(三)成比例線段的概念1、一般地,在四條線段中,如果 等于 的比,那么這四條線段叫做成比例線段。(舉例說(shuō)明)如:2、四條線段a,b ,c,d成比例,有順序關(guān)系。即a,b,c,d成比例線段,則比例式為:a:b=c:d;a,b, d,c成比例線段,則比例式為:a:b=d:c3思考:a=12,b=8,c=6,d=4成比例嗎?a=12,b=8,c=15,d=10呢?三、例題解析: 例1、A、B兩地的實(shí)際距離AB= 250m,畫(huà)在一張地圖上的距離A'B'=5 cm,求該地圖的比例尺。例2:已知,在Rt△ABC中,∠C=90°,∠A=30°,斜邊AB=2。求⑴ ,⑵ 四、鞏固練習(xí)1、已知某一時(shí)刻物體高度與其影長(zhǎng)的比值為2:7,某 天同一時(shí)刻測(cè)得一棟樓的影長(zhǎng)為30米,則這棟樓的高度為多少?2、某地圖上的比例尺為1:1000,甲,乙兩地的實(shí)際距離為300米,則在地圖上甲、乙兩地的距離為多少?3、已知線段a,d,b,c是成比例線段,其中a=4,b=5,c=10,求線段d的長(zhǎng)。
●教學(xué)目標(biāo)(一)教學(xué)知識(shí)點(diǎn)1.相似三角形的周長(zhǎng)比,面積比與相似比的關(guān)系.2. 相似三角形的周長(zhǎng)比,面積比在實(shí)際中的應(yīng)用.(二)能 力訓(xùn)練要求1.經(jīng)歷探索相似三角形的 性質(zhì)的過(guò)程,培養(yǎng)學(xué)生的探索能力.2.利用相似三角形的性質(zhì)解決實(shí)際問(wèn)題訓(xùn)練學(xué)生的運(yùn)用能力.(三)情 感與價(jià)值觀要求1.學(xué) 生通過(guò)交流、歸納,總結(jié)相似三角形的周長(zhǎng)比、面積比與相似比的關(guān)系,體會(huì)知識(shí)遷移、溫故知新的好處.2.運(yùn)用相似多邊形的周長(zhǎng)比,面積比解決實(shí)際問(wèn)題,增強(qiáng)學(xué)生對(duì)知識(shí)的應(yīng)用意識(shí).●教學(xué)重點(diǎn)1.相似三角形的周長(zhǎng)比、面積比與相似比關(guān)系的推導(dǎo).2.運(yùn)用相似三角形的比例關(guān)系解決實(shí)際問(wèn)題.●教學(xué)難點(diǎn)相似三角形周長(zhǎng)比、面積比與相似比的關(guān)系的推導(dǎo)及運(yùn)用.●教學(xué)方法引導(dǎo)啟發(fā)式通過(guò)溫故知新,知識(shí)遷移,引導(dǎo)學(xué)生發(fā)現(xiàn)新的結(jié)論,通過(guò)比較、分析,應(yīng)用獲得的知識(shí)達(dá)到理解并掌握的 目的.●教具準(zhǔn)備投影片兩張第一張:(記作§4.7.2 A)第二張:(記作§4.7.2 B)
解:(1)設(shè)第一次落地時(shí),拋物線的表達(dá)式為y=a(x-6)2+4,由已知:當(dāng)x=0時(shí),y=1,即1=36a+4,所以a=-112.所以函數(shù)表達(dá)式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門(mén)員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據(jù)題意:CD=EF(即相當(dāng)于將拋物線AEMFC向下平移了2個(gè)單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結(jié):解決此類問(wèn)題的關(guān)鍵是先進(jìn)行數(shù)學(xué)建模,將實(shí)際問(wèn)題中的條件轉(zhuǎn)化為數(shù)學(xué)問(wèn)題中的條件.常有兩個(gè)步驟:(1)根據(jù)題意得出二次函數(shù)的關(guān)系式,將實(shí)際問(wèn)題轉(zhuǎn)化為純數(shù)學(xué)問(wèn)題;(2)應(yīng)用有關(guān)函數(shù)的性質(zhì)作答.
(2)由題意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,該產(chǎn)品的質(zhì)量檔次為第6檔.方法總結(jié):解決此類問(wèn)題的關(guān)鍵是要吃透題意,確定變量,建立函數(shù)模型.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第8題三、板書(shū)設(shè)計(jì)二次函數(shù)1.二次函數(shù)的概念2.從實(shí)際問(wèn)題中抽象出二次函數(shù)解析式二次函數(shù)是一種常見(jiàn)的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實(shí)世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型.許多實(shí)際問(wèn)題往往可以歸結(jié)為二次函數(shù)加以研究.本節(jié)課是學(xué)習(xí)二次函數(shù)的第一節(jié)課,通過(guò)實(shí)例引入二次函數(shù)的概念,并學(xué)習(xí)求一些簡(jiǎn)單的實(shí)際問(wèn)題中二次函數(shù)的解析式.在教學(xué)中要重視二次函數(shù)概念的形成和建構(gòu),在概念的學(xué)習(xí)過(guò)程中,讓學(xué)生體驗(yàn)從問(wèn)題出發(fā)到列二次函數(shù)解析式的過(guò)程,體驗(yàn)用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義.
(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n為正整數(shù)).解析:(1)根據(jù)已知計(jì)算過(guò)程直接得出因式分解的方法即可;(2)根據(jù)已知分解因式的方法可以得出答案;(3)由(1)中計(jì)算發(fā)現(xiàn)規(guī)律進(jìn)而得出答案.解:(1)因式分解的方法是提公因式法,共應(yīng)用了3次;(2)分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,需應(yīng)用上述方法2016次,結(jié)果是(1+x)2015;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.方法總結(jié):解決此類問(wèn)題需要認(rèn)真閱讀,理解題意,根據(jù)已知得出分解因式的規(guī)律是解題關(guān)鍵.三、板書(shū)設(shè)計(jì)1.提公因式分解因式的一般步驟:(1)觀察;(2)適當(dāng)變形;(3)確定公因式;(4)提取公因式.2.提公因式法因式分解的應(yīng)用本課時(shí)是在上一課時(shí)的基礎(chǔ)上進(jìn)行的拓展延伸,在教學(xué)時(shí)要給學(xué)生足夠主動(dòng)權(quán)和思考空間,突出學(xué)生在課堂上的主體地位,引導(dǎo)和鼓勵(lì)學(xué)生自主探究,在培養(yǎng)學(xué)生創(chuàng)新能力的同時(shí)提高學(xué)生的邏輯思維能力.
【類型二】 根據(jù)不等式的變形確定字母的取值范圍如果不等式(a+1)x<a+1可變形為x>1,那么a必須滿足________.解析:根據(jù)不等式的基本性質(zhì)可判斷a+1為負(fù)數(shù),即a+1<0,可得a<-1.方法總結(jié):只有當(dāng)不等式的兩邊都乘(或除以)一個(gè)負(fù)數(shù)時(shí),不等號(hào)的方向才改變.三、板書(shū)設(shè)計(jì)1.不等式的基本性質(zhì)性質(zhì)1:不等式的兩邊都加上(或減去)同一個(gè)整式,不等號(hào)的方向不變;性質(zhì)2:不等式的兩邊都乘(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變;性質(zhì)3:不等式的兩邊都乘(或除以)同一個(gè)負(fù)數(shù),不等號(hào)方向改變.2.把不等式化成“x>a”或“x<a”的形式“移項(xiàng)”依據(jù):不等式的基本性質(zhì)1;“將未知數(shù)系數(shù)化為1”的依據(jù):不等式的基本性質(zhì)2、3.本節(jié)課學(xué)習(xí)不等式的基本性質(zhì),在學(xué)習(xí)過(guò)程中,可與等式的基本性質(zhì)進(jìn)行類比,在運(yùn)用性質(zhì)進(jìn)行變形時(shí),要注意不等號(hào)的方向是否發(fā)生改變;課堂教學(xué)時(shí),鼓勵(lì)學(xué)生大膽質(zhì)疑,通過(guò)練習(xí)中易出現(xiàn)的錯(cuò)誤,引導(dǎo)學(xué)生歸納總結(jié),提升學(xué)生的自主探究能力.
(3)∵AD=4,DE=1,∴AE=42+12=17.∵對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等且F是E的對(duì)應(yīng)點(diǎn),∴AF=AE=17.(4)∵∠EAF=90°(旋轉(zhuǎn)角相等)且AF=AE,∴△EAF是等腰直角三角形.【類型二】 旋轉(zhuǎn)的性質(zhì)的運(yùn)用如圖,點(diǎn)E是正方形ABCD內(nèi)一點(diǎn),連接AE、BE、CE,將△ABE繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3則∠BE′C=________度.解析:連接EE′,由旋轉(zhuǎn)性質(zhì)知BE=BE′,∠EBE′=90°,∴△BEE′為等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板書(shū)設(shè)計(jì)1.旋轉(zhuǎn)的概念將一個(gè)圖形繞一個(gè)頂點(diǎn)按照某個(gè)方向轉(zhuǎn)動(dòng)一個(gè)角度,這樣的圖形運(yùn)動(dòng)稱為旋轉(zhuǎn).2.旋轉(zhuǎn)的性質(zhì)一個(gè)圖形和它經(jīng)過(guò)旋轉(zhuǎn)所得的圖形中,對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,任意一組對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線所成的角都等于旋轉(zhuǎn)角,對(duì)應(yīng)線段相等,對(duì)應(yīng)角相等.
方法總結(jié):本題結(jié)合三角形內(nèi)角和定理考查反證法,解此題關(guān)鍵要懂得反證法的意義及步驟.反證法的步驟是:(1)假設(shè)結(jié)論不成立;(2)從假設(shè)出發(fā)推出矛盾;(3)假設(shè)不成立,則結(jié)論成立.在假設(shè)結(jié)論不成立時(shí)要注意考慮結(jié)論的反面所有可能的情況.如果只有一種,那么否定一種就可以了,如果有多種情況,則必須一一否定.三、板書(shū)設(shè)計(jì)1.等腰三角形的判定定理:有兩個(gè)角相等的三角形是等腰三角形(等角對(duì)等邊).2.反證法(1)假設(shè)結(jié)論不成立;(2)從假設(shè)出發(fā)推出矛盾;(3)假設(shè)不成立,則結(jié)論成立.解決幾何證明題時(shí),應(yīng)結(jié)合圖形,聯(lián)想我們已學(xué)過(guò)的定義、公理、定理等知識(shí),尋找結(jié)論成立所需要的條件.要特別注意的是,不要遺漏題目中的已知條件.解題時(shí)學(xué)會(huì)分析,可以采用執(zhí)果索因(從結(jié)論出發(fā),探尋結(jié)論成立所需的條件)的方法.
【類型二】 分式的約分約分:(1)-5a5bc325a3bc4;(2)x2-2xyx3-4x2y+4xy2.解析:先找分子、分母的公因式,然后根據(jù)分式的基本性質(zhì)把公因式約去.解:(1)-5a5bc325a3bc4=5a3bc3(-a2)5a3bc3·5c=-a25c;(2)x2-2xyx3-4x2y+4xy2=x(x-2y)x(x-2y)2=1x-2y.方法總結(jié):約分的步驟;(1)找公因式.當(dāng)分子、分母是多項(xiàng)式時(shí)應(yīng)先分解因式;(2)約去分子、分母的公因式.三、板書(shū)設(shè)計(jì)1.分式的基本性質(zhì):分式的分子與分母都乘以(或除以)同一個(gè)不為零的整式,分式的值不變.2.符號(hào)法則:分式的分子、分母及分式本身,任意改變其中兩個(gè)符號(hào),分式的值不變;若只改變其中一個(gè)符號(hào)或三個(gè)全變號(hào),則分式的值變成原分式值的相反數(shù).本節(jié)課的流程比較順暢,先探究分式的基本性質(zhì),然后順勢(shì)探究分式變號(hào)法則.在每個(gè)活動(dòng)中,都設(shè)計(jì)了具有啟發(fā)性的問(wèn)題,對(duì)各個(gè)知識(shí)點(diǎn)進(jìn)行分析、歸納總結(jié)、例題示范、方法指導(dǎo)和變式練習(xí).一步一步的來(lái)完成既定目標(biāo).整個(gè)學(xué)習(xí)過(guò)程輕松、愉快、和諧、高效.
分式1x2-3x與2x2-9的最簡(jiǎn)公分母是________.解析:∵x2-3x=x(x-3),x2-9=(x+3)(x-3),∴最簡(jiǎn)公分母為x(x+3)(x-3).方法總結(jié):最簡(jiǎn)公分母的確定:最簡(jiǎn)公分母的系數(shù),取各個(gè)分母的系數(shù)的最小公倍數(shù);字母及式子取各分母中所有字母和式子的最高次冪.“所有字母和式子的最高次冪”是指“凡出現(xiàn)的字母(或含字母的式子)為底數(shù)的冪的因式選取指數(shù)最大的”;當(dāng)分母是多項(xiàng)式時(shí),一般應(yīng)先因式分解.【類型二】 分母是單項(xiàng)式分式的通分通分.(1)cbd,ac2b2;(2)b2a2c,2a3bc2;(3)45y2z,310xy2,5-2xz2.解析:先確定最簡(jiǎn)公分母,找到各個(gè)分母應(yīng)當(dāng)乘的單項(xiàng)式,分子也相應(yīng)地乘以這個(gè)單項(xiàng)式.解:(1)最簡(jiǎn)公分母是2b2d,cbd=2bc2b2d,ac2b2=acd2b2d;(2)最簡(jiǎn)公分母是6a2bc2,b2a2c=3b2c6a2bc2,2a3bc2=4a36a2bc2;(3)最簡(jiǎn)公分母是10xy2z2,45y2z=8xz10xy2z2,310xy2=3z210xy2z2,5-2xz2=--25y210xy2z2.
∵∠DAE=∠DAF,∠AED=∠AFD,AD=AD,∴△ADE≌△ADF,∴AE=AF,DE=DF,∴直線AD垂直平分線段EF.方法總結(jié):當(dāng)一條直線上有兩點(diǎn)都在同一線段的垂直平分線上時(shí),這條直線就是該線段的垂直平分線,解題時(shí)常需利用此性質(zhì)進(jìn)行線段相等關(guān)系的轉(zhuǎn)化.三、板書(shū)設(shè)計(jì)1.線段的垂直平分線的性質(zhì)定理線段垂直平分線上的點(diǎn)到這條線段兩個(gè)端點(diǎn)的距離相等.2.線段的垂直平分線的判定定理到一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上.本節(jié)課由于采用了直觀操作以及討論交流等教學(xué)方法,從而有效地增強(qiáng)了學(xué)生的感性認(rèn)識(shí),提高了學(xué)生對(duì)新知識(shí)的理解與感悟,因此本節(jié)課的教學(xué)效果較好,學(xué)生對(duì)所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對(duì)線段垂直平分線性質(zhì)定理的逆定理理解不透徹,還需在今后的教學(xué)和作業(yè)中進(jìn)一步進(jìn)行鞏固和提高.
方法總結(jié):解題的關(guān)鍵是由題意列出不等式求出這個(gè)少算的內(nèi)角的取值范圍.探究點(diǎn)二:多邊形的外角和定理【類型一】 已知各相等外角的度數(shù),求多邊形的邊數(shù)正多邊形的一個(gè)外角等于36°,則該多邊形是正()A.八邊形 B.九邊形C.十邊形 D.十一邊形解析:正多邊形的邊數(shù)為360°÷36°=10,則這個(gè)多邊形是正十邊形.故選C.方法總結(jié):如果已知正多邊形的一個(gè)外角,求邊數(shù)可直接利用外角和除以這個(gè)角即可.【類型二】 多邊形內(nèi)角和與外角和的綜合運(yùn)用一個(gè)多邊形的內(nèi)角和與外角和的和為540°,則它是()A.五邊形 B.四邊形C.三角形 D.不能確定解析:設(shè)這個(gè)多邊形的邊數(shù)為n,則依題意可得(n-2)×180°+360°=540°,解得n=3,∴這個(gè)多邊形是三角形.故選C.方法總結(jié):熟練掌握多邊形的內(nèi)角和定理及外角和定理,解題的關(guān)鍵是由已知等量關(guān)系列出方程從而解決問(wèn)題.
解析:由分式有意義的條件得3x-1≠0,解得x≠13.則分式無(wú)意義的條件是x=13,故選C.方法總結(jié):分式無(wú)意義的條件是分母等于0.【類型三】 分式值為0的條件若使分式x2-1x+1的值為零,則x的值為()A.-1 B.1或-1C.1 D.1和-1解析:由題意得x2-1=0且x+1≠0,解得x=1,故選C.方法總結(jié):分式的值為零的條件:(1)分子為0;(2)分母不為0.這兩個(gè)條件缺一不可.三、板書(shū)設(shè)計(jì)1.分式的概念:一般地,如果A、B表示兩個(gè)整式,并且B中含有字母,那么式子AB叫做分式.2.分式AB有無(wú)意義的條件:當(dāng)B≠0時(shí),分式有意義;當(dāng)B=0時(shí),分式無(wú)意義.3.分式AB值為0的條件:當(dāng)A=0,B≠0時(shí),分式的值為0.本節(jié)采取的教學(xué)方法是引導(dǎo)學(xué)生獨(dú)立思考、小組合作,完成對(duì)分式概念及意義的自主探索.提出問(wèn)題讓學(xué)生解決,問(wèn)題由易到難,層層深入,既復(fù)習(xí)了舊知識(shí)又在類比過(guò)程中獲得了解決新知識(shí)的途徑.在這一環(huán)節(jié)提問(wèn)應(yīng)注意循序性,先易后難、由簡(jiǎn)到繁、層層遞進(jìn),臺(tái)階式的提問(wèn)使問(wèn)題解決水到渠成.
解析:(1)首先提取公因式13,進(jìn)而求出即可;(2)首先提取公因式20.15,進(jìn)而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.方法總結(jié):在計(jì)算求值時(shí),若式子各項(xiàng)都含有公因式,用提取公因式的方法可使運(yùn)算簡(jiǎn)便.三、板書(shū)設(shè)計(jì)1.公因式多項(xiàng)式各項(xiàng)都含有的相同因式叫這個(gè)多項(xiàng)式各項(xiàng)的公因式.2.提公因式法如果一個(gè)多項(xiàng)式的各項(xiàng)有公因式,可以把這個(gè)公因式提到括號(hào)外面,這種因式分解的方法叫做提公因式法.本節(jié)中要給學(xué)生留出自主學(xué)習(xí)的空間,然后引入稍有層次的例題,讓學(xué)生進(jìn)一步感受因式分解與整式的乘法是逆過(guò)程,從而可用整式的乘法檢查錯(cuò)誤.本節(jié)課在對(duì)例題的探究上,提倡引導(dǎo)學(xué)生合作交流,使學(xué)生發(fā)揮群體的力量,以此提高教學(xué)效果.
證明:過(guò)點(diǎn)A作AF∥DE,交BC于點(diǎn)F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法總結(jié):利用等腰三角形“三線合一”得出結(jié)論時(shí),先必須已知一個(gè)條件,這個(gè)條件可以是等腰三角形底邊上的高,可以是底邊上的中線,也可以是頂角的平分線.解題時(shí),一般要用到其中的兩條線互相重合.三、板書(shū)設(shè)計(jì)1.全等三角形的判定和性質(zhì)2.等腰三角形的性質(zhì):等邊對(duì)等角3.三線合一:在等腰三角形的底邊上的高、中線、頂角的平分線中,只要知道其中一個(gè)條件,就能得出另外的兩個(gè)結(jié)論.本節(jié)課由于采用了動(dòng)手操作以及討論交流等教學(xué)方法,有效地增強(qiáng)了學(xué)生的感性認(rèn)識(shí),提高了學(xué)生對(duì)新知識(shí)的理解與感悟,因而本節(jié)課的教學(xué)效果較好,學(xué)生對(duì)所學(xué)的新知識(shí)掌握較好,達(dá)到了教學(xué)的目的.不足之處是少數(shù)學(xué)生對(duì)等腰三角形的“三線合一”性質(zhì)理解不透徹,還需要在今后的教學(xué)和作業(yè)中進(jìn)一步鞏固和提高
由于任何一個(gè)一元一次不等式都能寫(xiě)成ax+b>0(或<0)的形式,而此式的左邊與一次函數(shù)y=ax+b的右邊一致,所以從變化與對(duì)應(yīng)的觀點(diǎn)考慮問(wèn)題,解一元一次不等式也可以歸結(jié)為兩種認(rèn)識(shí):⑴從函數(shù)值的角度看,就是尋求使一次函數(shù)y=ax+b的值大于(或小于0)的自變量x的取值范圍。⑵從函數(shù)圖像的角度看,就是確定直線y=ax+b在x軸上(或下)方部分所有的點(diǎn)的橫坐標(biāo)所構(gòu)成的集合。教學(xué)過(guò)程中,主要從以上兩個(gè)角度探討一元一次不等式與一次函數(shù)的關(guān)系。1、“動(dòng)”―――學(xué)生動(dòng)口說(shuō),動(dòng)腦想,動(dòng)手做,親身經(jīng)歷知識(shí)發(fā)生發(fā)展的過(guò)程。2、“探”―――引導(dǎo)學(xué)生動(dòng)手畫(huà)圖,合作討論。通過(guò)探究學(xué)習(xí)激發(fā)強(qiáng)烈的探索欲望。3、“樂(lè)”―――本節(jié)課的設(shè)計(jì)力求做到與學(xué)生的生活實(shí)際聯(lián)系緊一點(diǎn),直觀多一點(diǎn),動(dòng)手多一點(diǎn),使學(xué)生興趣高一點(diǎn),自信心強(qiáng)一點(diǎn),使學(xué)生樂(lè)于學(xué)習(xí),樂(lè)于思考。4、“滲”―――在整個(gè)教學(xué)過(guò)程中,滲透用聯(lián)系的觀點(diǎn)看待數(shù)學(xué)問(wèn)題的辨證思想。
【類型四】 含整數(shù)指數(shù)冪、零指數(shù)冪與絕對(duì)值的混合運(yùn)算計(jì)算:-22+(-12)-2+(2015-π)0-|2-π2|.解析:分別根據(jù)有理數(shù)的乘方、零指數(shù)冪、負(fù)整數(shù)指數(shù)冪及絕對(duì)值的性質(zhì)計(jì)算出各數(shù),再根據(jù)實(shí)數(shù)的運(yùn)算法則進(jìn)行計(jì)算.解:-22+(-12)-2+(2015-π)0-|2-π2|=-4+4+1-2+π2=π2-1.方法總結(jié):熟練掌握有理數(shù)的乘方、零指數(shù)冪、負(fù)整數(shù)指數(shù)冪及絕對(duì)值的性質(zhì)是解答此題的關(guān)鍵.三、板書(shū)設(shè)計(jì)1.同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減.2.零次冪:任何一個(gè)不等于零的數(shù)的零次冪都等于1.即a0=1(a≠0).3.負(fù)整數(shù)次冪:任何一個(gè)不等于零的數(shù)的-p(p是正整數(shù))次冪,等于這個(gè)數(shù)p次冪的倒數(shù).即a-p=1ap(a≠0,p是正整數(shù)).從計(jì)算具體問(wèn)題中的同底數(shù)冪的除法,逐步歸納出同底數(shù)冪除法的一般性質(zhì).教學(xué)時(shí)要多舉幾個(gè)例子,讓學(xué)生從中總結(jié)出規(guī)律,體驗(yàn)自主探究的樂(lè)趣和數(shù)學(xué)學(xué)習(xí)的魅力,為以后的學(xué)習(xí)奠定基礎(chǔ)
問(wèn)題:2015年9月24日,美國(guó)國(guó)家航空航天局(下簡(jiǎn)稱:NASA)對(duì)外宣稱將有重大發(fā)現(xiàn)宣布,可能發(fā)現(xiàn)除地球外適合人類居住的星球,一時(shí)間引起了人們的廣泛關(guān)注.早在2014年,NASA就發(fā)現(xiàn)一顆行星,這顆行星是第一顆在太陽(yáng)系外恒星旁發(fā)現(xiàn)的適居帶內(nèi)、半徑與地球相若的系外行星,這顆行星環(huán)繞紅矮星開(kāi)普勒186,距離地球492光年.1光年是光經(jīng)過(guò)一年所行的距離,光的速度大約是3×105km/s.問(wèn):這顆行星距離地球多遠(yuǎn)(1年=3.1536×107s)?3×105×3.1536×107×492=3×3.1536×4.92×105×107×102=4.6547136×10×105×107×102.問(wèn)題:“10×105×107×102”等于多少呢?二、合作探究探究點(diǎn):同底數(shù)冪的乘法【類型一】 底數(shù)為單項(xiàng)式的同底數(shù)冪的乘法計(jì)算:(1)23×24×2;(2)-a3·(-a)2·(-a)3;(3)mn+1·mn·m2·m.解析:(1)根據(jù)同底數(shù)冪的乘法法則進(jìn)行計(jì)算即可;(2)先算乘方,再根據(jù)同底數(shù)冪的乘法法則進(jìn)行計(jì)算即可;(3)根據(jù)同底數(shù)冪的乘法法則進(jìn)行計(jì)算即可.
一、教材的地位與作用 本節(jié)主要學(xué)習(xí)一元一次不等式組及其解集的概念,并要求學(xué)生會(huì)用數(shù)軸確定解集。它是一元一次不等式的后續(xù)學(xué)習(xí),也是一種基本的數(shù)學(xué)模型,也為下節(jié)和今后解決實(shí)際生產(chǎn)和生活問(wèn)題奠定了堅(jiān)實(shí)的知識(shí)基礎(chǔ)。另外,整個(gè)學(xué)習(xí)的過(guò)程中數(shù)軸起著不可替代的作用,處處滲透著數(shù)形結(jié)合的思想,這種數(shù)學(xué)思想會(huì)一直影響著學(xué)生今后數(shù)學(xué)的學(xué)習(xí)。二、學(xué)情分析從學(xué)生學(xué)習(xí)的心理基礎(chǔ)和認(rèn)知特點(diǎn)來(lái)說(shuō),學(xué)生已經(jīng)學(xué)習(xí)了一元一次不等式,并能較熟練地解一元一次不等式,能將簡(jiǎn)單的實(shí)際問(wèn)題抽象為數(shù)學(xué)模型,有一定的數(shù)學(xué)化歸能力。但學(xué)生將兩個(gè)一元一次不等式的解集在同一數(shù)軸上表示會(huì)產(chǎn)生一定的困惑。這個(gè)年齡段的學(xué)生,以感性認(rèn)識(shí)為主,并向理性認(rèn)知過(guò)渡,所以,本節(jié)課的設(shè)計(jì)是通過(guò)學(xué)生所熟悉的問(wèn)題情境,讓學(xué)生獨(dú)立思考,合作交流,從而引導(dǎo)其自主學(xué)習(xí)。
解:(1)∵點(diǎn)(1,5)在反比例函數(shù)y=kx的圖象上,∴5=k1,即k=5,∴反比例函數(shù)的解析式為y=5x.又∵點(diǎn)(1,5)在一次函數(shù)y=3x+m的圖象上,∴5=3+m,即m=2,∴一次函數(shù)的解析式為y=3x+2;(2)由題意,聯(lián)立y=5x,y=3x+2.解得x1=1,y1=5或x2=-53,y2=-3.∴這兩個(gè)函數(shù)圖象的另一個(gè)交點(diǎn)的坐標(biāo)為(-53,-3).三、板書(shū)設(shè)計(jì)反比例函數(shù)的圖象形狀:雙曲線位置當(dāng)k>0時(shí),兩支曲線分別位于 第一、三象限內(nèi)當(dāng)k<0時(shí),兩支曲線分別位于 第二、四象限內(nèi)畫(huà)法:列表、描點(diǎn)、連線(描點(diǎn)法)通過(guò)學(xué)生自己動(dòng)手列表、描點(diǎn)、連線,提高學(xué)生的作圖能力.理解函數(shù)的三種表示方法及相互轉(zhuǎn)換,對(duì)函數(shù)進(jìn)行認(rèn)識(shí)上的整合,逐步明確研究函數(shù)的一般要求.反比例函數(shù)的圖象具體展現(xiàn)了反比例函數(shù)的整體直觀形象,為學(xué)生探索反比例函數(shù)的性質(zhì)提供了思維活動(dòng)的空間.