提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

小學(xué)美術(shù)人教版二年級上冊《第9課蜻蜓飛飛》教案說課稿

  • 部編版語文八年級下冊《禮記》二則教案

    部編版語文八年級下冊《禮記》二則教案

    【課堂討論,拓展延伸】1.文中“大同”社會跟陶淵明描繪的那個“世外桃源”有沒有相似的地方?2.請說一段話描繪你心目中的理想社會。這是兩道開放性的題目。第一題,要啟發(fā)學(xué)生透過“桃源”中的生活現(xiàn)象來認(rèn)識這個社會,例如從“黃發(fā)垂髫,并怡然自樂”中可以看出“桃源”中的老人和孩子生活極其幸福、快樂,這就是“大同”社會中“老有所終”“幼有所長”,由此還可以推知矜、寡、孤、獨、廢疾者這五種人同樣受到全社會的關(guān)愛。第二題重在激發(fā)學(xué)生進(jìn)行大膽新奇的聯(lián)想和想象,營造一種暢游理想未來的熱烈氣氛。【把握文章主旨】仔細(xì)閱讀課文,理解文章主旨。《雖有嘉肴》:本文論述了教與學(xué)的關(guān)系問題,說明了教和學(xué)是相輔相成的,是互相促進(jìn)的道理。《大道之行也》:本文通過對理想中的社會特征的描述,闡明了儒家理想中的“大同”社會的基本特征,表達(dá)了作者對這個理想社會的向往,同時,也反映了我國古代勞動人民對美好生活的追求。

  • 北師大初中數(shù)學(xué)九年級上冊一元二次方程的根與系數(shù)的關(guān)系2教案

    北師大初中數(shù)學(xué)九年級上冊一元二次方程的根與系數(shù)的關(guān)系2教案

    3、一般地,對于關(guān)于 方程 為已知常數(shù), ,試用求根公式求出它的兩個解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結(jié)果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致?!局R應(yīng)用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個根是2,求它的另一個根及 的值。(3)不解方程,求一 元二次方程 兩個根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個根是 ?!練w納小結(jié)】【作業(yè)】1、已知方程 的一個根是1,求它的另一個根及 的值。2、設(shè) 是方程 的兩個根,不解方程,求下列各式的值。① ;② 3、求一個一元次方程,使它的兩 個根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;

  • 北師大初中數(shù)學(xué)九年級上冊用公式法求解一元二次方程2教案

    北師大初中數(shù)學(xué)九年級上冊用公式法求解一元二次方程2教案

    二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當(dāng)x=______時,代數(shù)式x2-8x+12的值是-4.3.若關(guān)于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關(guān)于x的方程:x2-2ax-b2+a2=0.2.設(shè)x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導(dǎo)x1+x2=- ,x1·x2= ;(2)求代數(shù)式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個月用電量不超過A千瓦時,那么這戶居民這個月只交10元電費,如果超過A千瓦時,那么這個月除了交10元用電費外超過部分還要按每千瓦時 元收費.(1)若某戶2月份用電90千瓦時,超過規(guī)定A千瓦時,則超過部分電費為多少元?(用A表示)(2)下表是這戶居民3月、4月的用電情況和交費情況

  • 北師大初中數(shù)學(xué)九年級上冊一元二次方程的解及其估算2教案

    北師大初中數(shù)學(xué)九年級上冊一元二次方程的解及其估算2教案

    探索1:上節(jié)我們列出了與地毯的花邊寬度有關(guān)的方程。地毯花邊的寬x(m),滿足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花邊的寬度x嗎?(1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進(jìn)一步計算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當(dāng)堂訓(xùn)練:完成課本34頁隨堂練習(xí)四、學(xué)習(xí)體會:五、課后作業(yè)

  • 北師大初中數(shù)學(xué)九年級上冊一元二次方程1教案

    北師大初中數(shù)學(xué)九年級上冊一元二次方程1教案

    解:設(shè)需要剪去的小正方形邊長為xcm,則紙盒底面的長方形的長為(19-2x)cm,寬為(15-2x)cm.根據(jù)題意,得(19-2x)(15-2x)=81.整理,得x2-17x+51=0(x<152).方法總結(jié):列方程最重要的是審題,只有理解題意,才能恰當(dāng)?shù)卦O(shè)出未知數(shù),準(zhǔn)確地找出已知量和未知量之間的等量關(guān)系,正確地列出方程.在列出方程后,還應(yīng)根據(jù)實際需求,注明自變量的取值范圍.三、板書設(shè)計一元二次方程概念:只含有一個未知數(shù)x的整式方 程,并且都可以化成ax2+bx+c =0(a,b,c為常數(shù),a≠0)的形式一般形式:ax2+bx+c=0(a,b,c為常   數(shù),a≠0),其中ax2,bx,c   分別稱為二次項、一次項和   常數(shù)項,a,b分別稱為二次   項系數(shù)和一次項系數(shù)本課通過豐富的實例,讓學(xué)生觀察、歸納出一元二次方程的有關(guān)概念,并從中體會方程的模型思想.通過本節(jié)課的學(xué)習(xí),應(yīng)該讓學(xué)生進(jìn)一步體會一元二次方程也是刻畫現(xiàn)實世界的一個有效數(shù)學(xué)模型,初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辯證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.

  • 北師大初中數(shù)學(xué)九年級上冊一元二次方程的解及其估算2教案

    北師大初中數(shù)學(xué)九年級上冊一元二次方程的解及其估算2教案

    (1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進(jìn)一步計算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當(dāng)堂訓(xùn)練:完成課本34頁隨堂練習(xí)四、學(xué)習(xí)體會:五、課后作業(yè)

  • 北師大初中數(shù)學(xué)九年級上冊用公式法求解一元二次方程1教案

    北師大初中數(shù)學(xué)九年級上冊用公式法求解一元二次方程1教案

    ∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結(jié):根據(jù)一元二次方程根的情況,利用判別式得到關(guān)于一元二次方程系數(shù)的等式或不等式,再結(jié)合其他條件解題.三、板書設(shè)計用公式法解一元二次方程求根公式:x=-b±b2-4ac2a(a≠0,b2-4ac≥0)用公式法解一元二次 方程的一般步驟①化為一般形式②確定a,b,c的值③求出b2-4ac④利用求根公式求解一元二次方程根的判別式經(jīng)歷從用配方法解數(shù)字系數(shù)的一元二次方程到解字母系數(shù)的一元二次方程,探索求根公式,發(fā)展學(xué)生合情合理的推理能力,并認(rèn)識到配方法是理解求根公式的基礎(chǔ).通過對求根公式的推導(dǎo),認(rèn)識到一元二次方程的求根公式適用于所有的一元二次方程,操作簡單.體會數(shù)式通性,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的確定性.提高學(xué)生的運算能力,并養(yǎng)成良好的運算習(xí)慣.

  • 北師大初中數(shù)學(xué)九年級上冊一元二次方程的解及其估算1教案

    北師大初中數(shù)學(xué)九年級上冊一元二次方程的解及其估算1教案

    首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進(jìn)一步在這個范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計一元二次方程根的取值范圍時,當(dāng)ax2+bx+c(a≠0)的值由正變負(fù)或由負(fù)變正時,x的取值范圍很重要,因為只有在這個范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設(shè)計一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實際問題確定其解的大致范圍;(2)再通過列表,具體計算,進(jìn)行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實際生活中一些較為復(fù)雜的方程時應(yīng)用廣泛.在本節(jié)課中讓學(xué)生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學(xué)設(shè)計上,強(qiáng)調(diào)自主學(xué)習(xí),注重合作交流,在探究過程中獲得數(shù)學(xué)活動的經(jīng)驗,提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.

  • 北師大初中數(shù)學(xué)九年級上冊用公式法求解一元二次方程2教案

    北師大初中數(shù)學(xué)九年級上冊用公式法求解一元二次方程2教案

    二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當(dāng)x=______時,代數(shù)式x2-8x+12的值是-4.3.若關(guān)于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關(guān)于x的方程:x2-2ax-b2+a2=0.2.設(shè)x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導(dǎo)x1+x2=- ,x1·x2= ;(2)求代數(shù)式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個月用電量不超過A千瓦時,那么這戶居民這個月只交10元電費,如果超過A千瓦時,那么這個月除了交10元用電費外超過部分還要按每千瓦時 元收費.(1)若某戶2月份用電90千瓦時,超過規(guī)定A千瓦時,則超過部分電費為多少元?(用A表示)(2)下表是這戶居民3月、4月的用電情況和交費情況

  • 北師大初中數(shù)學(xué)九年級上冊用公式法求解一元二次方程1教案

    北師大初中數(shù)學(xué)九年級上冊用公式法求解一元二次方程1教案

    易錯提醒:利用b2-4ac判斷一元二次方程根的情況時,容易忽略二次項系數(shù)不能等于0這一條件,本題中容易誤選A.【類型三】 根的判別式與三角形的綜合應(yīng)用已知a,b,c分別是△ABC的三邊長,當(dāng)m>0時,關(guān)于x的一元二次方程c(x2+m)+b(x2-m)-2m ax=0有兩個相等的實數(shù)根,請判斷△ABC的形狀.解析:先將方程轉(zhuǎn)化為一般形式,再根據(jù)根的判別式確定a,b,c之間的關(guān)系,即可判定△ABC的形狀.解:將原方程轉(zhuǎn)化為一般形式,得(b+c)x2-2m ax+(c-b)m=0.∵原方程有兩個相等的實數(shù)根,∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結(jié):根據(jù)一元二次方程根的情況,利用判別式得到關(guān)于一元二次方程系數(shù)的等式或不等式,再結(jié)合其他條件解題.

  • 北師大初中數(shù)學(xué)九年級上冊一元二次方程的根與系數(shù)的關(guān)系2教案

    北師大初中數(shù)學(xué)九年級上冊一元二次方程的根與系數(shù)的關(guān)系2教案

    2、猜想 一元二次方程的兩個根 的和與積和原來的方程有什么聯(lián)系?小組交流。3、一般地,對于關(guān)于 方程 為已知常數(shù), ,試用求根公式求出它的兩個解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么結(jié)果?與上面發(fā)現(xiàn)的現(xiàn)象是否一致?!局R應(yīng)用】 1、(1)不解方程,求方程兩根的和兩根的積:① ② (2)已知方程 的一個根是2,求它的另一個根及 的值。(3)不解方程,求一 元二次方程 兩個根的①平方和;②倒數(shù)和。(4)求一元二次方程,使它的兩個根是 ?!練w納小結(jié)】【作業(yè)】1、已知方程 的一個根是1,求它的另一個根及 的值。2、設(shè) 是方程 的兩個根,不解方程,求下列各式的值。① ;② 3、求一個一元次方程,使它的兩 個根分別為:① ;② 4、下列方程兩根的和與兩根的積各是多少 ?① ; ② ; ③ ; ④ ;

  • 北師大初中數(shù)學(xué)九年級上冊一元二次方程2教案

    北師大初中數(shù)學(xué)九年級上冊一元二次方程2教案

    三、課堂檢測:(一)、判斷題(是一無二次方程的在括號內(nèi)劃“√”,不是一元二次方程的,在括號內(nèi)劃“×”)1. 5x2+1=0 ( ) 2. 3x2+ +1=0 ( )3. 4x2=ax(其中a為常數(shù)) ( ) 4.2x2+3x=0 ( )5. =2x ( ) 6. =2x ( ) (二)、填空題.1.方程5(x2- x+1)=-3 x+2的一般形式是__________,其二次項是__________,一次項是__________,常數(shù)項是__________.2.如果方程ax2+5=(x+2)(x-1)是關(guān)于x的一元二次方程,則a__________.3.關(guān)于x的方程(m-4)x2+(m+4)x+2m+3=0,當(dāng)m__________時,是一元二次方程,當(dāng)m__________時,是一元一次方程。四、學(xué)習(xí)體會:五、課后作業(yè)

  • 北師大初中數(shù)學(xué)九年級上冊一元二次方程的解及其估算1教案

    北師大初中數(shù)學(xué)九年級上冊一元二次方程的解及其估算1教案

    方法總結(jié):(1)利用列表法估算一元二次方程根的取值范圍的步驟是:首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進(jìn)一步在這個范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計一元二次方程根的取值范圍時,當(dāng)ax2+bx+c(a≠0)的值由正變負(fù)或由負(fù)變正時,x的取值范圍很重要,因為只有在這個范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設(shè)計一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實際問題確定其解的大致范圍;(2)再通過列表,具體計算,進(jìn)行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實際生活中一些較為復(fù)雜的方程時應(yīng)用廣泛.在本節(jié)課中讓學(xué)生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學(xué)設(shè)計上,強(qiáng)調(diào)自主學(xué)習(xí),注重合作交流,在探究過程中獲得數(shù)學(xué)活動的經(jīng)驗,提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.

  • 北師大初中數(shù)學(xué)九年級上冊一元二次方程的根與系數(shù)的關(guān)系1教案

    北師大初中數(shù)學(xué)九年級上冊一元二次方程的根與系數(shù)的關(guān)系1教案

    方程有兩個不相等的實數(shù)根.綜上所述,m=3.易錯提醒:本題由根與系數(shù)的關(guān)系求出字母m的值,但一定要代入判別式驗算,字母m的取值必須使判別式大于0,這一點很容易被忽略.三、板書設(shè)計一元二次方程的根與系數(shù)的關(guān)系關(guān)系:如果方程ax2+bx+c=0(a≠0) 有兩個實數(shù)根x1,x2,那么x1+x2 =-ba,x1x2=ca應(yīng)用利用根與系數(shù)的關(guān)系求代數(shù)式的值已知方程一根,利用根與系數(shù)的關(guān)系求方程的另一根判別式及根與系數(shù)的關(guān)系的綜合應(yīng)用讓學(xué)生經(jīng)歷探索,嘗試發(fā)現(xiàn)韋達(dá)定理,感受不完全的歸納驗證以及演繹證明.通過觀察、實踐、討論等活動,經(jīng)歷發(fā)現(xiàn)問題、發(fā)現(xiàn)關(guān)系的過程,養(yǎng)成獨立思考的習(xí)慣,培養(yǎng)學(xué)生觀察、分析和綜合判斷的能力,激發(fā)學(xué)生發(fā)現(xiàn)規(guī)律的積極性,激勵學(xué)生勇于探索的精神.通過交流互動,逐步養(yǎng)成合作的意識及嚴(yán)謹(jǐn)?shù)闹螌W(xué)精神.

  • 小學(xué)數(shù)學(xué)人教版二年級下冊《表內(nèi)除法(二)——解決問題》說課稿

    小學(xué)數(shù)學(xué)人教版二年級下冊《表內(nèi)除法(二)——解決問題》說課稿

    一、教學(xué)內(nèi)容本節(jié)課是九年義務(wù)教育六年制小學(xué)數(shù)學(xué)教科書(新人教版)二年級下冊第42頁的例3的內(nèi)容。二、教材分析例3是用除法解決問題的內(nèi)容,和“表內(nèi)乘法(二)”中的解決問題相對應(yīng)。這個題目中所涉及的數(shù)量已由離散量擴(kuò)展到連續(xù)量,由實物個數(shù)擴(kuò)展到了取自于量的數(shù)量,它所反映的數(shù)量關(guān)系是除法現(xiàn)實模型的拓展,滲透了單價、數(shù)量、總價的數(shù)量關(guān)系,需要學(xué)生根據(jù)除法的含義來解決。“想一想”是繼續(xù)深化學(xué)生對除法意義的理解,并培養(yǎng)了學(xué)生發(fā)現(xiàn)問題,提出問題的能力。三、教學(xué)目標(biāo)1、根據(jù)除法的意義,初步理解數(shù)量、單價、總價的數(shù)量關(guān)系,會用除法解決生活中與此數(shù)量有關(guān)的實際問題。2、將處罰擴(kuò)展到連續(xù)量中去,深化學(xué)生對除法含義的理解。3、培養(yǎng)學(xué)生從具體生活情境中發(fā)現(xiàn)問題,根據(jù)問題篩選有用的信息從而培養(yǎng)解決問題的能力。

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)二年級下冊用7、8、9的乘法口訣求商說課稿4篇

    人教版新課標(biāo)小學(xué)數(shù)學(xué)二年級下冊用7、8、9的乘法口訣求商說課稿4篇

    (二)解決問題,總結(jié)方法《新課程標(biāo)準(zhǔn)》主張充分挖掘數(shù)學(xué)教材潛在的“再創(chuàng)造空間”,讓學(xué)生親自經(jīng)歷將實際問題抽象成數(shù)學(xué)模型并進(jìn)行解釋與應(yīng)用的過程,讓學(xué)生最大限度地參與數(shù)學(xué)知識的發(fā)現(xiàn)、提出、形成、應(yīng)用的再創(chuàng)造過程,以促進(jìn)學(xué)生主動的發(fā)展。因此我創(chuàng)設(shè)了福娃晶晶為迎接奧運會做準(zhǔn)備的數(shù)學(xué)情景,設(shè)計了四組有關(guān)7、8、9的用除法算式解決的數(shù)學(xué)問題。1、出示晶晶的問題:(1)做了56面彩旗,平均每行掛7面,能掛多少行?(2)做了56面彩旗,要掛成8行,平均每行掛多少面?(3)做了49顆五角星,平均分給7個小朋友,每人多少顆五角星?(4)準(zhǔn)備了27個氣球,平均9個擺一行,能擺多少行?2、解決晶晶的問題:讓學(xué)生根據(jù)"友情提示"的要求完成自學(xué)內(nèi)容后再小組交流、全班交流。在交流過程中引導(dǎo)學(xué)生觀察:56÷8=7和56÷7=8這兩個算式,從而發(fā)現(xiàn)一句乘法口訣可以計算兩個除法算式。

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)二年級上冊表內(nèi)乘法(一) 說課稿

    人教版新課標(biāo)小學(xué)數(shù)學(xué)二年級上冊表內(nèi)乘法(一) 說課稿

    本課內(nèi)容安排在學(xué)習(xí)了2—5的乘法口訣后,考慮到以后每次出現(xiàn)的口訣都比較多,而且較難記,所以學(xué)習(xí)乘加乘減也是為了幫助學(xué)生學(xué)習(xí)后面的乘法口訣。本課的教學(xué)內(nèi)容有兩個特點:一是讓學(xué)生在實際生活中發(fā)現(xiàn)問題,為解決實際問題列出乘加、乘減的算式,并感受解決問題的策略和方法是多樣的,通過對各種方法的比較能進(jìn)一步加強(qiáng)對乘法意義的理解;二是第一冊學(xué)生已經(jīng)學(xué)過了連加、連減,它的計算順序是從左到右,依次計算。本冊的乘加、乘減都是只教學(xué)乘法在前,加、減法在后的題型,計算順序同樣是從左至右;但在教學(xué)中,不能讓學(xué)生這樣說,而必須是學(xué)生明確要先算乘法,教材的設(shè)計就正是如此,沒把“先算乘法”作為運算順序機(jī)械的灌輸給學(xué)生,而是在現(xiàn)實的問題情境中聯(lián)系解題策略,使學(xué)生依據(jù)問題的情理確定先算乘法,真正明白算理。根據(jù)教材特點,制定如下教學(xué)目標(biāo)知識目標(biāo):在實際問題的情境中感受乘加、乘減算式的意義,能用不同的方法解決問題,知道乘加乘減算式的運算順序。

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)二年級上冊求一個數(shù)的幾倍是多少 說課稿

    人教版新課標(biāo)小學(xué)數(shù)學(xué)二年級上冊求一個數(shù)的幾倍是多少 說課稿

    1、教學(xué)內(nèi)容:人教版實驗教材二年級(上冊)77頁的例4。用乘法解決問題的教學(xué)滲透于掌握乘法口訣的教學(xué)過程中。教材在注重讓學(xué)生通過活動探索、理解乘法計算的含義和方法的同時,滲透用乘法解決問題的教學(xué)。在教學(xué)過7的乘法口訣之后,安排了有關(guān)“倍”概念的教學(xué),以及如何用乘法解決有關(guān)倍的實際問題。2、教材的重點和難點:教材的重點是理解“求一個數(shù)的幾倍是多少”就是“求幾個幾是多少”。教材的難點是用乘法計算的解題思路。3、教學(xué)目標(biāo):1.進(jìn)一步加深對“倍”的含義的理解。2.學(xué)會運用“求一個數(shù)的幾倍是多少”的方法解決實際問題,構(gòu)建解決“求一個數(shù)的幾倍是多少”的問題的思維模式。3.初步學(xué)會分析數(shù)學(xué)信息與所求問題之間的聯(lián)系,學(xué)會看線段圖。

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)二年級上冊鏡面對稱 說課稿

    人教版新課標(biāo)小學(xué)數(shù)學(xué)二年級上冊鏡面對稱 說課稿

    (1)讓學(xué)生先想象以后,再發(fā)言。(2)組織兩個學(xué)生親自在全班進(jìn)行驗證。(3)組織學(xué)生匯報交流。通過學(xué)生的想象、驗證,不但又一次讓學(xué)生直觀感受了鏡面對稱的性質(zhì),而且有利于學(xué)生的想象力和空間觀念的培養(yǎng)。二.實踐應(yīng)用。1.進(jìn)入第四個情境。配音:“咦,這是什么呢?”學(xué)生會很快答:是只蝴蝶。提問:怎樣做才能看見一只完整的蝴蝶呢?學(xué)生回答后,課件演示一遍。要求以組為單位,拿出準(zhǔn)備好的圖片,進(jìn)行照一照,能知道它們分別是些什么。指名學(xué)生上臺演示。2.進(jìn)入第五個情境。配音:“哪個是她們是在鏡子里看到的樣子呢?”指名選擇,并說出為什么?3.玩游戲,比一比誰的反應(yīng)快。游戲要求:老師做動作,要求學(xué)生做鏡子里的動作。看誰反應(yīng)快,誰能堅持到最后,誰就是勝利者。通過想一想、照一照、連一連、圈一圈等活動。加深了學(xué)生對鏡面對稱的性質(zhì)的理解,使學(xué)生親身體驗了數(shù)學(xué)與日常生活之間的密切關(guān)系,培養(yǎng)了學(xué)生的空間想像力。

  • 人教版新課標(biāo)小學(xué)數(shù)學(xué)二年級上冊連加連減和加減混合說課稿

    人教版新課標(biāo)小學(xué)數(shù)學(xué)二年級上冊連加連減和加減混合說課稿

    (二)情境導(dǎo)入師:同學(xué)們你們喜歡去公園玩嗎?(喜歡)那老師就帶你們乘公交車去玩吧!出示:課本28頁掛圖,引導(dǎo)學(xué)生進(jìn)一步進(jìn)行認(rèn)真觀察,根據(jù)圖意,編出應(yīng)用題:車上有67人,到某一站后下車25人,上車28人,現(xiàn)在車上還有多少人?引導(dǎo)學(xué)生列出算式:67-25+28=【從學(xué)生熟悉的生活情形出發(fā),選擇學(xué)生常見的乘車情況,創(chuàng)設(shè)了一個問題情境,讓學(xué)生憑著日常生活中的經(jīng)驗,通過看一看,說一說情境展現(xiàn)的內(nèi)容活動,激發(fā)學(xué)生學(xué)習(xí)的興趣,并提到相關(guān)的數(shù)學(xué)問題】1、讀題,讓學(xué)生說一說這道題與剛才所做的復(fù)習(xí)題有什么不同?學(xué)生可能會說:復(fù)習(xí)題是連加,連減,這道題是有加有減。教師可向?qū)W生進(jìn)一步說明,這節(jié)課我們就來學(xué)習(xí)像這樣的加減混合運算。師板書課題,加減混合。2、通過對連加連減的學(xué)習(xí),你能用學(xué)過的知識做出這道題嗎?

上一頁123...444546474849505152535455下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。