1.說(shuō)教材《比例的意義和基本性質(zhì)》是人教版小學(xué)數(shù)學(xué)六年級(jí)下冊(cè)第四單元的內(nèi)容,這部分內(nèi)容是在學(xué)習(xí)了比的有關(guān)知識(shí)并掌握了一些常見的數(shù)量關(guān)系的基礎(chǔ)上進(jìn)行教學(xué)的,是前面“比的知識(shí)”的深化,也是后面學(xué)習(xí)解比例知識(shí)的基礎(chǔ),并為學(xué)習(xí)比例的應(yīng)用,特別是為正、反比例及其應(yīng)用打好基礎(chǔ)。比例的知識(shí)在生活和生產(chǎn)中有著廣泛的應(yīng)用,所以本節(jié)課的知識(shí)就顯得尤為重要。2.教學(xué)目標(biāo)我以《新課程標(biāo)準(zhǔn)》為依據(jù),結(jié)合小學(xué)數(shù)學(xué)教材編排的意圖和學(xué)生的實(shí)際情況,擬定以下教學(xué)目標(biāo):(1)知識(shí)與技能目標(biāo):使學(xué)生理解并掌握比例的意義和基本性質(zhì),認(rèn)識(shí)比例各部分名稱,知道比和比例的區(qū)別。(2)能力目標(biāo):培養(yǎng)學(xué)生自主參與的意識(shí)和主動(dòng)探究的精神,培養(yǎng)學(xué)生初步的觀察、分析、比較、判斷、概括的能力,發(fā)展學(xué)生的思維。 (3)情感與態(tài)度目標(biāo):在教學(xué)中滲透愛國(guó)主義教育,培養(yǎng)學(xué)生善于觀察、勤于思考、樂于探究的學(xué)習(xí)習(xí)慣。3.教學(xué)重點(diǎn)、難點(diǎn)教學(xué)重點(diǎn):理解比例的意義與探究基本性質(zhì)。教學(xué)難點(diǎn):運(yùn)用比例的意義或性質(zhì)判斷兩個(gè)比能否組成比例,并能正確地組成比例。
在匯報(bào)的過程中互相判斷,我適時(shí)的用反例來(lái)加以說(shuō)明,引導(dǎo)學(xué)生在爭(zhēng)論中逐步形成對(duì)三角形的正確認(rèn)識(shí),得出:由三條線段圍成的圖形(每相鄰兩條線段的端點(diǎn)相連)叫做三角形。再讓學(xué)生根據(jù)三角形的意義來(lái)解釋判斷題中沒選中的圖形為什么不是三角形,從而加深對(duì)三角形意義的理解?!驹O(shè)計(jì)意圖:讓學(xué)生畫三角形、判斷三角形使學(xué)生感覺到自己在玩中學(xué),在學(xué)中玩,發(fā)揮學(xué)生的主體作用,學(xué)生經(jīng)過獨(dú)立思考、逐步探索和相互交流后,可以加深對(duì)三角形的認(rèn)識(shí),有效的突破本節(jié)課的重點(diǎn)。】3、用字母表示三角形告訴學(xué)生為了表達(dá)方便,可以用字母分別表示三角形的三個(gè)頂點(diǎn),用A、B、C表示這個(gè)三角形的三個(gè)頂點(diǎn),這個(gè)三角形就可以表示成三角形ABC。(同時(shí)板書三角形ABC。)讓學(xué)生選擇三個(gè)字母表示出自己畫的三角形,培養(yǎng)學(xué)生的符號(hào)感。
環(huán)節(jié)四 課堂小結(jié) 鞏固知識(shí)本節(jié)課我采用線索性的板書,整個(gè)知識(shí)結(jié)構(gòu)一目了然,為了充分發(fā)揮學(xué)生在課堂的主體地位,我將課堂小結(jié)交由學(xué)生完成,請(qǐng)學(xué)生根據(jù)課堂學(xué)習(xí)的內(nèi)容,結(jié)合我的板書設(shè)計(jì)來(lái)進(jìn)行小結(jié),以此來(lái)幫助教師在第一時(shí)間掌握學(xué)生學(xué)習(xí)信息的反饋,同時(shí)培養(yǎng)學(xué)生歸納分析能力、概括能力。環(huán)節(jié)五 情景回歸,情感升華我的實(shí)習(xí)指導(dǎo)老師告訴過我們,政治這一門學(xué)科要從生活中來(lái)到生活去,所以在課堂的最后以中菲黃巖島事件為材料背景,引導(dǎo)同學(xué)們思考:作為一名愛國(guó)青年請(qǐng)就如何解決這一問題向政府提出自己的建議和意見。以此培養(yǎng)學(xué)生對(duì)理論的實(shí)際運(yùn)用能力,同時(shí)檢驗(yàn)他們對(duì)知識(shí)的真正掌握情況,以此達(dá)到情感的升華,本節(jié)課,我根據(jù)建構(gòu)主義理論,強(qiáng)調(diào)學(xué)生是學(xué)習(xí)的中心,學(xué)生是知識(shí)意義的主動(dòng)建構(gòu)者,是信息加工的主體,要強(qiáng)調(diào)學(xué)生在課堂中的參與性、以及探究性,不僅讓他們懂得知識(shí),更讓他們相信知識(shí),并且將知識(shí)融入到實(shí)踐當(dāng)中去,最終達(dá)到知、情、意、行的統(tǒng)一。
設(shè)計(jì)意圖:使同學(xué)從各屆奧運(yùn)會(huì)會(huì)徽的設(shè)計(jì)上看各國(guó)文化,讓學(xué)生體會(huì)不同會(huì)徽體現(xiàn)的不同的民族文化,了解不同民族的文化特色,感悟文化多樣性的價(jià)值,使學(xué)生產(chǎn)生情感認(rèn)同,從而突破難點(diǎn)。探究活動(dòng)5:教師多媒體呈現(xiàn)中法文化年的flash,顯示中國(guó)到法國(guó)舉辦中國(guó)文化年的圖片,比如:在法國(guó)街頭出現(xiàn)了中國(guó)的京劇臉譜,中國(guó)孩子玩的風(fēng)車,中國(guó)的大熊貓。出示法國(guó)到中國(guó)舉辦文化年的圖片,比如:法國(guó)在北京舉辦的音樂會(huì),法國(guó)空軍的飛行表演等。學(xué)生討論:中法文化年的舉辦對(duì)中法兩國(guó)來(lái)說(shuō)有什么現(xiàn)實(shí)意義?探究活動(dòng)6:播放理查德.克萊德曼演奏的《梁山伯與祝英臺(tái)》的視頻討論:(1)此曲吸引你之處在哪里?(2)由此可見,對(duì)待文化差異的正確態(tài)度是什么?活動(dòng)5和活動(dòng)6的設(shè)計(jì)意圖在于讓學(xué)生懂得,面對(duì)開放的世界,既要尊重本民族的文化,同時(shí)也要尊重其他民族的文化,從而突破難點(diǎn)。
1、 說(shuō)教材的地位和作用《世界文化的多樣性》是人教版必修教材《文化生活》第二單元第一課的第一個(gè)框題。多樣性是當(dāng)代世界文化的重要特征,也是文化交流和傳播的前提。因此,本框知識(shí)具有承前啟后的作用,在本單元中,它是一個(gè)引子,開啟了本單元知識(shí)的學(xué)習(xí)之門。2、 說(shuō)教學(xué)的重、難點(diǎn)根據(jù)課程標(biāo)準(zhǔn)以及高二學(xué)生的知識(shí)結(jié)構(gòu)和思維特點(diǎn),我確定了教學(xué)重點(diǎn)和難點(diǎn)。教學(xué)重點(diǎn):民族文化的多樣性。確定重點(diǎn)的依據(jù):豐富的世界文化表現(xiàn)在文字、建筑、服飾、飲食、宗教信仰、思想理論、文學(xué)藝術(shù)、風(fēng)俗習(xí)慣等眾多方面。世界有許多輝煌的文化成就和著稱于世的文化遺產(chǎn)??梢哉f(shuō),世界文化的多樣性主要表現(xiàn)在民族文化的多樣性。在教材內(nèi)容中有許多關(guān)于文化的論述和概念。其中“民族文化的多樣性”起著關(guān)鍵性的作用。難點(diǎn):尊重文化多樣性必然性。
設(shè)疑自探:一個(gè)壓縮或拉伸的彈簧就是一個(gè)“儲(chǔ)能器”,怎樣衡量形變彈簧蘊(yùn)含能量的多少呢?彈簧的彈性勢(shì)能的表達(dá)式可能與那幾個(gè)物理量有關(guān)?類比:物體的重力勢(shì)能與物體所受的重力和高度有關(guān)。那么彈簧的彈性勢(shì)能可能與所受彈力的大小和在彈力方向上的位置變化有關(guān),而由F=kl知彈簧所受彈力等于彈簧的勁度系數(shù)與形變量的乘積。預(yù)測(cè):彈簧的彈性勢(shì)能與彈簧的勁度系數(shù)和形變量有關(guān)。學(xué)生討論如何設(shè)計(jì)實(shí)驗(yàn): ①、用同一根彈簧在幾次被壓縮量不同時(shí)釋放(勁度系數(shù)相同,改變形變量),觀察小車被彈開的情況。②、分別用兩根彈簧在被壓縮量相同時(shí)釋放(形變量相同,勁度系數(shù)不同),觀察小車被彈開的情況。交流探究結(jié)果:彈性勢(shì)能隨彈簧形變量增大而增大。隨彈簧的勁度系數(shù)的增大而增大。
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修1第四章第4.4.2節(jié)《對(duì)數(shù)函數(shù)的圖像和性質(zhì)》 是高中數(shù)學(xué)在指數(shù)函數(shù)之后的重要初等函數(shù)之一。對(duì)數(shù)函數(shù)與指數(shù)函數(shù)聯(lián)系密切,無(wú)論是研究的思想方法方法還是圖像及性質(zhì),都有其共通之處。相較于指數(shù)函數(shù),對(duì)數(shù)函數(shù)的圖象亦有其獨(dú)特的美感。在類比推理的過程中,感受圖像的變化,認(rèn)識(shí)變化的規(guī)律,這是提高學(xué)生直觀想象能力的一個(gè)重要的過程。為之后學(xué)習(xí)數(shù)學(xué)提供了更多角度的分析方法。培養(yǎng)和發(fā)展學(xué)生邏輯推理、數(shù)學(xué)直觀、數(shù)學(xué)抽象、和數(shù)學(xué)建模的核心素養(yǎng)。1、掌握對(duì)數(shù)函數(shù)的圖像和性質(zhì);能利用對(duì)數(shù)函數(shù)的圖像與性質(zhì)來(lái)解決簡(jiǎn)單問題;2、經(jīng)過探究對(duì)數(shù)函數(shù)的圖像和性質(zhì),對(duì)數(shù)函數(shù)與指數(shù)函數(shù)圖像之間的聯(lián)系,對(duì)數(shù)函數(shù)內(nèi)部的的聯(lián)系。培養(yǎng)學(xué)生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學(xué)交流能力;滲透類比等基本數(shù)學(xué)思想方法。
新知講授(一)——古典概型 對(duì)隨機(jī)事件發(fā)生可能性大小的度量(數(shù)值)稱為事件的概率。我們將具有以上兩個(gè)特征的試驗(yàn)稱為古典概型試驗(yàn),其數(shù)學(xué)模型稱為古典概率模型,簡(jiǎn)稱古典概型。即具有以下兩個(gè)特征:1、有限性:樣本空間的樣本點(diǎn)只有有限個(gè);2、等可能性:每個(gè)樣本點(diǎn)發(fā)生的可能性相等。思考一:下面的隨機(jī)試驗(yàn)是不是古典概型?(1)一個(gè)班級(jí)中有18名男生、22名女生。采用抽簽的方式,從中隨機(jī)選擇一名學(xué)生,事件A=“抽到男生”(2)拋擲一枚質(zhì)地均勻的硬幣3次,事件B=“恰好一次正面朝上”(1)班級(jí)中共有40名學(xué)生,從中選擇一名學(xué)生,即樣本點(diǎn)是有限個(gè);因?yàn)槭请S機(jī)選取的,所以選到每個(gè)學(xué)生的可能性都相等,因此這是一個(gè)古典概型。
本節(jié)課是三角函數(shù)的繼續(xù),三角函數(shù)包含正弦函數(shù)、余弦函數(shù)、正切函數(shù).而本課內(nèi)容是正切函數(shù)的性質(zhì)與圖像.首先根據(jù)單位圓中正切函數(shù)的定義探究其圖像,然后通過圖像研究正切函數(shù)的性質(zhì). 課程目標(biāo)1、掌握利用單位圓中正切函數(shù)定義得到圖象的方法;2、能夠利用正切函數(shù)圖象準(zhǔn)確歸納其性質(zhì)并能簡(jiǎn)單地應(yīng)用.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:借助單位圓理解正切函數(shù)的圖像; 2.邏輯推理: 求正切函數(shù)的單調(diào)區(qū)間;3.數(shù)學(xué)運(yùn)算:利用性質(zhì)求周期、比較大小及判斷奇偶性.4.直觀想象:正切函數(shù)的圖像; 5.數(shù)學(xué)建模:讓學(xué)生借助數(shù)形結(jié)合的思想,通過圖像探究正切函數(shù)的性質(zhì). 重點(diǎn):能夠利用正切函數(shù)圖象準(zhǔn)確歸納其性質(zhì)并能簡(jiǎn)單地應(yīng)用; 難點(diǎn):掌握利用單位圓中正切函數(shù)定義得到其圖象.
本節(jié)課是正弦函數(shù)、余弦函數(shù)圖像的繼續(xù),本課是正弦曲線、余弦曲線這兩種曲線的特點(diǎn)得出正弦函數(shù)、余弦函數(shù)的性質(zhì). 課程目標(biāo)1.了解周期函數(shù)與最小正周期的意義;2.了解三角函數(shù)的周期性和奇偶性;3.會(huì)利用周期性定義和誘導(dǎo)公式求簡(jiǎn)單三角函數(shù)的周期;4.借助圖象直觀理解正、余弦函數(shù)在[0,2π]上的性質(zhì)(單調(diào)性、最值、圖象與x軸的交點(diǎn)等);5.能利用性質(zhì)解決一些簡(jiǎn)單問題. 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:理解周期函數(shù)、周期、最小正周期等的含義; 2.邏輯推理: 求正弦、余弦形函數(shù)的單調(diào)區(qū)間;3.數(shù)學(xué)運(yùn)算:利用性質(zhì)求周期、比較大小、最值、值域及判斷奇偶性.4.數(shù)學(xué)建模:讓學(xué)生借助數(shù)形結(jié)合的思想,通過圖像探究正、余弦函數(shù)的性質(zhì).重點(diǎn):通過正弦曲線、余弦曲線這兩種曲線探究正弦函數(shù)、余弦函數(shù)的性質(zhì); 難點(diǎn):應(yīng)用正、余弦函數(shù)的性質(zhì)來(lái)求含有cosx,sinx的函數(shù)的單調(diào)性、最值、值域及對(duì)稱性.
問題導(dǎo)入:?jiǎn)栴}一:試驗(yàn)1:分別拋擲兩枚質(zhì)地均勻的硬幣,A=“第一枚硬幣正面朝上”,B=“第二枚硬幣正面朝上”。事件A的發(fā)生是否影響事件B的概率?因?yàn)閮擅队矌欧謩e拋擲,第一枚硬幣的拋擲結(jié)果與第二枚硬幣的拋擲結(jié)果互相不受影響,所以事件A發(fā)生與否不影響事件B發(fā)生的概率。問題二:計(jì)算試驗(yàn)1中的P(A),P(B),P(AB),你有什么發(fā)現(xiàn)?在該試驗(yàn)中,用1表示硬幣“正面朝上”,用0表示“反面朝上”,則樣本空間Ω={(1,1),(1,0),(0,1),(0,0)},包含4個(gè)等可能的樣本點(diǎn)。而A={(1,1),(1,0)},B={(1,0),(0,0)}所以AB={(1,0)}由古典概率模型概率計(jì)算公式,得P(A)=P(B)=0.5,P(AB)=0.25, 于是 P(AB)=P(A)P(B)積事件AB的概率恰好等于事件A、B概率的乘積。問題三:試驗(yàn)2:一個(gè)袋子中裝有標(biāo)號(hào)分別是1,2,3,4的4個(gè)球,除標(biāo)號(hào)外沒有其他差異。
解析:根據(jù)AB∥CD,∠ACD=120°,得出∠CAB=60°.再根據(jù)尺規(guī)作圖得出AM是∠CAB的平分線,即可得出∠MAB的度數(shù).解:∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=120°,∴∠CAB=60°.由尺規(guī)作圖知AM是∠CAB的平分線,∴∠MAB=12∠CAB=30°.方法總結(jié):通過本題要掌握角平分線的作圖步驟,根據(jù)作圖明確AM是∠BAC的角平分線是解題的關(guān)鍵.三、板書設(shè)計(jì)1.角平分線的性質(zhì):角平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等.2.角平分線的作法本節(jié)課由于采用了動(dòng)手操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生對(duì)角以及角平分線的性質(zhì)的感性認(rèn)識(shí),提高了學(xué)生對(duì)新知識(shí)的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對(duì)所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生在性質(zhì)的運(yùn)用上還存在問題,需要在今后的教學(xué)與作業(yè)中進(jìn)一步的加強(qiáng)鞏固和訓(xùn)練
方法總結(jié):在等腰三角形有關(guān)計(jì)算或證明中,會(huì)遇到一些添加輔助線的問題,其頂角平分線、底邊上的高、底邊上的中線是常見的輔助線.三、板書設(shè)計(jì)1.等腰三角形的性質(zhì):等腰三角形是軸對(duì)稱圖形;等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(也稱“三線合一”),它們所在的直線都是等腰三角形的對(duì)稱軸;等腰三角形的兩個(gè)底角相等.2.運(yùn)用等腰三角性質(zhì)解題的一般思想方法:方程思想、整體思想和轉(zhuǎn)化思想.本節(jié)課由于采用了直觀操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生的感性認(rèn)識(shí),提高了學(xué)生對(duì)新知識(shí)的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對(duì)所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對(duì)等腰三角形的“三線合一”性質(zhì)理解不透徹,還需要在今后的教學(xué)和作業(yè)中進(jìn)一步鞏固和提高
【類型二】 根據(jù)不等式的變形確定字母的取值范圍如果不等式(a+1)x<a+1可變形為x>1,那么a必須滿足________.解析:根據(jù)不等式的基本性質(zhì)可判斷a+1為負(fù)數(shù),即a+1<0,可得a<-1.方法總結(jié):只有當(dāng)不等式的兩邊都乘(或除以)一個(gè)負(fù)數(shù)時(shí),不等號(hào)的方向才改變.三、板書設(shè)計(jì)1.不等式的基本性質(zhì)性質(zhì)1:不等式的兩邊都加上(或減去)同一個(gè)整式,不等號(hào)的方向不變;性質(zhì)2:不等式的兩邊都乘(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變;性質(zhì)3:不等式的兩邊都乘(或除以)同一個(gè)負(fù)數(shù),不等號(hào)方向改變.2.把不等式化成“x>a”或“x<a”的形式“移項(xiàng)”依據(jù):不等式的基本性質(zhì)1;“將未知數(shù)系數(shù)化為1”的依據(jù):不等式的基本性質(zhì)2、3.本節(jié)課學(xué)習(xí)不等式的基本性質(zhì),在學(xué)習(xí)過程中,可與等式的基本性質(zhì)進(jìn)行類比,在運(yùn)用性質(zhì)進(jìn)行變形時(shí),要注意不等號(hào)的方向是否發(fā)生改變;課堂教學(xué)時(shí),鼓勵(lì)學(xué)生大膽質(zhì)疑,通過練習(xí)中易出現(xiàn)的錯(cuò)誤,引導(dǎo)學(xué)生歸納總結(jié),提升學(xué)生的自主探究能力.
【類型二】 分式的約分約分:(1)-5a5bc325a3bc4;(2)x2-2xyx3-4x2y+4xy2.解析:先找分子、分母的公因式,然后根據(jù)分式的基本性質(zhì)把公因式約去.解:(1)-5a5bc325a3bc4=5a3bc3(-a2)5a3bc3·5c=-a25c;(2)x2-2xyx3-4x2y+4xy2=x(x-2y)x(x-2y)2=1x-2y.方法總結(jié):約分的步驟;(1)找公因式.當(dāng)分子、分母是多項(xiàng)式時(shí)應(yīng)先分解因式;(2)約去分子、分母的公因式.三、板書設(shè)計(jì)1.分式的基本性質(zhì):分式的分子與分母都乘以(或除以)同一個(gè)不為零的整式,分式的值不變.2.符號(hào)法則:分式的分子、分母及分式本身,任意改變其中兩個(gè)符號(hào),分式的值不變;若只改變其中一個(gè)符號(hào)或三個(gè)全變號(hào),則分式的值變成原分式值的相反數(shù).本節(jié)課的流程比較順暢,先探究分式的基本性質(zhì),然后順勢(shì)探究分式變號(hào)法則.在每個(gè)活動(dòng)中,都設(shè)計(jì)了具有啟發(fā)性的問題,對(duì)各個(gè)知識(shí)點(diǎn)進(jìn)行分析、歸納總結(jié)、例題示范、方法指導(dǎo)和變式練習(xí).一步一步的來(lái)完成既定目標(biāo).整個(gè)學(xué)習(xí)過程輕松、愉快、和諧、高效.
(3)∵AD=4,DE=1,∴AE=42+12=17.∵對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等且F是E的對(duì)應(yīng)點(diǎn),∴AF=AE=17.(4)∵∠EAF=90°(旋轉(zhuǎn)角相等)且AF=AE,∴△EAF是等腰直角三角形.【類型二】 旋轉(zhuǎn)的性質(zhì)的運(yùn)用如圖,點(diǎn)E是正方形ABCD內(nèi)一點(diǎn),連接AE、BE、CE,將△ABE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3則∠BE′C=________度.解析:連接EE′,由旋轉(zhuǎn)性質(zhì)知BE=BE′,∠EBE′=90°,∴△BEE′為等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板書設(shè)計(jì)1.旋轉(zhuǎn)的概念將一個(gè)圖形繞一個(gè)頂點(diǎn)按照某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱為旋轉(zhuǎn).2.旋轉(zhuǎn)的性質(zhì)一個(gè)圖形和它經(jīng)過旋轉(zhuǎn)所得的圖形中,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,任意一組對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都等于旋轉(zhuǎn)角,對(duì)應(yīng)線段相等,對(duì)應(yīng)角相等.
10.閱讀材料,回答問題。材料一:近年來(lái),公路上經(jīng)常出現(xiàn)“路怒族” ,只要看到別人搶道、開車慢、不讓道等他們就會(huì) 罵人,而且罵得很難聽,甚至大打出手。材料二:在新型冠狀病毒肺炎疫情防控期間,2020年2月1 日貴州省貴陽(yáng)市的某商場(chǎng),一位打扮靚 麗的年輕女子要進(jìn)入商場(chǎng)時(shí)不戴口罩,被商場(chǎng)門口執(zhí)勤的店員勸阻,要求戴上口罩才能進(jìn)入商場(chǎng),該 女子不但不聽勸告,而是嗤鼻一笑,不以為然。隨后就繞開工作人員打算進(jìn)入商場(chǎng),4名工作人員隨 后上前阻止,該女子竟然要強(qiáng)行闖入商場(chǎng),甚至對(duì)商場(chǎng)工作人員拳腳相加,隨后商場(chǎng)工作人員報(bào)警。(1) 結(jié)合材料說(shuō)說(shuō),情緒受哪些因素的影響?(2) 根據(jù)材料談?wù)勗谏钪腥绾喂芾響嵟?1.【東東的日記】下面是東東的“微日記”片段,記錄著成長(zhǎng)的點(diǎn)滴,與你分享。
二、流動(dòng)鑲嵌模型的基本內(nèi)容1、膜的成分2、膜的基本支架3、膜的結(jié)構(gòu)特點(diǎn)4、膜的功能特性設(shè)計(jì)意圖:我根據(jù)板書的“規(guī)范、工整和美觀”的要求,結(jié)合所教的內(nèi)容,設(shè)計(jì)了如圖所示的板書,使學(xué)生對(duì)本節(jié)課有一個(gè)整體的思路。八、教學(xué)反思:本節(jié)課我創(chuàng)設(shè)了問題情境來(lái)引導(dǎo)學(xué)生主動(dòng)學(xué)習(xí),利用了多媒體信息技術(shù)激發(fā)學(xué)生的學(xué)習(xí)熱情,調(diào)動(dòng)了學(xué)生的積極性,成功實(shí)現(xiàn)預(yù)期的教學(xué)目標(biāo)。體現(xiàn)了學(xué)生為主體地位的新課程理念。啟發(fā)式、探究式的教學(xué)方法以及由教師指導(dǎo)下的學(xué)生自主閱讀、合作交流的學(xué)習(xí)方法把學(xué)生從死記知識(shí)的苦海中解救出來(lái)。初次的嘗試還存在一定的缺陷,學(xué)生不能夠很好的把知識(shí)和習(xí)題聯(lián)系,只是把他所知道的知識(shí)簡(jiǎn)單羅列,不能夠體現(xiàn)出能力的訓(xùn)練。在上課中發(fā)現(xiàn)學(xué)生比較靦腆或拘束,聲音比較小,表達(dá)不能到位。盡管本節(jié)課存在諸多不足之處,但是也讓我看到了閃光點(diǎn):學(xué)生比較歡迎這樣一堂自己是主角的課堂。
【教學(xué)方法】 本節(jié)內(nèi)容涉及的“熱點(diǎn)”較多,而且多個(gè)問題已在時(shí)事政治中有所了解。建議教師在教學(xué)中可采用講述、放錄像資料和課堂討論相結(jié)合的方法,引導(dǎo)學(xué)生積極參與教學(xué)活動(dòng)。讓學(xué)生在課前閱讀教材,從中尋找疑問,帶著問題去搜集有關(guān)的歷史資料,加以思考、分析,尋找答案,形成自己對(duì)有關(guān)問題的認(rèn)識(shí)。然后在課堂上進(jìn)行闡述,與他人合作交流。教師相應(yīng)提供部分歷史原始錄像、歷史資料及相關(guān)文章,引導(dǎo)學(xué)生分析、處理,加深對(duì)本課有關(guān)歷史現(xiàn)象的理解和認(rèn)識(shí)。 【導(dǎo)入新課】 大家看這張圖片:一個(gè)畫面是大量居民涌入墻內(nèi),另一幅畫面是在拆除一段墻,這些人在干什么呢?大家知道這幅圖片中的兩個(gè)畫面描述的是什么事情嗎?(學(xué)生回答后,教師指出)這幅圖片描述的是德國(guó)柏林墻被拆除的史實(shí)。大家知道柏林墻的來(lái)歷嗎?柏林墻是冷戰(zhàn)的產(chǎn)物,始建于1961年,當(dāng)時(shí)作為德意志民主共和國(guó)(東德)“反法西斯防衛(wèi)墻”橫斷在它與德意志聯(lián)邦共和國(guó)(西德)之間,總長(zhǎng)43公里。
(三)初步形成:1、格局:通過二十多年的改革開放,我國(guó)已形成經(jīng)濟(jì)特區(qū)、沿海開放城市、沿海開放區(qū)、沿江開放港口城市、沿邊開放城鎮(zhèn)、內(nèi)地省會(huì)開放城市的開放體系。這個(gè)體系的形成,標(biāo)志我國(guó)全方位、多層次、寬領(lǐng)域的對(duì)外開放格局的初步形成。2、特點(diǎn):全方位、多層次、寬領(lǐng)域全方位、多層次、寬領(lǐng)域分別指的什么?“全方位”,就是既對(duì)發(fā)達(dá)國(guó)家開放,也對(duì)發(fā)展中國(guó)家開放,對(duì)世界所有國(guó)家開放?!岸鄬哟巍?,就是根據(jù)各地區(qū)的實(shí)際和特點(diǎn),通過經(jīng)濟(jì)特區(qū)、沿海開放城市等不同開放程度的各種形式,形成全國(guó)范圍內(nèi)的對(duì)外開放?!皩掝I(lǐng)域”不僅在經(jīng)濟(jì)領(lǐng)域,也涉及到保險(xiǎn)、郵電通信等服務(wù)貿(mào)易以及環(huán)保、科技、醫(yī)療衛(wèi)生、體育、文化、教育等領(lǐng)域的開放。