn)閍1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由題意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范圍為19<d≤20.9
二、典例解析例10. 如圖,正方形ABCD 的邊長為5cm ,取正方形ABCD 各邊的中點(diǎn)E,F,G,H, 作第2個(gè)正方形 EFGH,然后再取正方形EFGH各邊的中點(diǎn)I,J,K,L,作第3個(gè)正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個(gè)正方形的面積之和;(2) 如果這個(gè)作圖過程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個(gè)等比數(shù)列。解:設(shè)正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個(gè)正方形的頂點(diǎn)分別是第k個(gè)正方形各邊的中點(diǎn),所以a_(k+1)=〖1/2 a〗_k,因此{(lán)a_n},是以25為首項(xiàng),1/2為公比的等比數(shù)列.設(shè){a_n}的前項(xiàng)和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個(gè)正方形的面積之和為25575/512cm^2.(2)當(dāng)無限增大時(shí),無限趨近于所有正方形的面積和
情景導(dǎo)學(xué)古語云:“勤學(xué)如春起之苗,不見其增,日有所長”如果對“春起之苗”每日用精密儀器度量,則每日的高度值按日期排在一起,可組成一個(gè)數(shù)列. 那么什么叫數(shù)列呢?二、問題探究1. 王芳從一歲到17歲,每年生日那天測量身高,將這些身高數(shù)據(jù)(單位:厘米)依次排成一列數(shù):75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①記王芳第i歲的身高為 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我們發(fā)現(xiàn)h_i中的i反映了身高按歲數(shù)從1到17的順序排列時(shí)的確定位置,即h_1=75 是排在第1位的數(shù),h_2=87是排在第2位的數(shù)〖"…" ,h〗_17 =168是排在第17位的數(shù),它們之間不能交換位置,所以①具有確定順序的一列數(shù)。2. 在兩河流域發(fā)掘的一塊泥板(編號K90,約生產(chǎn)于公元前7世紀(jì))上,有一列依次表示一個(gè)月中從第1天到第15天,每天月亮可見部分的數(shù):5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②