提供各類(lèi)精美PPT模板下載
當(dāng)前位置:首頁(yè) > Word文檔 >

人教版新目標(biāo)初中英語(yǔ)九年級(jí)上冊(cè)Teenagers should be allowed to choose their own clothes教案2篇

  • 北師大版初中數(shù)學(xué)九年級(jí)上冊(cè)黃金分割說(shuō)課稿

    北師大版初中數(shù)學(xué)九年級(jí)上冊(cè)黃金分割說(shuō)課稿

    教學(xué)設(shè)計(jì)說(shuō)明:本節(jié)課從學(xué)生接觸到的實(shí)際問(wèn)題出發(fā),結(jié)合新課程標(biāo)準(zhǔn)的理念,創(chuàng)造性地使用教材而設(shè)計(jì)的一節(jié)課,是前面線(xiàn)段的比、成比例線(xiàn)段等知識(shí)在現(xiàn)實(shí)生活中的應(yīng)用. 一開(kāi)始情境的創(chuàng)設(shè)——彩色圖片的投影,給學(xué)生以美的感覺(jué),激發(fā)學(xué)生的求知欲.通過(guò)實(shí)際生活中的例子,讓學(xué)生自己發(fā)表自己的看法,培養(yǎng)學(xué)生的審美情趣,又從學(xué)生最感興趣的奧運(yùn)會(huì)的比賽中引出今天所要學(xué)習(xí)的內(nèi)容,從而進(jìn)一步培養(yǎng)學(xué)生的愛(ài)國(guó)主義情感.在教學(xué)設(shè)計(jì)中,充分發(fā)揮了學(xué)生的主觀能動(dòng)性,通過(guò)小組討論,師生間的合作交流,解決了本節(jié)課的重點(diǎn)和難點(diǎn).讓每個(gè)學(xué)生都能從同伴的交流中獲益,同時(shí)也培養(yǎng)了學(xué)生的合作意識(shí),提高了學(xué)生的動(dòng)手操作的能力.本節(jié)課在教學(xué)設(shè)計(jì)中主要運(yùn)用了引導(dǎo)探究、分組討論的教學(xué)方法;引導(dǎo)學(xué)生自主探究、合作交流的研討學(xué)習(xí)方式,確立了學(xué)生的主體地位.

  • 北師大版初中數(shù)學(xué)九年級(jí)上冊(cè)投影說(shuō)課稿

    北師大版初中數(shù)學(xué)九年級(jí)上冊(cè)投影說(shuō)課稿

    1.多媒體的合理應(yīng)用,可極大的激發(fā)學(xué)生的學(xué)習(xí)興趣,提高教學(xué)效果.在本節(jié)課的“情境引入”這一教學(xué)環(huán)節(jié)中,用媒體展示的人影、皮影、手影的精彩圖片,用媒體播放的皮影戲、手影戲視頻片斷給學(xué)生以視覺(jué)沖擊,產(chǎn)生了視覺(jué)和心理的震撼,這樣在課堂“第一時(shí)間”抓住了學(xué)生的注意力、極大的激發(fā)了學(xué)生的學(xué)習(xí)熱情,將十分有利于后面教學(xué)活動(dòng)的開(kāi)展,提高課堂教學(xué)效果.2.附有挑戰(zhàn)性的“問(wèn)題(或活動(dòng))”、層層深入的“問(wèn)題串”可激發(fā)學(xué)生的探索欲望,培養(yǎng)創(chuàng)新精神,拓展思維能力.在本節(jié)課“探究活動(dòng)”這一教學(xué)環(huán)節(jié)中的“做一做”設(shè)計(jì)的4個(gè)活動(dòng),由簡(jiǎn)單的“模仿”到“創(chuàng)作設(shè)計(jì)、觀察思考”循序漸進(jìn)、挑戰(zhàn)性逐漸增大,不斷激發(fā)學(xué)生的探索欲望,引人入勝,培養(yǎng)創(chuàng)新精神,拓展能力.再如,在本節(jié)課“數(shù)學(xué)運(yùn)用”這一教學(xué)環(huán)節(jié)中的“例2”設(shè)計(jì)的2個(gè)問(wèn)題層層深入,現(xiàn)實(shí)情境味很濃,學(xué)生做起來(lái)饒有興趣.

  • 北師大版初中數(shù)學(xué)九年級(jí)上冊(cè)因式分解說(shuō)課稿

    北師大版初中數(shù)學(xué)九年級(jí)上冊(cè)因式分解說(shuō)課稿

    第三環(huán)節(jié)。嘗試練習(xí),信息反饋。讓學(xué)生嘗試練習(xí):課本p152第3題,并引導(dǎo)中下學(xué)生看p152例題,教師及時(shí)點(diǎn)撥講評(píng)?!鹘處煱才胚@一過(guò)程,完全放手讓學(xué)生自主進(jìn)行,充分暴露學(xué)生的思維過(guò)程,展現(xiàn)學(xué)生生動(dòng)活潑、主動(dòng)求知和富有的個(gè)性,使學(xué)生真正成為學(xué)習(xí)的主體,使因式分解與整式的乘法的關(guān)系得到正強(qiáng)化。第四環(huán)節(jié)。小結(jié)階段。這是最后的一個(gè)環(huán)節(jié),教師出示“想一想”:下列式子從左邊到右邊是因式分解嗎,為什么?學(xué)生展開(kāi)討論,得到下列結(jié)論:A.左邊是乘法,而右邊是差,不是積;B.左右兩邊都不是整式;C.從右邊到左邊是利用了因式分解的變形方法進(jìn)行分解。由此可知,上式不是因式分解。進(jìn)而,教師呈現(xiàn)因式分解定義?!鹘處煱才胚@一過(guò)程意圖是:學(xué)生一般到臨近下課,大腦處于疲勞狀態(tài),注意力開(kāi)始分散。

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)正切與坡度1教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)正切與坡度1教案

    已知一水壩的橫斷面是梯形ABCD,下底BC長(zhǎng)14m,斜坡AB的坡度為3∶3,另一腰CD與下底的夾角為45°,且長(zhǎng)為46m,求它的上底的長(zhǎng)(精確到0.1m,參考數(shù)據(jù):2≈1.414,3≈1.732).解析:過(guò)點(diǎn)A作AE⊥BC于E,過(guò)點(diǎn)D作DF⊥BC于F,根據(jù)已知條件求出AE=DF的值,再根據(jù)坡度求出BE,最后根據(jù)EF=BC-BE-FC求出AD.解:過(guò)點(diǎn)A作AE⊥BC,過(guò)點(diǎn)D作DF⊥BC,垂足分別為E、F.∵CD與BC的夾角為45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度為3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的長(zhǎng)約為3.1m.方法總結(jié):考查對(duì)坡度的理解及梯形的性質(zhì)的掌握情況.解決問(wèn)題的關(guān)鍵是添加輔助線(xiàn)構(gòu)造直角三角形.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)垂徑定理教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)垂徑定理教案

    方法總結(jié):垂徑定理雖是圓的知識(shí),但也不是孤立的,它常和三角形等知識(shí)綜合來(lái)解決問(wèn)題,我們一定要把知識(shí)融會(huì)貫通,在解決問(wèn)題時(shí)才能得心應(yīng)手.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第2題【類(lèi)型三】 動(dòng)點(diǎn)問(wèn)題如圖,⊙O的直徑為10cm,弦AB=8cm,P是弦AB上的一個(gè)動(dòng)點(diǎn),求OP的長(zhǎng)度范圍.解析:當(dāng)點(diǎn)P處于弦AB的端點(diǎn)時(shí),OP最長(zhǎng),此時(shí)OP為半徑的長(zhǎng);當(dāng)OP⊥AB時(shí),OP最短,利用垂徑定理及勾股定理可求得此時(shí)OP的長(zhǎng).解:作直徑MN⊥弦AB,交AB于點(diǎn)D,由垂徑定理,得AD=DB=12AB=4cm.又∵⊙O的直徑為10cm,連接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂線(xiàn)段最短,半徑最長(zhǎng),∴OP的長(zhǎng)度范圍是3cm≤OP≤5cm.方法總結(jié):解題的關(guān)鍵是明確OP最長(zhǎng)、最短時(shí)的情況,靈活利用垂徑定理求解.容易出錯(cuò)的地方是不能確定最值時(shí)的情況.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)第一章復(fù)習(xí)教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)第一章復(fù)習(xí)教案

    一、本章知識(shí)要點(diǎn): 1、銳角三角函數(shù)的概念; 2、解直角三角形。二、本章教材分析: (一).使學(xué)生正確理解和掌握三角函數(shù)的定義,才能正確理解和掌握直角三角形中邊與角的相互關(guān)系,進(jìn)而才能利用直角三角形的邊與角的相互關(guān)系去解直角三角形,因此三角形函數(shù)定義既是本章的重點(diǎn)又是理解本章知識(shí)的關(guān)鍵,而且也是本章知識(shí)的難點(diǎn)。如何解決這一關(guān)鍵問(wèn)題,教材采取了以下的教學(xué)步驟:1. 從實(shí)際中提出問(wèn)題,如修建揚(yáng)水站的實(shí)例,這一實(shí)例可歸結(jié)為已知RtΔ的一個(gè)銳角和斜邊求已知角的對(duì)邊的問(wèn)題。顯然用勾股定理和直角三角形兩個(gè)銳角互余中的邊與邊或角與角的關(guān)系無(wú)法解出了,因此需要進(jìn)一步來(lái)研究直角三角形中邊與角的相互關(guān)系。2. 教材又采取了從特殊到一般的研究方法利用學(xué)生的舊知識(shí),以含30°、45°的直角三角形為例:揭示了直角三角形中一個(gè)銳角確定為30°時(shí),那么這角的對(duì)邊與斜邊之比就確定比值為1:2。

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)二次函數(shù)1教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)二次函數(shù)1教案

    (2)由題意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,該產(chǎn)品的質(zhì)量檔次為第6檔.方法總結(jié):解決此類(lèi)問(wèn)題的關(guān)鍵是要吃透題意,確定變量,建立函數(shù)模型.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第8題三、板書(shū)設(shè)計(jì)二次函數(shù)1.二次函數(shù)的概念2.從實(shí)際問(wèn)題中抽象出二次函數(shù)解析式二次函數(shù)是一種常見(jiàn)的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實(shí)世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型.許多實(shí)際問(wèn)題往往可以歸結(jié)為二次函數(shù)加以研究.本節(jié)課是學(xué)習(xí)二次函數(shù)的第一節(jié)課,通過(guò)實(shí)例引入二次函數(shù)的概念,并學(xué)習(xí)求一些簡(jiǎn)單的實(shí)際問(wèn)題中二次函數(shù)的解析式.在教學(xué)中要重視二次函數(shù)概念的形成和建構(gòu),在概念的學(xué)習(xí)過(guò)程中,讓學(xué)生體驗(yàn)從問(wèn)題出發(fā)到列二次函數(shù)解析式的過(guò)程,體驗(yàn)用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)切線(xiàn)長(zhǎng)定理教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)切線(xiàn)長(zhǎng)定理教案

    (3)若要滿(mǎn)足結(jié)論,則∠BFO=∠GFC,根據(jù)切線(xiàn)長(zhǎng)定理得∠BFO=∠EFO,從而得到這三個(gè)角應(yīng)是60°,然后結(jié)合已知的正方形的邊長(zhǎng),也是圓的直徑,利用30°的直角三角形的知識(shí)進(jìn)行計(jì)算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長(zhǎng)為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設(shè)存在點(diǎn)P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問(wèn)題的結(jié)論有兩種可能,所以具有開(kāi)放的特征,在假設(shè)存在性以后進(jìn)行的推理或計(jì)算.一般思路是:假設(shè)存在——推理論證——得出結(jié)論.若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,若導(dǎo)出矛盾,就做出“不存在”的判斷.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)圓教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)圓教案

    解析:首先求得圓的半徑長(zhǎng),然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點(diǎn)P在⊙O′的外部;QO′=1<2,則點(diǎn)Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點(diǎn)R在圓上.方法總結(jié):注意運(yùn)用平面內(nèi)兩點(diǎn)之間的距離公式,設(shè)平面內(nèi)任意兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類(lèi)型四】 點(diǎn)與圓的位置關(guān)系的實(shí)際應(yīng)用如圖,城市A的正北方向50千米的B處,有一無(wú)線(xiàn)電信號(hào)發(fā)射塔.已知,該發(fā)射塔發(fā)射的無(wú)線(xiàn)電信號(hào)的有效半徑為100千米,AC是一條直達(dá)C城的公路,從A城發(fā)往C城的客車(chē)車(chē)速為60千米/時(shí).(1)當(dāng)客車(chē)從A城出發(fā)開(kāi)往C城時(shí),某人立即打開(kāi)無(wú)線(xiàn)電收音機(jī),客車(chē)行駛了0.5小時(shí)的時(shí)候,接收信號(hào)最強(qiáng).此時(shí),客車(chē)到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號(hào)越強(qiáng))?(2)客車(chē)從A城到C城共行駛2小時(shí),請(qǐng)你判斷到C城后還能接收到信號(hào)嗎?請(qǐng)說(shuō)明理由.

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)圓的對(duì)稱(chēng)性教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)圓的對(duì)稱(chēng)性教案

    我們知道圓是一個(gè)旋轉(zhuǎn)對(duì)稱(chēng)圖形,無(wú)論繞圓心旋轉(zhuǎn)多少度,它都能與自身重合,對(duì)稱(chēng)中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)某個(gè)角度,畫(huà)出旋轉(zhuǎn)之后的圖形,比較前后兩個(gè)圖形,你能發(fā)現(xiàn)什么?二、合作探究探究點(diǎn):圓心角、弧、弦之間的關(guān)系【類(lèi)型一】 利用圓心角、弧、弦之間的關(guān)系證明線(xiàn)段相等如圖,M為⊙O上一點(diǎn),MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據(jù)等弧對(duì)等圓心角,則∠MOD=∠MOE,再由角平分線(xiàn)的性質(zhì),得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵M(jìn)D⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結(jié):圓心角、弧、弦之間相等關(guān)系的定理可以用來(lái)證明線(xiàn)段相等.本題考查了等弧對(duì)等圓心角,以及角平分線(xiàn)的性質(zhì).

  • 北師大初中九年級(jí)數(shù)學(xué)下冊(cè)正弦與余弦1教案

    北師大初中九年級(jí)數(shù)學(xué)下冊(cè)正弦與余弦1教案

    解析:根據(jù)銳角三角函數(shù)的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結(jié):當(dāng)角度在0°cosA>0.當(dāng)角度在45°<∠A<90°間變化時(shí),tanA>1.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第10題【類(lèi)型四】 與三角函數(shù)有關(guān)的探究性問(wèn)題在Rt△ABC中,∠C=90°,D為BC邊(除端點(diǎn)外)上的一點(diǎn),設(shè)∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關(guān)系;(2)試證明你的結(jié)論.解析:(1)因?yàn)樵凇鰽BD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數(shù)的定義可求出sinα,sinβ的關(guān)系式即可得出結(jié)論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結(jié):利用三角函數(shù)的定義把兩角的正弦值表示成線(xiàn)段的比,然后進(jìn)行比較是解題的關(guān)鍵.

  • 人教部編版語(yǔ)文九年級(jí)上冊(cè)任務(wù)三嘗試創(chuàng)作(2)教案

    人教部編版語(yǔ)文九年級(jí)上冊(cè)任務(wù)三嘗試創(chuàng)作(2)教案

    我認(rèn)為這首詩(shī),一共三節(jié),每節(jié)句數(shù)、字?jǐn)?shù)相當(dāng),結(jié)構(gòu)工整,符合建筑美的特點(diǎn),同時(shí)也使詩(shī)歌具有了節(jié)奏感;另外這首詩(shī)音韻和諧,朗朗上口。我認(rèn)為這首詩(shī)相同句式回環(huán)往復(fù),給人留下深刻印象。我認(rèn)為此詩(shī)語(yǔ)言猶如清水出芙蓉,清麗淡雅,營(yíng)造了唯美純凈的世界?!瓗煟汗?jié)奏把握這一技巧相對(duì)比較簡(jiǎn)單,大家的創(chuàng)作和點(diǎn)評(píng)都很有水準(zhǔn),很好。希望大家在以后課余的詩(shī)歌創(chuàng)作中能兼顧到我們現(xiàn)在所談的技巧。【設(shè)計(jì)意圖】講詩(shī)歌的創(chuàng)作技巧,既要講出最關(guān)鍵的技巧,也要結(jié)合實(shí)例,讓講解深入淺出,讓學(xué)生在理解的同時(shí)加以訓(xùn)練,使學(xué)生能夠加深對(duì)知識(shí)點(diǎn)的理解。三、課內(nèi)演練,鞏固技法 學(xué)習(xí)本節(jié)課的技法之后,請(qǐng)大家寫(xiě)一首詩(shī)或一個(gè)詩(shī)歌片段,要求運(yùn)用本節(jié)課所講的詩(shī)歌寫(xiě)作技巧。(學(xué)生思考創(chuàng)作并展示)

  • 人教部編版語(yǔ)文九年級(jí)上冊(cè)任務(wù)二詩(shī)歌朗誦(2)教案

    人教部編版語(yǔ)文九年級(jí)上冊(cè)任務(wù)二詩(shī)歌朗誦(2)教案

    1.主持人致開(kāi)幕詞。2.參賽選手按時(shí)到場(chǎng)、抽簽。3.主持人介紹比賽規(guī)則和評(píng)分細(xì)則。(1)分年級(jí)比賽,各年級(jí)同時(shí)進(jìn)行,并根據(jù)相同的評(píng)分標(biāo)準(zhǔn)來(lái)評(píng)獎(jiǎng)。(2)比賽規(guī)則:①參賽選手須使用普通話(huà),盡可能脫稿朗誦,并富有感情色彩,輔以豐富的肢體語(yǔ)言;②每位選手比賽時(shí)間限定在3-5分鐘,如果超時(shí)或不足,評(píng)委將適當(dāng)扣分;③比賽順序由抽簽決定,中途不得變更順序,比賽需緊湊進(jìn)行,選手上場(chǎng)遲到2分鐘以上則視為棄權(quán);④參賽選手須嚴(yán)格遵守比賽規(guī)則,在比賽過(guò)程中若有異議,由評(píng)委會(huì)裁定。4.主持人報(bào)幕,請(qǐng)選手上臺(tái)朗誦。5.比賽結(jié)束后,邀請(qǐng)?jiān)u委上臺(tái)發(fā)言,工作人員進(jìn)行統(tǒng)分。6.主持人宣布比賽結(jié)果,請(qǐng)嘉賓為獲獎(jiǎng)?wù)哳C獎(jiǎng)。7.主持人宣布本次比賽結(jié)束,請(qǐng)嘉賓和評(píng)委退場(chǎng)。四、課后鞏固,布置作業(yè)1.布置學(xué)生課后搜集艾青的一篇經(jīng)典的、適合個(gè)人朗誦的詩(shī)歌,在課下作朗誦練習(xí)。

  • 部編版語(yǔ)文九年級(jí)上冊(cè)《中國(guó)人失掉自信力了嗎》教案

    部編版語(yǔ)文九年級(jí)上冊(cè)《中國(guó)人失掉自信力了嗎》教案

    一、導(dǎo)入新課我們已經(jīng)學(xué)過(guò)魯迅先生的不少文章,學(xué)過(guò)他的小說(shuō),看他用無(wú)數(shù)生動(dòng)的形象表達(dá)他在時(shí)代里的“吶喊”與“彷徨”;學(xué)過(guò)他的散文,與他一同在失落中“朝花夕拾”,安靜地回憶過(guò)往。今天,我們將學(xué)習(xí)魯迅先生的一篇雜文,看他是如何作為民族斗士,將手中的筆,變成抨擊敵人的槍。二、教學(xué)新課目標(biāo)導(dǎo)學(xué)一:學(xué)習(xí)駁論,理清思路1.初讀課文,找出對(duì)方的錯(cuò)誤觀點(diǎn),并說(shuō)說(shuō)作者是怎樣引出這一觀點(diǎn)的。明確:對(duì)方的錯(cuò)誤觀點(diǎn)是“中國(guó)人失掉自信力了”。開(kāi)篇以似乎確鑿的事實(shí)為據(jù),用一句話(huà)指出了三個(gè)階段中“中國(guó)人”表現(xiàn)出來(lái)的三種不同的態(tài)度:盲目驕傲,夜郎自大;盲目崇拜,借助外援;今不如昔,祈求鬼神。即由自夸到崇洋,到自欺欺人、虛無(wú)渺茫的態(tài)度變化。因此有人“慨嘆”:“中國(guó)人失掉自信力了。”這是論敵的論點(diǎn)。

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)位似多邊形及其性質(zhì)2教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)位似多邊形及其性質(zhì)2教案

    (3)分別在射線(xiàn)OA,OB,OC,OD上取點(diǎn)A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′C′、C′D′、D′A′,得到所要畫(huà)的四邊形A′B′C′D′,如圖2.問(wèn):此題目還可以 如何畫(huà)出圖形?作法二 :(1)在四邊形ABCD外任取一點(diǎn) O;(2)過(guò)點(diǎn)O分別作射線(xiàn)OA, OB, OC,OD;(3)分別在射線(xiàn)OA, OB, OC, OD的反向延長(zhǎng)線(xiàn)上取點(diǎn)A′、B′、C′、D′,使得 ;(4)順次連接A ′B′、B′ C′、C′D′、D′A′,得到所 要畫(huà)的四邊形A′B′C′D′,如圖3. 作法三:(1)在四邊形ABCD內(nèi)任取一點(diǎn)O;(2)過(guò)點(diǎn)O分別作 射線(xiàn)OA,OB,OC,OD;(3)分別在射線(xiàn)OA,OB,OC,OD上取點(diǎn)A′、B′、C′、D′,使得 ;(4)順次連接A′B′、B′C ′、C′D′、D′A′,得到所要畫(huà)的四邊形A′B′C′D′,如圖4.(當(dāng)點(diǎn)O在四邊形ABCD的一條邊上或在四邊形ABCD的一個(gè)頂點(diǎn)上時(shí),作法略——可以讓學(xué)生自己完成)三、課堂練習(xí) 活動(dòng)3 教材習(xí)題小結(jié):談?wù)勀氵@節(jié)課學(xué)習(xí)的收獲.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)幾何問(wèn)題及數(shù)字問(wèn)題與一元二次方程1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)幾何問(wèn)題及數(shù)字問(wèn)題與一元二次方程1教案

    解:設(shè)個(gè)位數(shù)字為x,則十位數(shù)字為14-x,兩數(shù)字之積為x(14-x),兩個(gè)數(shù)字交換位置后的新兩位數(shù)為10x+(14-x).根據(jù)題意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因?yàn)閭€(gè)位數(shù)上的數(shù)字不可能是負(fù)數(shù),所以x=-3應(yīng)舍去.當(dāng)x=8時(shí),14-x=6.所以這個(gè)兩位數(shù)是68.方法總結(jié):(1)數(shù)字排列問(wèn)題常采用間接設(shè)未知數(shù)的方法求解.(2)注意數(shù)字只有0,1,2,3,4,5,6,7,8,9這10個(gè),且最高位上的數(shù)字不能為0,而其他如分?jǐn)?shù)、負(fù)數(shù)根不符合實(shí)際意義,必須舍去.三、板書(shū)設(shè)計(jì)幾何問(wèn)題及數(shù)字問(wèn)題幾何問(wèn)題面積問(wèn)題動(dòng)點(diǎn)問(wèn)題數(shù)字問(wèn)題經(jīng)歷分析具體問(wèn)題中的數(shù)量關(guān)系,建立方程模型解決問(wèn)題的過(guò)程,認(rèn)識(shí)方程模型的重要性.通過(guò)列方程解應(yīng)用題,進(jìn)一步提高邏輯思維能力和分析問(wèn)題、解決問(wèn)題的能力.經(jīng)歷探索過(guò)程,培養(yǎng)合作學(xué)習(xí)的意識(shí).體會(huì)數(shù)學(xué)與實(shí)際生活的聯(lián)系,進(jìn)一步感知方程的應(yīng)用價(jià)值.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)用配方法求解簡(jiǎn)單的一元二次方程1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)用配方法求解簡(jiǎn)單的一元二次方程1教案

    探究點(diǎn)二:用配方法解二次項(xiàng)系數(shù)為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個(gè)完全平方式,需將左邊配方.解:移項(xiàng),得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開(kāi)平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結(jié):用配方法解一元二次方程時(shí),應(yīng)按照步驟嚴(yán)格進(jìn)行,以免出錯(cuò).配方添加時(shí),記住方程左右兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方.三、板書(shū)設(shè)計(jì)用配方法解簡(jiǎn)單的一元二次方程:1.直接開(kāi)平方法:形如(x+m)2=n(n≥0)用直接開(kāi)平方法解.2.用配方法解一元二次方程的基本思路是將方程轉(zhuǎn)化為(x+m)2=n(n≥0)的形式,再用直接開(kāi)平方法,便可求出它的根.3.用配方法解二次項(xiàng)系數(shù)為1的一元二次方程的一般步驟:(1)移項(xiàng),把方程的常數(shù)項(xiàng)移到方程的右邊,使方程的左邊只含二次項(xiàng)和一次項(xiàng);(2)配方,方程兩邊都加上一次項(xiàng)系數(shù)一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開(kāi)平方法求出它的解.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)用因式分解法求解一元二次方程1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)用因式分解法求解一元二次方程1教案

    探究點(diǎn)二:選用適當(dāng)?shù)姆椒ń庖辉畏匠逃眠m當(dāng)?shù)姆椒ń夥匠蹋?1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可變形為3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)將方程化為一般形式,得3x2-4x-1=0.這里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)將方程化為一般形式,得5x2-4x+1=0.這里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程沒(méi)有實(shí)數(shù)根.方法總結(jié):解一元二次方程時(shí),若沒(méi)有具體的要求,應(yīng)盡量選擇最簡(jiǎn)便的方法去解,能用因式分解法或直接開(kāi)平方法的選用因式分解法或直接開(kāi)平方法;若不能用上述方法,可用公式法求解.在用公式法時(shí),要先計(jì)算b2-4ac的值,若b2-4ac<0,則判斷原方程沒(méi)有實(shí)數(shù)根.沒(méi)有特殊要求時(shí),一般不用配方法.

  • 北師大初中數(shù)學(xué)九年級(jí)上冊(cè)利用一元二次方程解決面積問(wèn)題1教案

    北師大初中數(shù)學(xué)九年級(jí)上冊(cè)利用一元二次方程解決面積問(wèn)題1教案

    ∴此方程無(wú)解.∴兩個(gè)正方形的面積之和不可能等于12cm2.方法總結(jié):對(duì)于生活中的應(yīng)用題,首先要全面理解題意,然后根據(jù)實(shí)際問(wèn)題的要求,確定用哪些數(shù)學(xué)知識(shí)和方法解決,如本題用方程思想和一元二次方程的根的判定方法來(lái)解決.三、板書(shū)設(shè)計(jì)列一元二次方程解應(yīng)用題的一般步驟可以歸結(jié)為“審,設(shè),列,解,檢,答”六個(gè)步驟:(1)審:審題要弄清已知量和未知量,問(wèn)題中的等量關(guān)系;(2)設(shè):設(shè)未知數(shù),有直接和間接兩種設(shè)法,因題而異;(3)列:列方程,一般先找出能夠表達(dá)應(yīng)用題全部含義的一個(gè)相等關(guān)系,列代數(shù)式表示相等關(guān)系中的各個(gè)量,即可得到方程;(4)解:求出所列方程的解;(5)檢:檢驗(yàn)方程的解是否正確,是否保證實(shí)際問(wèn)題有意義;(6)答:根據(jù)題意,選擇合理的答案.經(jīng)歷列方程解決實(shí)際問(wèn)題的過(guò)程,體會(huì)一元二次方程是刻畫(huà)現(xiàn)實(shí)世界中數(shù)量關(guān)系的一個(gè)有效數(shù)學(xué)模型.通過(guò)學(xué)生創(chuàng)設(shè)解決問(wèn)題的方案,增強(qiáng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)和能力.

  • 初中化學(xué)人教版九年級(jí)上冊(cè)《實(shí)驗(yàn)活動(dòng)3燃燒的條件》教案

    初中化學(xué)人教版九年級(jí)上冊(cè)《實(shí)驗(yàn)活動(dòng)3燃燒的條件》教案

    【學(xué)習(xí)目標(biāo)】1.知識(shí)與技能:加深對(duì)燃燒條件的認(rèn)識(shí),進(jìn)一步了解滅火的原理。2.過(guò)程與方法:體驗(yàn)實(shí)驗(yàn)探究的過(guò)程,學(xué)習(xí)利用實(shí)驗(yàn)探究的方法研究化學(xué)。3.情感態(tài)度與價(jià)值觀:利用化學(xué)知識(shí)解釋實(shí)際生活中的具體問(wèn)題,使學(xué)生充分體會(huì)到化學(xué)來(lái)源于生活,服務(wù)于社會(huì)。【學(xué)習(xí)重點(diǎn)】通過(guò)物質(zhì)燃燒條件的探究,學(xué)習(xí)利用控制變量的思想設(shè)計(jì)探究實(shí)驗(yàn),說(shuō)明探究實(shí)驗(yàn)的一般過(guò)程和方法?!緦W(xué)習(xí)難點(diǎn)】利用控制變量的思想設(shè)計(jì)對(duì)照實(shí)驗(yàn)進(jìn)行物質(zhì)燃燒條件的探究?!菊n前準(zhǔn)備】《精英新課堂》:預(yù)習(xí)學(xué)生用書(shū)的“早預(yù)習(xí)先起步”?!睹麕煖y(cè)控》:預(yù)習(xí)贈(zèng)送的《提分寶典》。情景導(dǎo)入 生成問(wèn)題1.復(fù)習(xí):什么叫燃燒?燃燒條件有哪些?今天自己設(shè)計(jì)實(shí)驗(yàn)來(lái)進(jìn)行探究。2.明確實(shí)驗(yàn)?zāi)繕?biāo),導(dǎo)入新課。合作探究 生成能力學(xué)生閱讀課本P150的相關(guān)內(nèi)容并掌握以下內(nèi)容。實(shí)驗(yàn)用品:鑷子、燒杯、坩堝鉗、三腳架、薄銅片、酒精、棉花、乒乓球、濾紙、蠟燭。你還需要的實(shí)驗(yàn)用品:酒精燈、水。1.實(shí)驗(yàn):用棉花分別蘸酒精和水,放到酒精燈火焰上加熱片刻。上述實(shí)驗(yàn)中我們能觀察到什么現(xiàn)象?說(shuō)明燃燒需要什么條件?如果在酒精燈上加熱時(shí)間較長(zhǎng),會(huì)發(fā)生什么現(xiàn)象?答:蘸酒精的棉花燃燒,蘸水的棉花沒(méi)有燃燒,說(shuō)明燃燒需要有可燃物。如果加熱時(shí)間較長(zhǎng),水蒸發(fā)后,蘸水的棉花也會(huì)燃燒。2.如圖所示,進(jìn)行實(shí)驗(yàn):我們能觀察到什么現(xiàn)象?說(shuō)明燃燒需要什么條件?答:在酒精燈火焰上加熱乒乓球碎片和濾紙碎片,都能燃燒,說(shuō)明二者都是可燃物。放在銅片兩側(cè)給它們加熱后可看到乒乓球碎片先燃燒,說(shuō)明燃燒需要溫度達(dá)到可燃物的著火點(diǎn)。3.你能利用蠟燭和燒杯(或選擇其他用品)設(shè)計(jì)一個(gè)簡(jiǎn)單實(shí)驗(yàn)證明燃燒需要氧氣(或空氣)嗎?答:點(diǎn)燃兩支相同的蠟燭,然后在一支蠟燭上扣住一只杯子,看到被杯子扣住的蠟燭一會(huì)兒就熄滅,說(shuō)明燃燒的條件之一是需要氧氣。

上一頁(yè)123...789101112131415161718下一頁(yè)
提供各類(lèi)高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫(huà),PPT模板免費(fèi)下載,專(zhuān)注素材下載!