一、說教材《8、9的加減法》是小學數(shù)學第一冊第三單元的重點內(nèi)容之一,它是在學生學習了7以內(nèi)的加減法和8、9的認識的基礎上進行教學的,是單元的重點,也是本冊書的重點內(nèi)容,甚至在整個小學數(shù)學教學中都占有著非常重要的地位,是進一步學習20以內(nèi)加減法計算最直接的基礎。二、說教學目標根據(jù)新《課標》的要求、教材特點以及學生的實際情況制定教學目標如下:1、知識與技能:學會根據(jù)一幅圖能夠列出兩加兩減四個算式。能熟練計算8、9的加、減法。2、過程與方法:通過觀察、操作、小組合作學會根據(jù)一幅圖能夠列出兩加兩減四個算式。能熟練計算8、9的加、減法。3、情感態(tài)度與價值觀:以小組合作學習的形式培養(yǎng)學生學習數(shù)學的興趣、合作意識和探索精神。
二、 教學目標1.理解分數(shù)加減法的算理,掌握分數(shù)加減法的計算方法,并能正確地計算出結(jié)果。2.理解整數(shù)加法的運算定律對分數(shù)加法仍然適用,并會運用這些運算定律進行一些分數(shù)加法的簡便運算,進一步提高簡算能力。 3.體會分數(shù)加減運算在生活、生產(chǎn)中的廣泛應用。三、學情分析五年級的學生已有一定的生活經(jīng)驗,對數(shù)學的神秘感有了更強的好奇心。因此,結(jié)合分數(shù)加減的學習內(nèi)容適當補充一些數(shù)學史料,可使學生的好奇轉(zhuǎn)化為探究欲,促其學習數(shù)學興趣的提高,并逐步形成良好的探究習慣。因此,教學時,應重視教材提供的兩個涉及數(shù)學文化的閱讀材料的學習。在此基礎上,再補充一些相關的學習材料。四、教學重點、難點重點:分數(shù)加減法的計算方法難點:引導學生體會理解不同算法的思路。
三、總結(jié)規(guī)律、形成概念通過學生積極討論,充分調(diào)動了學生的積極參與學習,既發(fā)揮了學生學習的主動性,又培養(yǎng)了學生的發(fā)散性思維,引導學生總結(jié)出:有的分數(shù)可以化成有限小數(shù),有的分數(shù)不可以化成有限小數(shù),請同學們再看一看什么樣的分數(shù)可以化成有限小數(shù)?什么樣的分數(shù)不可以化成有限小數(shù)?啟發(fā)學生從分母的最小公倍數(shù)著手。 最后總結(jié)出:一個最簡分數(shù),如果分母中只含有素因數(shù)2和5,再無其它素因數(shù),那么這個分數(shù)就可以化成有限小數(shù),否則就不能化成有限小數(shù)。 例題2,請把下列小數(shù)化成分數(shù),說說你是怎樣把小數(shù)化成分數(shù)的? 0.06,0.4,1.8,2.45,1.465, 歸納:(學生為主,教師點撥)1、原來有幾位小數(shù),就在1后面寫幾個零作分母。原來的小數(shù)去掉小數(shù)點作分子。2、小數(shù)化成分數(shù)后,能約分的要約分。常用的因數(shù)是2和5。 對于小數(shù)如何化成分數(shù)的題目,課前了解到學生在小學時已學過把小數(shù)如何化成分數(shù)的方法,因而以學生練習為主,加以操練并鞏固,有錯誤的及時糾正。
1、知識與技能:了解長方體的特征;認識長方體的長、寬、高;初步認識長方體立體圖形。2、過程與方法:經(jīng)歷摸、量,數(shù)、分類等操作活動,體會集合和分類思想,變與不變的思想,發(fā)展空間觀念和空間想象力。3、情感、態(tài)度與價值觀:學生通過與同學交流發(fā)現(xiàn)成果,培養(yǎng)與人合作、自主探索的能力。本課的教學重點是了解長方體和正方體的特征,認識長方體的長、寬、高。教學難點是認識長方體的特征。長方體的特征比較抽象,因此我注重讓學生在實踐活動中體驗、感悟。二、“巧”說教法俗話說:“教學有法,貴在得法。”根據(jù)本課的教學內(nèi)容和學生的思維特點,我將通過情景創(chuàng)設法,運用生活中常見的長方體引入課題;問題啟迪法,圍繞“哪些物體的形狀是長方體或正方體?”和“長方體和正方體各有什么特點?”
(四)、鞏固練習1.操場上打籃球的有4人,打籃球的人數(shù)是踢足球的 ,踢足球的有多少人?2.踢毽子的人數(shù)是踢足球人數(shù)的 ,踢毽子的有多少人?引導學生找出等量關系式,然后再解答。指名板演。3.某月雙休日共有9天,是這個月總天數(shù)的 ,這個月有多少天?(課件展示完整過程)(五)、課堂小結(jié),整理內(nèi)化1.我們這節(jié)課學習了用方程解決一類分數(shù)除法應用題的方法,你能來總結(jié)一下這類方法的一般步驟嗎?(師生回顧解決問題的步驟并總結(jié))2.課件展示一般步驟:用方程解答分數(shù)除法應用題的一般步驟:(1)分析題意,判斷單位“1”(即“總量”)。(2)寫出等量關系式。(3)設未知數(shù),列出方程。(4)解方程。(5)寫答語并檢驗。(六)、作業(yè):30頁2、3題
二、學情分析本單元是在學生已經(jīng)學習了整數(shù)除法、分數(shù)乘法的基礎上進行教學的,是小學階段四則運算中最后一部分的內(nèi)容。學生學習了整數(shù)、小數(shù)的四則運算,而分數(shù)只學習了加法、減法和乘法,因此對于學習分數(shù)除法有一定的認知需求,安排分數(shù)除法教學符合學生的認知發(fā)展特點。通過整數(shù)除法、分數(shù)乘法的學習,學生對計算的學習有一定的經(jīng)驗,并具有一定的解決問題的能力,這時候進行分數(shù)除法教學,學生有能力將原有的計算方法和經(jīng)驗進行遷移。學生在學習分數(shù)乘法時,已經(jīng)掌握了一些解決分數(shù)乘法問題的方法,這時候進行分數(shù)除法教學可以促進知識之間的聯(lián)系,提高學生分析問題和解決問題的能力。教師在教學時,應充分利用資源,激活學生已有的知識經(jīng)驗,引導他們展開類比思維,以促進學習的正向遷移。三、教學目標根據(jù)新課標的要求和教材的特點,結(jié)合五年級學生的認知能力,本節(jié)課我確定如下的教學目標:
四、說教法學法:本課主要采用知識遷移法、直觀教學法、引導發(fā)現(xiàn)法來教學。課上先復習整數(shù)乘分數(shù),通過已掌握的整數(shù)乘分數(shù)的意義就是表示一個數(shù)的幾分之幾是多少利用知識遷移規(guī)律自然引出1的是1×,1111的就是×,從而得出分數(shù)乘分數(shù)的意義同整數(shù)乘分數(shù)一樣,都表示22221212一個數(shù)的幾分之幾是多少;結(jié)合多媒體直觀演示,進一步幫助學生理解。在探討計算結(jié)果時,讓學生動手折一折,涂一涂,再借助圖形語言動態(tài)直觀演示,幫助學生梳理思維,同時也加深了學生對知識的理解。在方法的總結(jié)上,通過學生對幾個算式的觀察,引導學生發(fā)現(xiàn)分數(shù)乘分數(shù)就用分子相乘的積作分子,分母相乘的積作分母。本節(jié)課學生則主要通過自主探究、合作交流、練習的方法理解并掌握分數(shù)乘分數(shù)的意義及計算方法。五、說教學準備:教師準備多媒體課件、折紙。學生在操作手中有時會產(chǎn)生分歧或者折不出,課件的動態(tài)演示,會有力促進學生的模型建立。
[此環(huán)節(jié)的設計意圖是利用情景激發(fā)學生探究的欲望,讓學生帶著輕松、愉悅的心情投入到新知的學習中。](二)自主探究感悟新知教育心理學告訴我們,學生應當有足夠的時間和空間經(jīng)歷觀察、實驗、猜測、計算、推理、驗證等活動過程。(在兒童的學習活動中,興趣起著定向和動力功能的雙重作用。)以這一理論為指導,我設計了以下三個層次漸深的活動,大膽放手讓學生自主探究,從而突出重點、突破難點?;顒右唬豪斫夥謹?shù)乘整數(shù)的意義。讓學生通過折一折的活動自主計算,并歸納整理出學生的三計算方法:①根據(jù)分數(shù)的意義數(shù)一數(shù)是3/5;②加法計算1/5+1/5+1/5=3/5;③乘法計算3*1/5=3/5,展示在黑板上,引導學生通過觀察對比發(fā)現(xiàn),其實3*1/5就是3個1/5相加,由此感知到分數(shù)乘整數(shù)的意義與整數(shù)乘法的意義相同,只是這里的相同加數(shù)變成了分數(shù)。
我說課的內(nèi)容是焦老師執(zhí)教的北師大版五年級下冊第三單元《分數(shù)乘法(二)》一課,我將要從七個方面展開說課:說教材、說學情、說教學目標與教學重難點、說教法與學法、說教學過程、說板書設計、說教學效果。一、說教材《分數(shù)乘法(二)》是北師大版小學數(shù)學新課標教材五年級下冊第三單元分數(shù)乘法第二課第一課時的內(nèi)容,它是在學生理解了整數(shù)乘法的意義,分數(shù)的意義,并學會“求幾個幾分之幾是多少?”的基礎上進行教學的。是對《分數(shù)乘法(一)》的拓展和延伸,為進一步學習分數(shù)乘分數(shù),分數(shù)除法和分數(shù)四則混合運算奠定基礎。起著承前啟后的作用。是學習分數(shù)多步計算的關鍵,教材中創(chuàng)設兩個問題情境,通過直觀圖形引導學生利用轉(zhuǎn)化的方法思考,將舊知與新知有機聯(lián)系在一起,應用分數(shù)乘法解決實際問題。
2、巧妙練習,強化意義《數(shù)學課程標準》指出:“引導學生把所學的數(shù)學知識應用到現(xiàn)實中去,以體會數(shù)學在現(xiàn)實生活中的應用價值?!睘榇?,我設計如下練習:為1/2這一分數(shù)配圖(課件),教師提出要求:大家看這里有一個分數(shù),你能試著給它配幾幅圖嗎?配出一幅的是達標,兩幅以上的是良好,三幅以上的是優(yōu)秀。借助激勵性的語言,學生定會躍躍欲試,在優(yōu)美的樂曲中大顯身手??赡軙霈F(xiàn)這樣的作品(課件)。那么同是分數(shù)1/2,為什么會出現(xiàn)這么多不同的作品呢?那是因為學生假設的整體不同,也就是單位“1”不同,因此所配出來的圖是不一樣的。(借助為分數(shù)配圖這一環(huán)節(jié),即強化了學生對分數(shù)意義的理解,又增強了學習的趣味性,符合小學生的心理特征,同時訓練學生的思維,培養(yǎng)了學生思維的廣闊性,靈活性。
教學難點:利用數(shù)的分解組成,正確地計算5以內(nèi)的減法。教學準備:小圓片、小棒、小黑板。教學過程:一、復習:1、拍手接力游戲 。2、看圖說圖意,并列式計算。3、復習5以內(nèi)數(shù)的組成。二、新授:1、(小黑板)出示畫圖:樹上有5只鳥,飛走了一只。根據(jù)這幅圖,你能提什么問題呢?2、那么你怎么列式呢?先和小組里的小朋友說一說,再指名回答,請學生上來板書列式。3、小組內(nèi)交流:“5-1”得幾?你是怎么算的?和組里的小朋友交流,每個小朋友都說自己的想法,是怎樣得出結(jié)果的。4、匯報情況:指名小老師上來教大家計算的過程(提倡算法多樣化,教師可以有意識請想法不同的學生上來說一說)5、抽象出計算過程:引導學生如果不看圖,不數(shù)手指,你會計算“5-1”得幾嗎?(引導學生用數(shù)的組成知識來計算)
四、全課總結(jié)[設計意圖:通過電教媒體把抽象的數(shù)學知識與學生的心理和生活中喜歡做游戲的特點結(jié)合起來,使學生在樂中學,在玩中學,有利于學生對知識的理解和掌握。]教學反思:根據(jù)學生年齡小、活潑好動的特點,我在教學中力求激發(fā)學生學習的積極性、主動性,使學生在愉悅和諧的課堂氣氛中獲取新知,并培養(yǎng)了學生的多種能力。第十五課時: 生活中的數(shù)教學內(nèi)容:教科書第46頁、第57頁、第87頁“生活中的數(shù)”。教材分析:本節(jié)課教師通過課件演示,創(chuàng)設生活情境,在現(xiàn)實世界中尋找生活素材,成功地將學生的視野拓寬到他們熟悉的生活空間。然后通過說一說、擺一擺、猜一猜、算一算等實踐活動,讓學生感覺到數(shù)學就在他們身邊,看得見、摸得著。學生自始至終地參與觀察、操作、猜測、驗證、思考等多種實踐活動,積極性非常高??梢哉f,我在圍繞“數(shù)與生活”這一中心設計教學活動時,也在積極地進行構(gòu)建“生活數(shù)學”教學體系的探索與嘗試。
解析:(1)先把第二個分式的分母y-x化為-(x-y),再把分子相加減,分母不變;(2)先把第二個分式的分母a-b化為-(b-a),再把分子相加減,分母不變.解:(1)原式=2x2-3y2x-y-x2-2y2x-y=2x2-3y2-(x2-2y2)x-y=x2-y2x-y=(x+y)(x-y)x-y=x+y;(2)原式=2a+3bb-a-2bb-a-3bb-a=2a+3b-2b-3bb-a=2a-2bb-a=-2(b-a)b-a=-2.方法總結(jié):分式的分母互為相反數(shù)時,可以把其中一個分母放到帶有負號的括號內(nèi),把分母化為完全相同.再根據(jù)同分母分式相加減的法則進行運算.三、板書設計1.同分母分式加減法法則:fg±hg=f±hg.2.分式的符號法則:fg=-f-g,-fg=f-g=-fg.本節(jié)課通過同分母分數(shù)的加減法類比得出同分母分式的加減法.易錯點一是符號,二是結(jié)果的化簡.在教學中,讓學生參與課堂探究,進行自主歸納,并對易錯點加強練習.從而讓學生對知識的理解從感性認識上升到理性認識.
6. 本題是一道實際應用的題,可以結(jié)合生活實際舉例,在舉例中進一步認識分數(shù)。7. (讀作八分之一)表示把人的身高看作單位“1”,頭部的高度占整個身高的 ; (讀作五分之三)表示把整個長江的干流看作單位“1”,受污染的部分占整個長江干流的 ; (讀作十分之三)表示把死海表層的水看作單位“1”,含鹽量占死海表層水的 。8. 讀作六分之一, 讀作七分之二, 讀作是十五分之四, 讀作十八分之十一, 讀作一百分之七。它們的分數(shù)單位分別是: 、 、 、 、 。9. 本題有兩個知識點:一是根據(jù)分數(shù)的意義涂色,是把12個蘋果平均分成了2份,1份有6個蘋果; 是把12個蘋果平均分成了3份,1份有4個蘋果; 是把12個蘋果平均分成了4份,1份有3個蘋果; 是把12個蘋果平均分成了6份,1份有2個蘋果; 是把12個蘋果平均分成了12份,1份有1個蘋果。二是在涂色中感受平均分成的份數(shù)越多,每一份越少,也可以說隨著分母的增大,幾分之一所表示的蘋果個數(shù),從 的6個到 的1個,相應地在減少。
(一)教學內(nèi)容:我說課的內(nèi)容是第5單元中內(nèi)容,(二)教材地位:加法是數(shù)學中最基本的運算之一。從教材的縱向聯(lián)系來看,幾年前已學過整數(shù)加法和小數(shù)加法,以及加法的運算定律,知道它不僅適用于整數(shù)加法,而且也適用于小數(shù)加法。那么是否也適用于現(xiàn)在所學習的分數(shù)加法呢?這就是我們這節(jié)課要研究的問題,當然,結(jié)果是肯定的。通過本課的學習,將整數(shù)加法的運算定律推廣到分數(shù)加法,可使學生對加法的認識從感性上升到理性。為后面學習分數(shù)加法的簡便計算打好基礎,同時也為學習小數(shù)、分數(shù)混合運算奠定基礎。其次,將整數(shù)加法的運算定律推廣到分數(shù)加法,也拓展了加法運算定律的使用范圍,豐富其內(nèi)涵。而且加法運算定律字母表示形式,為以后代數(shù)知識的學習奠定了初步基礎。
已知xm-n+1y與-2xn-1y3m-2n-5是同類項,求m和n的值.解析:根據(jù)同類項的概念,可列出含字母m和n的方程組,從而求出m和n.解:因為xm-n+1y與-2xn-1y3m-2n-5是同類項,所以m-n+1=n-1,①3m-2n-5=1.②整理,得m-2n+2=0,③3m-2n-6=0.④④-③,得2m=8,所以m=4.把m=4代入③,得2n=6,所以n=3.所以當m=4,n=3時,xm-n+1y與-2xn-1y3m-2n-5是同類項.方法總結(jié):解這類題,就是根據(jù)同類項的定義,利用相同字母的指數(shù)分別相等,列方程組求字母的值.三、板書設計用加減法解二元一次方程組的步驟:①變形,使某個未知數(shù)的系數(shù)絕對值相等;②加減消元;③解一元一次方程;④求另一個未知數(shù)的值,得方程組的解.進一步理解二元一次方程組的“消元”思想,初步體會數(shù)學研究中“化未知為已知”的化歸思想.選擇恰當?shù)姆椒ń舛淮畏匠探M,培養(yǎng)學生的觀察、分析問題的能力.
2.法解二元一次方程組,是提升學生求解二元一次方程的基本技能課,在例題的設置上充分體現(xiàn)化歸思想.2.在學習二元一次方程組的解法中,關鍵是領會其本質(zhì)思想——消元,體會“化未知為已知”的化歸思想.因而在教學過程中教師通過對問題的創(chuàng)設,鼓勵學生去觀察方程的特點,在過手訓練中提高學生的解答正確率和表達規(guī)范性,提升學生學會數(shù)學的信心,激發(fā)學習數(shù)學的興趣.3.通過精心設計的問題,引導學生在已有知識的基礎上,自己比較、分析得出二元一次方程組的解法,在鞏固訓練活動中,加深學生對“化未知為已知”的化歸思想的理解.特別是如何由代入消元法到加減消元法,過渡自然。讓學生深刻的體會到二元一次方程是一元一次方程的拓展,二元一次方程組又要通過“消元”,轉(zhuǎn)化為一元一次方程求解,這樣的轉(zhuǎn)化,不僅有助于學生掌握知識、技能和方法,提高學習效率,而且還加深了對數(shù)學中通性和通法的認識,體會學習數(shù)學和研究數(shù)學的規(guī)律,提升數(shù)學思維能力.
分式1x2-3x與2x2-9的最簡公分母是________.解析:∵x2-3x=x(x-3),x2-9=(x+3)(x-3),∴最簡公分母為x(x+3)(x-3).方法總結(jié):最簡公分母的確定:最簡公分母的系數(shù),取各個分母的系數(shù)的最小公倍數(shù);字母及式子取各分母中所有字母和式子的最高次冪.“所有字母和式子的最高次冪”是指“凡出現(xiàn)的字母(或含字母的式子)為底數(shù)的冪的因式選取指數(shù)最大的”;當分母是多項式時,一般應先因式分解.【類型二】 分母是單項式分式的通分通分.(1)cbd,ac2b2;(2)b2a2c,2a3bc2;(3)45y2z,310xy2,5-2xz2.解析:先確定最簡公分母,找到各個分母應當乘的單項式,分子也相應地乘以這個單項式.解:(1)最簡公分母是2b2d,cbd=2bc2b2d,ac2b2=acd2b2d;(2)最簡公分母是6a2bc2,b2a2c=3b2c6a2bc2,2a3bc2=4a36a2bc2;(3)最簡公分母是10xy2z2,45y2z=8xz10xy2z2,310xy2=3z210xy2z2,5-2xz2=--25y210xy2z2.
教學目標1、通過教學,學生懂得應用加法運算定律可以使一些分數(shù)計算簡便,會進行分數(shù)加法的簡便計算.2、培養(yǎng)學生仔細、認真的學習習慣.3、培養(yǎng)學生觀察、演繹推理的能力.教學重點整數(shù)加法運算定律在分數(shù)加法中的應用,并使一些分數(shù)加法計算簡便.教學難點整數(shù)加法運算定律在分數(shù)加法中的應用,并使一些分數(shù)加法計算簡便.教學過程設計一、復習準備(演示課件:整數(shù)加法運算定律推廣到分數(shù)加法)下載1.教師:整數(shù)加法的運算定律有哪幾個?用字母怎樣表示?板書:a+b=b+a(a+b)+c=a+(b+c)2.下面各等式應用了什么運算定律?①25+36=36+25 ②(17+28)+72=17+(28+72)③6.2+2.3=2.3+6.2 ④(0.5+1.6)+8.4=0.5+(1.6+8.4)教師:加法交換律和結(jié)合律適用于整數(shù)和小數(shù),是否也適用于分數(shù)加法呢?這節(jié)課我們就一起來研究.二、學習新課(繼續(xù)演示課件:整數(shù)加法運算定律推廣到分數(shù)加法)下載1.出示:下面每組算式的左右兩邊有什么關系?
(1) 討論——選擇。教師精心安排了兩個環(huán)節(jié),一是讓學生討論、選擇一個喜歡的分數(shù)作為研究對象,二是讓學生討論、選擇不同的實驗材料,確定不同的驗證方法,然后全班匯報。教師給每組準備了一個材料籃,里面裝著計算器、鐘表、數(shù)張紙、線段圖、彩筆、直尺等。各小組經(jīng)過熱烈的討論標新立異地選擇了不同的分數(shù)作為研究對象、選擇不同的材料作為實驗器材,一個個躍躍欲試。學生可能會選擇折紙涂色、畫線段圖、用計算器計算、看直尺、看鐘面等不同的方法去證明兩個分數(shù)是否相等。設計意圖:這樣設計,既是為后面的實驗做好準備,避免學生出現(xiàn)盲目行動,同時也是為學生探究方法的多元化創(chuàng)造條件。(2)實驗——記錄:各組拿出實驗報告,開始做實驗,并記錄實驗結(jié)果。(3)匯報——交流:分組在實物投影儀上,展示實驗報告,說明驗證方法。學生可能會出現(xiàn)多種多樣的實驗報告。(投影)